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Abstract.

Given a subgroup H of an abelian group G we deal with the problem to determine all the subsets A C N such
that for any completely additive f : N — G we have f(A) C H whenever f(A) C H. Such sets are called
sets of G/ H-uniqueness. Here we give a characterization of sets of Z/(¢Z)-uniqueness and G-uniqueness (i.e.
G/{0}-uniqueness), where G is a finite abelian group.

AMS 1991 classification numbers: 11A99, 11B99, 11N64
1. INTRODUCTION

A function f mapping the natural numbers N into an abelian group G (with operation +)
is said to be completely additive in case

f(mn) = f(m) + f(n)
holds for all m,n € N.

In an early paper Katai [6] introduced the concept of sets of uniqueness for completely ad-
ditive functions. This can be formulated in a more general setting: Given a subgroup H of
G, determine all the subsets A C N such that for any completely additive f : N — G we
have f(N) C H whenever f(A) C H. By passing to the factor group G/H, the problem
can be reformulated as to describe the sets A C N such that any completely additive func-
tion vanishing on A must vanish on the whole N. Such sets are called sets of G/H-uniqueness.

In case G = R and H = {0}, Wolke [8] and, with a different proof, Indlekofer ([5], Theorem
1) showed that for a set A of R-uniqueness every n € N must be expressible as a finite prod-
uct of rational powers of elements of A. Theorem 2 of the article [5] by Indlekofer proves
that for H = Z the sets A of R/Z-uniqueness can be characterized by the property that
every n € N can be expressed as a finite product of integer powers of elements of A. A more
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specific form is given by the following

PROPOSITION. Let A C N. Then A is a set of R/Z - uniqueness if and only if for each
n € N there exist a; € A, oy € Z (j=1,...,5) such that

5
n = a
je=1

<
T

The idea of the proof was to consider the multiplicative semigroup N as a generator family
of the multiplicative group Q4 := {m/n : m,n € N} of positive rationals. The latter is
isomorphic to the countably generated free (additive) abelian group @ Z by the function
§: Q. — @Z mapping p € Q4 into the prime exponents of p, and the f-image of a set of
R/Z-uniqueness should generate the whole @ Z.

REMARK. A form of this result would be implicit in Corollary of Dress and Volkmann [1].
However, the proof which they give is not complete. More detailed remarks and a coun-
terexample may be found in Indlekofer [5] where a correct form of this result was first given.
Hoffmann [3], who was apparently unaware of these papers presented a proof of this result,
too. Katai [7], Elliott [2] and Indlekofer [4] gave several examples for sets of R/Z- uniqueness.

In this paper we show that an analogous decomposition (see formula (1.2) below) char-
acterizes the sets of Z/(gZ)-uniqueness for natural numbers ¢ > 1. Since A is a set of
Z/(gZ)-uniqueness if and only if every completely additive function f: N — Z taking val-
ues divisible by ¢ on A takes values divisible by ¢ on the whole N, sets of Z/(qZ)-uniqueness
are usually called mod,-unigueness families.

Throughout this work let ¢ > 1 be an arbitrarily fixed natural number. Our aim is the
following characterization of mod,- uniqueness families.

1.1 THEOREM. The subset A C N is @ mod,-uniqueness family if and only if each natural
number n € N admits a decomposition of the form

(1.2) n:L"Ha;’ LeQy, ajeA, r;e{0,...,¢—1} (G=1...,5).

F=1

Obviously each set of R/Z-uniqueness is a mod,-uniqueness family, but the converse is not
true. Furthermore, a modg-uniqueness family is not necessarily a set of R-uniqueness.

1.3 EXAMPLES. 1) Let py, pa, ps be three different primes, and let

A = {p},pips, pipa} UP\{p1,p2, ps}
where P denotes the set of primes. Then the following holds:

(i) A is a set of Z/(2Z)-uniqueness,
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(i1} A is a set of R-uniqueness,

(ili) A is not a set of R/Z-uniqueness.

