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Symmetric continuous Reinhardt domains

By

L. L. STACHO and B. ZALAR

Abstract. We extend the concept of Reinhardt domains to complex function spaces and we give
a complete parametric description of all bounded symmetric Reinhardt domains in a Cg-space.

1. Introduction. A classical Reinhardt domain is an open connected subset D of C"
the space of all complex n-tuples being invariant under all coordinate multiplications
My, 2, @ @5 z0) = (A1z1, ..., AnZg) with [Aq],..., [Ay] = 1. The Reinhardt
domain D C C” is called complete if M), _,, D C D whenever |A{|,..., |As| 1.

In 1974 Sunada [11] investigated the structure of bounded Reinhardt domains containing
the origin from the viewpoint of biholomorphic equivalence. He was able to describe
completely the symmetric Reihardt domains which, up to linear isomomorphism, turned to
be direct products of Euclidean balls.

Our aim in this paper is to study infinite dimensional analogs of symmetric Reihardt
domains. There are several ways of extending the definition of classical Reihardt domains.
We are however motivated by a recent interesting work of Vigué [12] who considered
continuous products of discs (of different radius). He obtained a rather surprising result
that, despite the obvious symmetry of a disc, such a continuous product is not symmetric in
general. We intend to give a definition of a continuous Reinhardt domain which includes the
domains studied by Vigué in such a way that our results can also lead to some continuous
mixing of Euclidean balls generalizing the work of Sunada.

In the classical definition of a Reinhardt domain r-tuples can be viewed as functions
from the discrete space 2 = {1,...,n} to C. In this terminology, complete Reinhardt
domains are closely related with the ordering f 20 <= f(w) 20 for all w € Q. Namely
D C C() is a complete Reinhardt domain if f € D and |g} < | f| implies g € D. This
definition can simply be extended to any complex function lattice. In the setting of bounded
continuous functions, the Gel’fand-Naimark theorem naturally leads to the lattice Cy(2) of
all continuous functions vanishing at infinity over a locally compact Hausdorff space. We
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note that in 1978 Braun-Kaup-Upmeier [1] introduced another interesting generalization of
Reinhardt domains in infinite dimensional setting. This concept is different from ours and
even in their later works their school changed the terminology so that today their concept
is called bicircular domains.

In the present paper we concentrate on the symmetric case. We prove that continuous
bounded symmetric Reinhardt domains are in certain sense made of Fuclidean balls but in
a more complicated manner than simple direct products. Moreover, for a given domain D,
the dimensions of these balls are simultaneously bounded by a finite constant determined
by some geometric parameters of D. It particular, in Theorem 1 we show that D can be
explicitly described in the form {f : sup > m(w)|f ())? < 1} for a suitable partition

jeJ weQ;
{2 : j € J} of the space Q and a functionm : Q — R,

The main tools we use in our arguments come from Jordan theory: by Kaup’s celebrated
Riemann Mapping Theorem [7], bounded symmetric circular domains can be regarded as
unit balls of JB*-triples. The key point is our Corollary 4 which can be regarded as a
generalization of the classical Banach-Stone Theorem (corresponding to the case D = {f :
[fl < 1}). Here we identify the extreme points of the dual unit ball of the associated
JB*-triple as certain finite linear combinations of point evaluations. Hence bidualization
arguments lead to our conclusions. Concerning the JB*-triple theory applied, we refer to
the survey [10].

2. Results.

Definition. Throughout this work let 2 be a locally compact Hausdorff topological
space. By a symmetric continuous Reinhardt domain over Q we mean a bounded sym-
metric domain D C Co(2) (the space of all continuous functions Q — C with {w € Q :
| f(w)| Z &} compact C € for any & > 0) equipped with the norm || f|[co := max | f|) such
that

feD, gl=lfl =geD  (figelo().

