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NON-VECTOR SPACE GENERALIZATIONS OF
VON NEUMANN'S MINIMAX THEOREM

L.L. STACHO

Recently I. Jo6 [1] published a very short and elementary proof
for Ky Fan’s generalization of the von Neumann minimax theorem. A care-
ful examination of his method leads us to a conclusion that may be a bit
surprising: By carrying out some simple changes, we can arrive at a proof
where the only property arising from convexity which we need is the con-
nectedness of straight line segments (in real vector spaces). Therefore the
most suitable concept in describing the topological situation that occurs in
the minimax principles is perhaps the following structure that we call
interval space and which is richer but axiomatically simpler than the
familiar topological vector spaces:

Definition. By an interval space we mean a topological space X
equipped with a mapping [-,+]: X X X - {connected subsets of X}
such that

X{,X%y € [xl,xz] = [xz,xl] ‘v’xl,x2 e X.

The set [x;,x,] iscalled the interval connecting x; and x,.
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In interval spaces, it makes sense to speak of convexity of subsets
and quasiconvexity of X — R mappings in a natural way:

Definition. A subset K of an interval space is convex if [x;.x,]1C
CK Vx;,x,€K. A function f: X~ R is quasiconvex if f(z)<
< max {f(x,), f(x,)} whenever z € [x,,x,].

In this context, we have the following minimax principle:

Theorem 1. Let X,Y be compact interval spaces and let f: X X Y -
- R be a continuous function such that

(1) the function x - f(x,y) is quasiconcave for any (fixed) y € Y,
(1) y = flx,y) is quasiconvex for any x € X.

Then max min f(x, y) = min max f(x, y).
x ¥ y x

The key step of the proof of Theorem 1 is the proposition below
that, in some sense, plays an analogous role as Brouwer’s fixed point the-
orem in the classical proofs:

Proposition. Let Y be an interval space, X a topological space and
K: X - {non-empty compact X-subsets} a mapping with the properties

(2) K@) < K(y,)u K(y,) whenever z€ y:y,] and y, .y, €7,
n
3) ﬂl K(y,) is connected (possibly empty) for every Vise- oV, €
l:
€Y (n=1,2,...),
(4) x€K(y) whenever y = lim Ypo x=limx;, and x; € K(y,)

ier i€l
forall i€l

Then we have [ K(y) # ¢.
rey

Question. Is there a tricky choice of X, Y and K(-) in this proposi-
tion such that the conclusion ﬂY K(y)+# ¢ be a known equivalent of
ye

Brouwer’s fixed point theorem?
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By shifting the emphasis from the topology on the order structure
of the underlying spaces, we can prove a topological version of the
strongest known minimax principle due to Brezis — Nirenberg —
Stampacchia [2]:

Definition. We say that an interval space Y isDedekind complete if
for every pair of points y,,y, € ¥ and convex subsets H, ,H, CY with
y,€H,. ¥, € H, and [y;,»,]C H, U H, there exists z € H UH,
such that [y zl1\{z} € H] G=1,2).

Theorem 2. Suppose that X is an interval space, Y a Dedekind
complete Hausdorff interval space and let f: XX Y > R be a function
with the properties

(5) x> flx,y) is upper semicontinuous and quasiconcave on X
(forall y€Y),

(6) y = flx,y) is quasiconvex and lower semicontinuous when
restricted to any interval in 'Y (forall x € X),
(7) for some y<infsup fix,y) and y €Y, theset {x: flx,y) > v}

¥y X
is compact.

Then we have max inf f(x, ¥) = inf sup f(x, y).
x oy y x
In the light of the proof of Theorem 2 we can answer (negatively)
the question raised by L. Nirenberg [3] whether the condition (5) in
Theorem 2 can be replaced by the weaker assumption

(5) x— fix,y) is quasiconcave and upper Semicontinuous when
restricted to any interval in X (forall ye Y) if X and Y denote com-
pact convex subsets in some topological vector spaces.

Counterexample. Set Y ={N - [0, 1] functions}, F={N- R func-
tions}, £ ={Y - R functions}, X={Y - [0, 1] functions} and let the
vector spaces E,F be endowed with the pointwise convergence topology.
Introduce the sets H, = co{l{i}: i>n} (m=1,2,...) and K@)=
= ¢o {IH" cn=m(y)y (y€Y) where m(y)=min{ne€N: y & H } (here
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co stands for the convex hull operation and 1 gy is the characteristic

n

function of the set H ). Now we define the function f: XX Y~ {0, 1}
by fix,y)= IK(y)(x). Then the sets X and Y are compactin £ and F,
respectively. The function f satisfies (5'), (6) and (7). However, we have

0=max min f(x,y) and 1= min max f(x, »).
x ¥y ¥y x

(Detailed proofs had already appeared in [4].)
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