

ON SETS OF UNIQUENESS FOR COMPLETELY ADDITIVE ARITHMETIC FUNCTIONS

Karl-Heinz Indlekofer, János Fehér and László L. Stachó

Received: April 5, 1994; revised: June 1, 1996

Abstract.

Given a subgroup H of an abelian group G we deal with the problem to determine all the subsets $A \subset \mathbb{N}$ such that for any completely additive $f: \mathbb{N} \to G$ we have $f(A) \subset H$ whenever $f(A) \subset H$. Such sets are called sets of G/H-uniqueness. Here we give a characterization of sets of $\mathbb{Z}/(q\mathbb{Z})$ -uniqueness and G-uniqueness (i.e. $G/\{0\}$ -uniqueness), where G is a finite abelian group.

AMS 1991 classification numbers: 11A99, 11B99, 11N64

1. INTRODUCTION

A function f mapping the natural numbers \mathbf{N} into an abelian group G (with operation +) is said to be *completely additive* in case

$$f(mn) = f(m) + f(n)$$

holds for all $m, n \in \mathbb{N}$.

In an early paper Kátai [6] introduced the concept of sets of uniqueness for completely additive functions. This can be formulated in a more general setting: Given a subgroup H of G, determine all the subsets $A \subset \mathbb{N}$ such that for any completely additive $f: \mathbb{N} \to G$ we have $f(\mathbb{N}) \subset H$ whenever $f(A) \subset H$. By passing to the factor group G/H, the problem can be reformulated as to describe the sets $A \subset \mathbb{N}$ such that any completely additive function vanishing on A must vanish on the whole \mathbb{N} . Such sets are called sets of G/H-uniqueness.

In case $G = \mathbf{R}$ and $H = \{0\}$, Wolke [8] and, with a different proof, Indlekofer ([5], Theorem 1) showed that for a set A of \mathbf{R} -uniqueness every $n \in \mathbf{N}$ must be expressible as a finite product of rational powers of elements of A. Theorem 2 of the article [5] by Indlekofer proves that for $H = \mathbf{Z}$ the sets A of \mathbf{R}/\mathbf{Z} -uniqueness can be characterized by the property that every $n \in \mathbf{N}$ can be expressed as a finite product of *integer* powers of elements of A. A more

specific form is given by the following

PROPOSITION. Let $A \subset \mathbb{N}$. Then A is a set of \mathbb{R}/\mathbb{Z} - uniqueness if and only if for each $n \in \mathbb{N}$ there exist $a_j \in A$, $\alpha_j \in \mathbb{Z}$ (j = 1, ..., s) such that

$$n = \prod_{i=1}^s a_i^{\alpha_j}.$$

The idea of the proof was to consider the multiplicative semigroup \mathbf{N} as a generator family of the multiplicative group $Q_+ := \{m/n : m, n \in \mathbf{N}\}$ of positive rationals. The latter is isomorphic to the countably generated free (additive) abelian group $\bigoplus \mathbf{Z}$ by the function $\theta : Q_+ \to \bigoplus \mathbf{Z}$ mapping $\rho \in Q_+$ into the prime exponents of ρ , and the θ -image of a set of \mathbf{R}/\mathbf{Z} -uniqueness should generate the whole $\bigoplus \mathbf{Z}$.

REMARK. A form of this result would be implicit in Corollary of Dress and Volkmann [1]. However, the proof which they give is not complete. More detailed remarks and a counterexample may be found in Indlekofer [5] where a correct form of this result was first given. Hoffmann [3], who was apparently unaware of these papers presented a proof of this result, too. Kátai [7], Elliott [2] and Indlekofer [4] gave several examples for sets of \mathbf{R}/\mathbf{Z} - uniqueness.

In this paper we show that an analogous decomposition (see formula (1.2) below) characterizes the sets of $\mathbf{Z}/(q\mathbf{Z})$ -uniqueness for natural numbers q>1. Since A is a set of $\mathbf{Z}/(q\mathbf{Z})$ -uniqueness if and only if every completely additive function $f: \mathbf{N} \to \mathbf{Z}$ taking values divisible by q on A takes values divisible by q on the whole \mathbf{N} , sets of $\mathbf{Z}/(q\mathbf{Z})$ -uniqueness are usually called mod_q -uniqueness families.

Throughout this work let q > 1 be an arbitrarily fixed natural number. Our aim is the following characterization of mod_q - uniqueness families.

<u>1.1 THEOREM.</u> The subset $A \subset \mathbf{N}$ is a mod_q -uniqueness family if and only if each natural number $n \in \mathbf{N}$ admits a decomposition of the form

(1.2)
$$n = L^q \prod_{j=1}^s a_j^{r_j}$$
 $L \in Q_+, a_j \in A, r_j \in \{0, \dots, q-1\}$ $(j = 1, \dots, s).$

Obviously each set of \mathbf{R}/\mathbf{Z} -uniqueness is a mod_q-uniqueness family, but the converse is not true. Furthermore, a mod_q-uniqueness family is not necessarily a set of \mathbf{R} -uniqueness.