Henceforth we fix a symmetric continuous Reinhardt domain D over €. It is well-known
[7] that D is the unit ball for a so-called JB*-norm }.|| on Cy(£2) equivalent to ||.[loc and
there exists (a unique) 3-variable operation {...} : Co(2)? — Co() such that

(J1) {xyz} = {zyx}, ,

(J2) {(arx1 +o2x2)(Biyi + B2y2)(vizi + 222)} = D cuBeVm{xeyezm),
k,m=1

(J3) {ab{xyz}l = {{abx}yz} — {x{bay}z} + {xy{abz}},

(4 IMxxx}| = [x]1,

(J35) the spectrum of the operator [x > {aax}lis non-negative

foralla, b, x, y, z € C(Q) and a1, @2, B1, B2, v1, v2 € C.
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‘We shall write briefly E for the JB*-triple (Co($2), |I.1I, {...}). Since the norms |.||, ||.|lco
are equivalent on E, by the Riesz Representation Theorem [5], the dual space E’ consists
of all linear functionals of the form

fe [ fdu (n € M(2))

where M(2) denotes the family of all complex-valued regular measures with bounded
variation on 2. Thatis any element 1 € M (2) is a o -additive function Borel(2) — Csuch

that w(B) = sup u(K) for B € Borel(£2) := [the smallest o-ring of subsets of
K compactCB

containing £ and the compact subsets of 2]. We denote the functional [E 5 f +> [ f dul]
simply by du, and conveniently we write gdu := [f +> [ fg di] whenever g € B(Q)
where we write 5(2) for the family of all bounded complex-valued Borel($2)-measurable

functions. In terms of measures, the dualnormon E'is |[du|| :== sup | [ f du| where
feBall (E)

Balli(E) := {x € E : ||x]| £1}. Itis well-known that the dual norm of |.|j is nothing
else as the total variation (which is finite automatically due to the presence of the whole 2
in Borel(£2))

fldplly = sup { Z [(K)| : K is a finite disjoint family of compact subsets of SZ} .
KekK

In order to achieve a parametrized classification of all symmetric continuous Reinhardt
domains over €2, we shall describe the extreme points of Ball; (E’) in measure theoretical
terms.

We can regard the space (), which contains E, as a subspace of the bidual E” by
identifying the functional [du + [ f du] with f € E as usual. In this sense the JB*-
triple product {...} extends from E to E” in a separately weak*-continuous manner and
E” with the bidual norm and this extended triple product (denoted simply by |.|| and {...},
respectively) is a JB*-triple again [3, 2]. According to a celebrated lemma of Friedman-
Russo [4, page 79], the atoms of the JB*-triple E” and the extreme points of the unit ball of
E' are in a remarkable one-to-one correspondence which can be stated as follows. Recall
an atom of E” is an element a € E” such that

{aaa} =a #0 and ({axa} = ¢,(x)a (x e E"

for some (necessarily unique) linear functional ¢ : E” —» C. Then the extremal points of
the dual unit ball are given by

ext Ball| (E") = {¢,|p : a atom € E"}.

Any function # € E givesrise to the multiplication operator M,, : f +> uf (f € E). Notice
thatfor |u| < 1wehave |M, f| < | flandhence M, D C D. Thatis M, Ball;(E) C Ball;{(E)
for max || £ 1 and, in general,

Myl £ max |u| (u € E).
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Any function g € B(2) gives rise to the multipliers

Mg(du):=gdu  (ue M(Q),
MJ(f) = [du v f(gduw)] (f € E").

We note that M’ E' — FE, M” : E" — E” arelinear operators and if u € E then M, M)
are the adjoint E " — E’and bladJOIIlt E" — E” of M,,, respectively. The norm of an adjoint

is always the same as the original operator. In particular we have I M| = [|M])]| £ max |u]
forallu € E.
Lemma 1. In general, |Myll = sup |lg dull < suplg| and 1Ml = sup
fldu=1| feBall (E")
Mg fII < sup gl

Proof. Notice that M” is the adjoint of M’ Thus [[M”” = HM’ Il

To show that ”M’ (d,u)[l < suplgllidull, we proceed as follows. Fix u € M(Q) arbl—
trarily. It is well- known that dy = hldfi| for some function & € B(Q) with |h| =
and

fe M(Q)y={ve M) : v(B)20 (B e Borel(Q))}.