The proof of (ii) is obvious. Concerning (i) we observe that, for every completely additive
f N—=1Z,

3f(p1) = 0mod2
2f(p1) + f(p2) 0 mod 2
2f(p1) + f(ps) 0 mod 2

M

Hi

implies
() = f(p2) = f(ps) = 0 mod 2.

For the proof of (iii) we define a completely additive function f by

f(p1) = f(p2) = flps) = 2/3

and

f(p)=0 for peP\{p1,ps,ps}.
Then f(A) = {0,2} C Z but f(N) ¢ Z which proves assertion (iii).
2) Let P = {p;}, 2=p; < py < ... and put A = {p;p},;}. Then A is a mod,-uniqueness
family, but not a set of R~uniqueness. The first assertion is obvious. For the second assertion
we define a completely additive function f: N — R by
Fp;) = (1Y U™) for j=1,2,...
Then

F(piplas) = (=17 q7 0 — (1) =0
ie. f(A)= {0} but f#£0.
Actually the above theorem settles the case involving general finite Abelian groups.

1.4. COROLLARY. Let G be a finite Abelian group. A subset A C N is a family of G-
uniqueness (i.e. G/{0}-uniqueness) if and only if each natural number n € N admits a
decomposition of the form (1.2} with ¢:= maxgeq order(g).
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2. mod,-UNIQUENESS IN TERMS OF EXTENDIBILITY OF GROUP HOMO-
MORPHISMS

Let Z, := Z/(qZ) be the cyclic group of order ¢g. Thus the elements of Z, are the cosets
n+gqZ={n+qgm:meZ} (n= 0,1,...,4~1). We shall write mod, for the canonical
map of Z onto Z,, i.e.

mod,(n) :=n + ¢Z (n€Z).

We shall view Q. as multiplicative group generated by N. The family

Q% := {nf/m? : n,m € N}

is a subgroup of Q, and hence the family Q. / Q% of all Q%-cosets is also an abelian group
in a natural way. We shall write {9 for the canonical homomorphism

(2.1) e@: 2 2QY.

2.2. LEMMA. Given a completely additive funtion f N — Z, there ezists a unigue homo-
morphism ¢ : Q/Q% — Z, such that

(2.3) mod, f = ¢ o eld).

Conversely, to every homomorphism ¢ : QY% — Z, there exists some (not necessarily unique)
completely additive f: N — N with (2.2).

PROOF. Let f be a completely additive function and suppose ¢ satisfies (2.2). Then neces-
sarily

24 #(2Q1) =mod,(f(n) - f(m))  (m,n € N).

This shows the uniqueness of ¢ corresponding to f via (2.3). On the other hand, if
n,n’,m,m’ € N then

o= T (B
~Qi=—Ql > 3kieN n/m‘<z ,

= Jk, e N naml? =n'mki.

Thus
fr)+ f(m') +q- f(1) = f(n') + f(m) + ¢ - f(k)
for some &,/ € N i.e.

mod,(f(n) — f(m)) = mod,(f(n') - f(m')) whenever e(")(n/m) = 6(9)(n'/m').
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Therefore we may define a mapping ¢ on Q. /Q%(= {2Q% : n,m € N}) by the requirement
(2.4). The obvious additive properties of (2.4) ensure that the mapping ¢ thus defined is a
homomorphism Q4+/Q% — Z,.

For the proof of the converse statement let (py,pa,...) = (2,3,5,7,11,...) denote the se-
quence of primes. For each index choose a representant z; € ¢(p;Q%) (i = 1,2,...). The
uniqueness of the prime factorization in N implies immediately that the mapping

5 8
f:Hp?r—)erm

i=1 i=1

is a completely additive function on N satisfying (2.3).

2.5. COROLLARY. A subset A C N is a mod,-uniqueness family if and only if the triv-
ial homomorphism (@ (A)) — 0 into Z, of the subgroup (e(A)) (generated by the set
eD(A)in Qy/QL) admits only the trivial homomorphic extension to the whole Q4 /Q%.