1.3 EXAMPLES. 1) Let p_1, p_2, p_3 be three different primes, and let

$$A = \{p_1^3, p_1^2 p_2, p_1^2 p_3\} \cup \mathbf{P} \setminus \{p_1, p_2, p_3\}$$

where **P** denotes the set of primes. Then the following holds:

(i) A is a set of **Z**/(2**Z**)-uniqueness,

- (ii) A is a set of R-uniqueness,
- (iii) A is not a set of R/Z-uniqueness.

The proof of (ii) is obvious. Concerning (i) we observe that, for every completely additive $f: \mathbb{N} \to \mathbb{Z}$,

$$3f(p_1) \equiv 0 \mod 2$$

 $2f(p_1) + f(p_2) \equiv 0 \mod 2$
 $2f(p_1) + f(p_3) \equiv 0 \mod 2$

implies

$$f(p_1) \equiv f(p_2) \equiv f(p_3) \equiv 0 \mod 2.$$

For the proof of (iii) we define a completely additive function f by

$$f(p_1) = f(p_2) = f(p_3) = 2/3$$

and

$$f(p) = 0$$
 for $p \in \mathbf{P} \setminus \{p_1, p_2, p_3\}$.

Then $f(A) = \{0, 2\} \subset \mathbf{Z}$ but $f(\mathbf{N}) \not\subset \mathbf{Z}$ which proves assertion (iii).

2) Let $P = \{p_i\}$, $2 = p_1 < p_2 < \dots$ and put $A = \{p_j p_{j+1}^q\}$. Then A is a mod_q-uniqueness family, but not a set of **R**-uniqueness. The first assertion is obvious. For the second assertion we define a completely additive function $f: \mathbf{N} \to \mathbf{R}$ by

$$f(p_j) = (-1)^{j-1}q^{-(j-1)}$$
 for $j = 1, 2, ...$

Then

$$f(p_j p_{j+1}^q) = (-1)^{j-1} q^{-(j-1)} - (-1)^{j-1} q^{-(j-1)} = 0$$

i.e. $f(A) = \{0\}$ but $f \neq 0$.

Actually the above theorem settles the case involving general finite Abelian groups.

<u>1.4. COROLLARY.</u> Let G be a finite Abelian group. A subset $A \subset \mathbb{N}$ is a family of G-uniqueness (i.e. $G/\{0\}$ -uniqueness) if and only if each natural number $n \in \mathbb{N}$ admits a decomposition of the form (1.2) with $q := \max_{g \in G} \operatorname{order}(g)$.

2. mod_{g^-} UNIQUENESS IN TERMS OF EXTENDIBILITY OF GROUP HOMOMORPHISMS

Let $\mathbf{Z}_q := \mathbf{Z}/(q\mathbf{Z})$ be the cyclic group of order q. Thus the elements of \mathbf{Z}_q are the cosets $n+q\mathbf{Z}=\{n+qm:m\in\mathbf{Z}\}$ $(n=0,1,\ldots,q-1)$. We shall write mod_q for the canonical map of \mathbf{Z} onto \mathbf{Z}_q , i.e.

$$mod_q(n) := n + q\mathbf{Z}$$
 $(n \in \mathbf{Z}).$

We shall view \mathbf{Q}_{+} as multiplicative group generated by \mathbf{N} . The family

$$\mathbf{Q}_{+}^{q} := \{ n^{q}/m^{q} : n, m \in \mathbf{N} \}$$

is a subgroup of \mathbf{Q}_+ and hence the family $\mathbf{Q}_+/\mathbf{Q}_+^q$ of all \mathbf{Q}_+^q -cosets is also an abelian group in a natural way. We shall write $e^{(q)}$ for the canonical homomorphism

$$(2.1) e^{(q)}: \frac{n}{m} \to \frac{n}{m} \mathbf{Q}_{+}^{q}.$$

2.2. LEMMA. Given a completely additive funtion $f: \mathbb{N} \to \mathbb{Z}$, there exists a unique homomorphism $\phi: \mathbb{Q}_+/\mathbb{Q}_+^q \to \mathbb{Z}_q$ such that

$$(2.3) \qquad \operatorname{mod}_{q} f = \phi \ o \ e^{(q)}.$$

Conversely, to every homomorphism $\phi: \mathbf{Q}_+^q \to \mathbf{Z}_q$ there exists some (not necessarily unique) completely additive $f: \mathbf{N} \to \mathbf{N}$ with (2.2).