On the other hand, there exists a sequence g1, g2, - . . € Co(S2) with max |g{|, max lg2l, ...
Ssuplgland jifw e Q: glw) # li)m gn(w)} = 0. Thus
n—»00

1M, = Lk did = sup | [ 7gh dﬁ‘
feD
= sup lim l/ fenh dﬂ’ = sup lim |du(M. f)|
feD"") feDn—>oo "

< sup lim |l dull My, fIl £ sup lim [du| max|g,|
feD N> fep 00
= max g, [dull. O

Given any set S € Borel($2), we write 1 for the indicator function of S, that is 1 s(w) =
[1ifw e S, 0else] (w € Q). By the previous lemma the operator

Y/
Pg 1= M/ s
is clearly a contractive projection E” — E” since, in general

MI M/ _Mélgz’ ngM” Mg’llgz
and we always have Ps Pr = Psnr (S, T € Borel(2)).

Recall that surjective linear isometries of JB *-triples are automorphisms of the underlying
triple product [6]. In particular, because of the above lemma, M” ¢ 18 an automorphism of
the JB*-triple E” whenever g € B(w) and |g(w)| = 1 for all w € €, since it is the inverse
of the multiplier MZ. 7
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Proposition 1. Supposea € E" isanatomand Sy, ..., Sy € Borel(Q) are disjoint sets
N
suchthat | ) Sy = Qand Pra # 0 (k = 1, ..., N) with the projections Py, := M{’Sk. Then
k=1 g
Y Peal? = 1 and || Pra|| ™! Pea is again an atom in E” with PPl Pea = I Pcal " g0
k

Py for any index k.

M=

Proof. For any #1,...,1, € R the functions Stfvty = ei’klgk have absolute

k

If

1
value 1. Hence

,,,,,,

N
-1 g - —ity
Atl ,,,,, v T Mg:,, o Ze Py
k=1
It follows that the elements
Q... 1% = Al‘] ,,,,, na (fl, .o I € R)

are all atoms of E” since they are automorphic images of the atom a. Thus

{at],...,tNxaI[ ..... tN} = ¢a,],m,,N (x)at[ ..... IN

forany x € E” and 11, ..., ty € R. On the other hand, here we have

,,,,,

1
= @a(Ay | 1y X),. .ty
That is, for all real 71, . . ., fy we have
N

,,,,,,,,,,

k=1
and
{ [Z el Pka:, x [Z el Pga:l } = Z e~ilg, (Pyx) Z e Pya.
k ¢ k [

Comparing the coefficients of the above trigonometric polynomials in the second identity,
we get

j —— )
{(Pra)x(Pea)} = {(Pra)x(Pra)} = 5¢a(Pkd)Pza + 5¢a (Pa)Pra
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forany x € E” and k,¢ = 1,...,N. In particular, for k = ¢, these relations mean
{(Pra)E"(Pra)} C CPra, that is each element Pga is some multiple of a suitable atom.
Thus the element

ar = || Peall " Pra

is an atom in E”. The above equation further implies {( Pra)(Pia)(Pra)} = ¢o(Pra) Pra.
Since the number ¢, (Pra) belongs to the spectrum of the operator [x +> {(Pra)(Pra)x}],
which is non-negative by (J5), we have

I1Peall® = |{(Pea)(Pea)(Pea)}l| = ||pa(Pea) Peall = $o(Pea)|| Peal).
Hence it follows || Pya|| = ¢o(Pra)'/2. Thus, with the coefficients
Mo=¢(Pa)? >0  (k=1,...,N)

we have

It only remains to relate the functionals ¢,, to ¢,. Again the relation {(Pra)x(Pra)} =
Pa(Prx) Pra entails

bu, ar = {arxar} = {7\ Pralx[r]! Pral}

= A 20 (Pex) Pra = A7 G (Pex)an
thatis ¢o, = Ay ‘@0 P (k=1,...,N). [
Corollary 1. The atoms ay := ||Pral| ™' Pra (k = 1, ..., N) are pairwise collinear and

) Q— ) —
{arxag) = Eqbak(x)ag + Eqﬁae(x)ak xecE’ ke=1,...,N).