PROOF. Suppose A C N is a family of mod,-uniqueness and let ¢ : Q4 /Q% — Z, be a homo-
morphism vanishing on (e{?(A4)). We can find a completely additive function f : N — Z-sat-
isfying (2.3). For every @ € A we have mod, f(a) = 0. Since A is a family of mod,-uniqueness,
we must have mod,f = 0. We know that ¢ is the only homomorphism Q4+/Q% — Z, with
(2.3). Since the trivial homomorphism satisfies (2.3), too, it follows ¢ = 0.

¥ A C N is not a family of mod,-uniqueness then we can choose a completely additive
function f : N — N such that mod,f(A) = 0 but mod,f # 0. The corresponding homomor-
phism ¢ : Q./Q% — Z, satisfying (2.3) is not trivial but it vanishes on el?(A) and hence
also on (e (A4)).

3. EXTENDIBILITY OF HOMOMORPHISMS INTO FINITE ABELIAN GROUPS

3.1. DEFINITION. Let X and G be Abelian groups. We say that X is G-injective if all
homomorphisms from subgroups of X into G admit homomorphic extensions to the whole
X. The group X is strongly G-injective if all homomorphisms from proper subgroups of X
into G admit non-trivial homomorphic extensions to the whole X.

In this section we shall be concerned with the description of strong Zg-injectivity. All
the groups considered will be Abelian and we shall use additive notations. We write
(k,1) and [k,1] for the greatest common divisor and least common multiple of the num-
bers k,! € N, respectively. As usually, in a group G, the order of an element g is ordexr(g) :=
min{k € N: k> 1,k g = 0} with the convention minf := co.

3.2. LEMMA. Every homomorphism X — Z, vanishes on the subgroup

N = {z € X :(g,order(z)) = 1}.

Proof. If z,y € N and (g,n) = (¢,m) = 1 with n- & = m -y = 0 then (¢,nm) = 1 and
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nm-(k-z+1-y)=0 (k€Z). Thus N is a subgroup in X.

Let ¢ : X — Z, be 2 homomorphism. Assume z € Nyn-z =0, (¢,n) = 1 and let
#(z) = m + ¢Z. Then we get

qZ = [0 in Z;]) = ¢p(n - z) = nm + ¢Z ie. glnm = g|m.
Thus ¢(z) = 2q+9Z=9Z=0inZ,

3.3. COROLLARY. If ¢ : X — Z, is a homomorphism then for some homomorphism
bo: N — Z,; we have ¢ = ¢goe wheree: z+ z + N is the canonical map X — X/N.

3.4. REMARK. The group X/N in Corollary 3.3 consists of elements Y such that order(Y) =
oo or such that order(Y') < oo and the prime divisiors of order(Y) divide q.

3.5. LEMMA. a) The group Z is not Z,-injective.

b) Suppose we have ¢ = p"u, r = p™v where p ts a prime, m > n > 1 and (p,u) = (p,v) = 1.
Then Z, is not Z,-injective.

c) If rlg then Z, is strongly Z,-injective.
PROOF. a) Consider the homomorphism ¢o : ng + n + ¢Z of the subgroup ¢Z of Z into
Z,. Any homomorphism ¢ : Z — Z, should satisfy ¢(¢) = ¢- (1) = ¢Z = 0 in Z,. Thus
92 = ¢(q) # ¢o(q) = 1 + qZ i.e. ¢ can not extend d.
b) Consider the subgroup

Xo={kp™ ™0 +rZ:k=0,1,...p" ~1}
of Z, with the homomorphism

¢o: kp" v+ 1% ku + ¢Z

of Xo into Z,. If ¢ is any homomorphism Z, — Z, extending @y then ¢(v + rZ) = m + ¢Z
for some m € N and

w+ g% = $o(p" 0 +7Z) = $(p" "0 + 1) = P (v + 1) = p"m + g

that is u = p™~"m + tq for some ¢ € Z. However, (p,u) = 1 while (p, p™ "m + tq) = p. This
contradiction establishes b).