N
Ifea, . tv € Cwith Y |52 = 1 the element > Crag is an atom in E” and
k k=1

¢§[al+“‘+§NaN = Z §k¢ak .
k

Proof. We have ¢, = )&k_lqﬁa o Py and ¢, (ar) = 1. Since Pray = a; and PyP; =0
fork #£ £,

Ayl
{akarag) = =X 2‘ [ $a(Pear) Pea + ¢u(Prar) Pea]

1 1
= 5[% (@)ag + ba,(Oar | = sae Gk #0)
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which means the collinearity of the family {“k}11<v=1- Then all the statements follow from
the relationship

{ [; é'kak:I x [E‘; QaeJ } - ; Gelelapxar)

1 =
= Z 5 SkLelPa (X)ar + o, (X)ar] = Z $kPay (x) [Z {eaz] - O
k.t k ¢

Since D = Ball{(E) is a bounded open subset of Cy(£2), for some 0 < ¢ SM < oo we
have

x:lixllo <€} CDC{x: |xlloo < M},
() eldulli Slldull S Mlduli (1 € M(Q)).

Lemma 2. Ifdp € ext(Balli(E)) and Si,...,8y € Borel(Q2) are pairwise disjoint
sets such that 15,du # 0 (k =1, ..., N) then necessarily N < (M/¢)>.

Proof. We may assume U Sk = Q (by replacing Sy with Q@ \ J Sy if necessary).
k<N
For some atoma € E” we have du = ¢,. Then, with the projections Py = My > We have

by Proposition 1
ag = || Pra|| " Pra isatom and ¢, = || Peall " ¢g 0 P = | Peal| g, dp.
Thus, by Corollary 1,

b= Z Lray is atom and
k

=N72Y "¢y = [N““Z D Pl mJ du
k k

Since the sets S, ..., S are disjoint,

Z N—1/2

k

=N gl
k

lioplls =

Pealsdully = Y UNTV2 | Pal s duly
k

Since |9y || = llda; | = ... = lpan|l = 1, and since, in general, )@, < [lp] < M|p|;
(¢ € E”), we have the followmg II.]l1-estimates

1 12 1 Al Nm
~Zlgslhi =N /zkjuqbaku@N /Z
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Corollary 2. Any measure u € M(Q) with du € ext(Ball{ (E")) has a finite support
consisting of at most (M /€)? points.

Proof. LetS;,...,Sybea partition of 2 with a maximal number of elements such that
Is,du #0(k =1,..., N). ByLemma2such partitions exist and necessarily N < (M / 8)2.
For each index £, let

Sk :={S € Borel(Q) : §C S8, lsdu # 0}.

Given any index k and a non-empty Borel(§2)-measurable proper subset of Sy, the partition
Styooey Se—1. T, SE\T, Sgr1, - .., Sy consists of more than N members, hence necessarily
either 1rdu = Oand 157 # O or 17dp # 0 and Ig\r = 0. That is S is an ultrafilter in
Borel(Sx). On the other hand, by the inner compact regularity of the measures in M(),
for any § € S there exists K compact C S such that 1xdu # 0. Therefore {K € S :
K compact C Sk} is a family with finite intersection property shrinking to a single point (as
being a filter basis of a Borelian ultrafilter). Thus for some points wy € S, ..., wn € Sy
we have S, = {T € Borel(Sy) : awp €T} (k=1,..., N). Itfollows dpp = Y~ 1(pdu
and Support(u) = {w1,...,wy}. [

Henceforth, for any point w € Q, we write

P, = M{’(m), P, :=id— P,, 8, :=[Borel(Q)> S+> lifwes, 0 otherwise].

Lemma 3. For each o € 2 the element 1, is an atom of E".

Proof. Given f € E”, we have

Pofdp) = f(lwydu) = f(u{o)dsy) = f(dss)lw)(dw).

Thus P, is a rank 1 _projection E” — E” with Cly,) = range(P,) = kernel(P,). Since
the projections P, P, (being real multipliers of E”) are Jordan-derivations of the triple
product {...}, for any x € E” we have

Po{lipyxliy)) = {(Poliwp)x 1wy} — {1} (Pox) 1 ()} + {1{wpx (P i)}
= —{1{w)(Pox)1(w)},

—_ —_ —

Polliw)xliw)} = Py {1jm)x1iy)} = ("1)2{1{w}(Pa)x)1{a)}}-

It follows Pu{liw}E” 1)} = 0, {1{w} E"1{w)} C Clye) which means that 1, is an atom
of E”. [