c) Assume rlg, let X, be a proper subgroup of Z, and let ¢q : Xo — Z, be a homomorphism.
The group Xo is cyclic, its order rolr and hence also rg|q. In particular

XQ:{kL"'TZ:k:l,...,TO}
To
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and we can write
do : IcTL-[—rZr—)m-}»qZ for some m € {1,...,q}.
0
Then we have
qZ ={01in Z,] = ¢o(rZ) =10 - ¢o ({— + TZ) = rom + ¢Z.
0

It follows g|rom. Hence Z|m and I|m. Therefore the homomorphism

¢+l j—
T‘/o

is a well-defined homomorphic extension of ¢ from Xg to Z, = {j+rZ:j=1,...,r}.

m
T

If the homomorphism ¢g is trivial then m = ¢ in the above construction. In this case
1< A =L < q. Thus is ¢(1 + rZ) # ¢Z, i.e. the extension ¢ is not trivial.

~= rfre rfrg

3.6. LEMMA. Let X and G be Abelian groups and let Y1,Y; be subgroups of X. Suppose
P1:Ys — G and ¢y : Yi — G are homomorphisms coinciding on Y1 NYs. Then v and 1,
admit a common homomorphic eztension to Yy + Ys.

PROOF. If y1,y; € Y1 and yo, 95 € Yo satisfy y1+y2 = y; +yh then y1—~y; = yo—ys € YiNY,
whence $1(y1) —¥1(y1) = $2(y2) —¥2(y2) that is P1(y1) +2(y2) = $1(y1) +42(y3). Therefore
the mapping

P(y) = [hi(m) +de(ye) vy =ty mEN,eEY] (eli+Y)

is a well defined homomorphic extension of ¥, and .

3.7. PROPOSITION. The Abelian group X is strongly Z,-injective if and only if order(z)|q
forallz e X.

PROOF. Necessity: Suppose X is strongly Z,-injective. Then X is Z,-injective and hence
every subgroup of X is Z, -injective. In particular for all z € X, the cyclic subgroups {z)
are Z,-injective. Now from Lemma 3.5 a) we see that order(z) < oo (z € X). Thus we can
write

X = Xo + N
where
Xo = {z € X :Vpprime plorder(z) = plq},
N := {z€ X :(gorder(z)) =1}
(Indeed, if z € X then we have a decomposition order (z) = ¢'n where n = max{s :

slorder(z), (q,s) = 1}. Clearly, Vp prime pl¢’ = plg¢ and (¢’,n) = 1. For some k,! €
Z,kn+1¢ = 1. Then & = k- z1 + [ - 2o where 2 :=n -z and z, := ¢ - z. Since order(zo)
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= order(z)/n = ¢’ and order(z1)/q' = n, we have 2o € Xo,z; € N and z € (o) + (z1) C
Xo + N.) From Lemma 3.5 b) applied to the Z,-injective subgroups (z) with 2 € Xy it
follows that p™|q whenever p is a prime with p™|order(z). That is order(z)|q for z € Xj.
On the other hand, by Corollary 3.3, the trivial homomorphism of X, extends only trivially
to X = Xo+ N. Hence X + X,.

Sufficiency: Assume order(z)|q (z € X) and let Y; be a proper subgroup of X. Consider any
element y; € X lying outside Y;. Let by denote the trivial homomorphism of Y5 into Z, and
set Y7 := (y1). By Lemma 3.5 ¢), the trivial homomorphism of ¥; N Y, admits a non-trivial
extension 1 : ¥1 — Z,. By Lemma 3.6, there exists a homomorphism ¢¢ : Y5 + Y, — Z,
with ¢oly, = tho and doly, = 31 # 0. It remains to extend ¢ homomorphically to X. The
Zorn lemma establishes the existence of a maximal homomorphic extension ¢ : ¥ — Z, of
$o where Y is a subgroup of X containing Y5 + Y5, Suppose ¥ # X. Then we can choose
an element y* € X lying outside Y. However, now a similar construction to that of ¢, gives
a (non-trivial) homomorphic extension ¢ : Y + (y+) — Z, of ¢ contradicting its maximality.