Proposition 2. The atomic part of E” is an £°°-direct sum of Hilbert spaces of dimen-
sion < (M/¢)?, each of which is spanned by a collinear family of atoms of the form
€ = 1) o) (@ € Q).
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Proof. We know [9] that
Ey := weak*spanfatoms of E"} = @ ¢/ F;

where the family {F; : j € J} consists of the minimal ideals of E” with respect to the
triple product {...} and F; = weak*span{a atom € E” : a € F;} (j € J). Actually, by the
two previous lemmas,

Fj = weak*span{e, : w € Qj} where Q; ={weQ: e, € F;} (jel)

and Q = |J ;. Fix any index j € J arbitrarily. To complete the proof, we show that the
jeJ

family {e,, : @ € Q;} consists of at most (M/ £)? pairwise collinear atoms. In general, if

, n € §2 then, since i P, is derivation

Pn{ewewen} = {(Pnew)ewen} - {ew(Pnew)en} + {ewew(Pner])}
= {epeney} € Cey.

Thus the atoms e,, (w € ) are pairwise Peirce compatible and hence collinear or orthogonal
(denoted by T resp. L)since the fact {x € E” : {eyeox} = x} = Ce,, ( € Q) excludes
the possibilities of governing and association relations. Observe also that

ex TepTe, =>eTe ora=y.

Indeed otherwise there wouldexiste, B, y € Qwitha # B £y #aandey Teg T ey, Le,.
Then by the quadrangle lemma [9], the element e := {eqege,} would be a non-zero
tripotent which is impossible, because

Pge = {(Ppea)epey} — {ea(Pgepey ) + {eqep(Pgey )} = —e
which would entail
e=—Pge= ——Pﬁ(mPge)Pﬁze = Pge =0.

Since F; admits no orthogonal splitting, it follows e, T eg for any couple &, B € Q; with
o # B. Itis well-known [8] that, in this case, F; can be equipped with an inner product (., .) j
with respect to which {e,, : @ € €} is a complete orthonormal family and || f 1% = (f, al
(f € F;). Necessarily, every element f € F; with || f|| = 1 is an atom of E”. Therefore,
by Lemma 2, cardinality(Q;) = dim(F;) £ (M/¢)?. O

In terms of the Cartan factors F; (j € J) of E” we can summarize our considerations
concerning the extreme points of the unit ball of E’ as follows. Let

Q={weQ: lyeF} (Gel), m:=|lyl? (@cQ).
Then we have the following extension of the Banach-Stone theorem.

Corollary 4. If D is a bounded continuouus symmetric Reinhardt domain over Q with
(%) then cardinality(Q2;) < (M/e)? (j € J) and

ext(Balli(E) = [ J§ Y twbu: Y m@)ltul? =1

jeJ | wesy; wER;
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Theorem 3. Let D be a bounded symmetric continuous Reinhardt domain over the
locally compact topological space Q and let 0 < ¢ M < 00 be constants such that
(x) holds. Then there exists a partition (Q j 1 J € J}Yof Q consisting of sets of < (M [g)?
elements along with a function m : Q@ — [M ™2, £~2] such that

(%) D=1feC@:swp ) m@lf@ <1

J eJ weSZj
For the triple product of the JB*-triple whose unit ball is D we have
m (1) —— ——
G {feh}@) = Y —=[fgmh@) +hngm f ()]
€8 j (@)

Jorall f, g, h € Co(2) and w € Q2 where j(w) means the unique index with @ € ().

Proof. By Corollary 4, the characterization (xx) of D is immediate since

/fd/,L<1}.

{x € B(Q) : sup|x|<e} C Balli(B(Q)) C {x € B(R) : sup|x]| <M}

D =Ballj(E) ={ f € Co(Q) : sup
dieext Ballj(E’)

Moreover we have

This implies
e<supley] = 1™ =m@) 2 <M, mw) e [M2,e72] (0eQ).
Givenw € Q; and f, g, h € E,

{feh}w) = db,({fgh}) = d3,PY{ fgh})
where PU) := 3 Py is the projection of E” onto the factor F; = 3 Cly, along
ne; e
F ]L = El .« B [Bre J\{j}Fr]- Since the triple product acts componentwise on the Cartan

factors of E”, we have PU{fgh} = {(PY) f)(PWg)(PDh)}. Since the factor F; is
isomorphic to a Hilbert space where {m(w)~Y 21{a,} ! @ € £2;} is an orthonormal basis,

{]{a}l{ﬂ}l{y}} = %50,{,3}}11(0!)1{),} -+ %ay{ﬁ}m(y)l{a} (¢, B,y € Qj). Therefore

{fgh}(@) = dé,{(PYV )PV g)(PDn))

=déu{ D f@lw Y gBlg Y. b))

aEQ; BeQ; veER;
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=dby | 5 Y mB)FBERP )

B.yeQ;

+5 Y mBPEB) f(@)]

Ol,,BEQj

1 - 1 —_—
=5 D mB BB f() + 5 2 mBhBB f@). O
Bew; BeQ;
It is now natural to investigate necessary and sufficient conditions for a function m : Q —
R and a partition {2 j  J € J}suchthat the set D given by (sx) is a bounded symmetric

continuous Reinhardt domain over .

Theorem 2. Given a function m : Q — R such that 0 < inf m, supm < oo along with
a partition {Q; : j € J} of Q such that sup{cardinality (X iy jeJ} < oo, the set D
defined by (xx) is a bounded symmetric continuous Reinhardt domain over Q and (% %)
is the triple product of the JB*-triple whose unit ball is D if and only if all the functions
o Y mmlfm? (f € Co(2)) are continuous.

1682 j(w)

Proof. Given a real-valued function m : @ —> R, with finite positive bounds from
above and below along with a partition { j : J € J} the cardinality of whose members
does not exceed a finite bound, the operation (x * *) makes the space E of all bounded
functions 2 — C into a JB*-triple with the norm

1/2

AN = | sup Y m(@)|f (@) (f € B).

jeJ a)E.Qj

By the boundedness conditions on m and {2 j © J € J}, this norm is equivalent to the usual
sup-norm of E. Since the set D given by (xx) is the intersection of the [||.|||-unit ball with
the closed subspace Co(£2), it is a bounded symmetric continuous Reinhardt domain over
€2 if and only if the triple product (x * ) preserves Co-functions. Thus it suffices to verify
that f € Co(S2) implies {f}® = { Fff} € Co(2). Observe that, given any function fe E,
(/P () = gf(») f(w) where g #(w) := QZ m(m)| f (m)|* (@ € Q). The function g/ is
€8 j(w)

bounded in any case. Thus if g ¢ is continuous, we obviously have { f}3 = g rf € Co(Q) for
f € Co(R2). Conversely, suppose {f}* € Co(Q) for every f € Co(2), and fix f € Co()
arbitrarily. We complete the proof by establishing the continuity of g ¢. Since { f P=g s
the function g is trivially continuous at the points w €  where f{w) # 0. Consider a
point @ where f(w) = 0. Since Q is a locally compact Hausdorff space, we can find a
function i € Cp(S2) with A(w) = 1. By assumption, {f + k/n}? € Co(S2) for all natural
numbers n and [ + A/n](w) = 1/n # 0. It follows that each of the functions g F+h/n 18
continuous at w. By our boundedness conditions, the sequence g s/, converges uniformly
(with respect to the sup-norm) to g s which implies the continuity of gr atw. [
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Notice that, in general, the function m need not be continuous on 2. If we consider the
interval €2 := [—1, 1] we can define the triple product and the norm by

1 1
{(FPe = [Elf(x)lz + -2-1f<—x)|2] fx),
I£1>:= sup 1lf(x>12+|f<—x)[2.

e B

It is easy to see that the unit ball of this norm is a bounded symmetric continuous Reinhardt
domain over €2 corresponding to the partition {{x, —x} : 0 £ x £ 1} with the function
m(x):=[1lifx #£0, 2if x =0].

The investigation of all possible partitions and functions m which give rise to the same
domain D seems to be an interesting problem for the future research. In our terminology,
the special case where €2 is compact and all the members of the underlying partition are
singletons was recently investigated by J.-P. Vigué [12]. According to his result, the
functions m and mo determine the same symmetric domain if and only if iminfm; =
lim inf m3 is a strictly positive continuous function.
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