3.8. PROPOSITION. The Abelian group X is Z,-injective if and only if (order(z), ¢%)|q for
alz e X.

PROOF. Necessity: Let X be Zg-injective and consider any = € X. The cyclic subgroup (z)
is necessarily also Z,-injective. From Lemma 3.5 a) b) we deduce that order(z) < oo and
p™|g whenever p™|order(z) for the prime divisors of ¢. This latter can be stated equivalently
as (order(z), ¢%)lq.

Sufficiency: Suppose (order(x), ¢*)|q. With the subgroup N introduced in Lemma 3.2, we
have order(z + N)|g in X/N. Thus, by Proposition 3.7, the factor group X/N is (strongly)
Z-injective. Since any homomorphism X — Z, factorizes through X/N (Corollary 3.3), the
Z,-injective of X follows.

4. PROOF OF THEOREM 1.1. AND COROLLARY 1.4

PROOF OF THEOREM 1.1.

Let (p1,pa, . ..) denote the sequence of primes. Since every positive rational number R € Q.
can be written in a unique way in the form

o0
R=T1[p¥ nung...€Z, limn; =0

’l.=1 tree
the multiplicative group of Q. is isomorphic to the additive group of Z := {(ny,n,,.. D
n; € Z,lim; n; = 0} of all integer valued sequences with finite support. Therefore the multi-
plicative group Q../Q% is isomorphic to the additive group 2, = {(ny + ¢Z,ns + ¢Z,...) :
n; € Z,lim; n; = 0} of all Z,-valued sequences with finite support. Since the order of every
element in Z, is obviously a divisor of the number ¢, the same holds in Q4+/Q%. Thus, by
Proposition 3.7, the multiplicative group Q. /Q% is strongly Z,-injective. Hence Corollary
2.5 shows that a subset A C N is mod,-uniqueness family if and only if
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(4.1) (e9(A4)) = Q+/Q}

with the canonical homomorphism (2.1). The statement (1.2) is an elementary transcription
of (4.1).

PROOF OF COROLLARY 1.4

The finite Abelian group G is the direct sum of (finitely many) cyclic subgroups say Gy, . . ., G..
The canonical projections 7; : G — Gy are homomorphisms and a homomorphism ¢ : X — @
vanishes if and only if m;0 ¢ = 0 for ¢ = 1,...,¢. Therefore a subset A C N is a family of
G-uniqueness if and only if A is a family of G;-uniqueness simultaneously for every index
i=1,...,% By writing ¢; for the cardinality of G, this means that A is a family of mod,,-
uniqueness for all ¢ = 1,... ¢

Let us denote by ¢ the least common multiple of ¢1,. .., ;. It is well-known that ¢ =max,cgorder(g).

Assume first that A C N is a family of mod,,-uniqueness simultaneously for 7 = 1,...,%.
Consider any completely additive function f : N — Z such that ¢|f(a) for all « € A. Then
glf(a) for all « € A and 7 = 1,...,%. Consequently ¢;|f(n) foralln € Nand i = 1,...,t
and hence ¢|f(n) for all n» € N. That is the set A is a family of mod,-uniqueness whenever
it is a family of G-uniqueness.

Conversely, let A be a family of mod,-uniqueness. Consider any number n € N. By (1.2},
we can write

5
n= L1 H a;j
i=1
with some L € Q4 and finite sequences ay,...,a; € 4 and ry,...,r, € N. However, then

we have automatically

n=(Lq/q")q‘Hq;j G = 1,...,1)
=1
which shows by Theorem 1.1 that 4 is a mod,,-uniqueness family for s = 1,...,¢. Thus A is
a family of G-uniqueness whenever it is a family of mod,-uniqueness.
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