PROOF. Let f be a completely additive function and suppose ϕ satisfies (2.2). Then necessarily

(2.4)
$$\phi\left(\frac{n}{m}\mathbf{Q}_{+}^{q}\right) = \operatorname{mod}_{q}(f(n) - f(m)) \qquad (m, n \in \mathbf{N}).$$

This shows the uniqueness of ϕ corresponding to f via (2.3). On the other hand, if $n, n', m, m' \in \mathbb{N}$ then

$$\begin{split} \frac{n}{m}\mathbf{Q}_{+}^{q} &= \frac{n'}{m'}\mathbf{Q}_{+}^{q} &\iff \exists k,l \in \mathbf{N} \quad \frac{nm'}{n'm} = \left(\frac{k}{l}\right)^{q}, \\ &\iff \exists k,l \in \mathbf{N} \quad nm'l^{q} = n'mk^{q}. \end{split}$$

Thus

$$f(n) + f(m') + q \cdot f(l) = f(n') + f(m) + q \cdot f(k)$$

for some $k, l \in \mathbb{N}$ i.e.

$$\text{mod}_q(f(n) - f(m)) = \text{mod}_q(f(n') - f(m'))$$
 whenever $e^{(q)}(n/m) = e^{(q)}(n'/m')$.

Therefore we may define a mapping ϕ on $\mathbf{Q}_+/\mathbf{Q}_+^q (= \{\frac{n}{m}\mathbf{Q}_+^q : n, m \in \mathbf{N}\})$ by the requirement (2.4). The obvious additive properties of (2.4) ensure that the mapping ϕ thus defined is a homomorphism $\mathbf{Q}_+/\mathbf{Q}_+^q \to \mathbf{Z}_q$.

For the proof of the converse statement let $(p_1, p_2, \ldots) := (2, 3, 5, 7, 11, \ldots)$ denote the sequence of primes. For each index choose a representant $z_i \in \phi(p_i \mathbf{Q}_+^q)$ $(i = 1, 2, \ldots)$. The uniqueness of the prime factorization in N implies immediately that the mapping

$$f: \prod_{i=1}^{s} p_i^{r_i} \mapsto \sum_{i=1}^{s} r_i \cdot z_i$$

is a completely additive function on N satisfying (2.3).

2.5. COROLLARY. A subset $A \subset \mathbf{N}$ is a mod_q -uniqueness family if and only if the trivial homomorphism $\langle e^{(q)}(A) \rangle \to 0$ into \mathbf{Z}_q of the subgroup $\langle e^{(q)}(A) \rangle$ (generated by the set $e^{(q)}(A) \operatorname{in} \mathbf{Q}_+/\mathbf{Q}_+^q$) admits only the trivial homomorphic extension to the whole $\mathbf{Q}_+/\mathbf{Q}_+^q$.

PROOF. Suppose $A \subset \mathbf{N}$ is a family of mod_q -uniqueness and let $\phi : \mathbf{Q}_+/\mathbf{Q}_+^q \to \mathbf{Z}_q$ be a homomorphism vanishing on $\langle e^{(q)}(A) \rangle$. We can find a completely additive function $f : \mathbf{N} \to \mathbf{Z}$ -satisfying (2.3). For every $a \in A$ we have $\operatorname{mod}_q f(a) = 0$. Since A is a family of mod_q -uniqueness, we must have $\operatorname{mod}_q f \equiv 0$. We know that ϕ is the only homomorphism $\mathbf{Q}_+/\mathbf{Q}_+^q \to \mathbf{Z}_q$ with (2.3). Since the trivial homomorphism satisfies (2.3), too, it follows $\phi \equiv 0$.

If $A \subset \mathbf{N}$ is not a family of mod_q -uniqueness then we can choose a completely additive function $f: \mathbf{N} \to \mathbf{N}$ such that $\operatorname{mod}_q f(A) = 0$ but $\operatorname{mod}_q f \not\equiv 0$. The corresponding homomorphism $\phi: \mathbf{Q}_+/\mathbf{Q}_+^q \to \mathbf{Z}_q$ satisfying (2.3) is not trivial but it vanishes on $e^{(q)}(A)$ and hence also on $\langle e^{(q)}(A) \rangle$.

3. EXTENDIBILITY OF HOMOMORPHISMS INTO FINITE ABELIAN GROUPS

<u>3.1. DEFINITION.</u> Let X and G be Abelian groups. We say that X is G-injective if all homomorphisms from subgroups of X into G admit homomorphic extensions to the whole X. The group X is $strongly\ G$ -injective if all homomorphisms from proper subgroups of X into G admit non-trivial homomorphic extensions to the whole X.

In this section we shall be concerned with the description of strong \mathbf{Z}_q -injectivity. All the groups considered will be Abelian and we shall use additive notations. We write (k,l) and [k,l] for the greatest common divisor and least common multiple of the numbers $k,l \in \mathbb{N}$, respectively. As usually, in a group G, the order of an element g is $\operatorname{order}(g) := \min\{k \in \mathbb{N} : k > 1, k \cdot g = 0\}$ with the convention $\min \emptyset := \infty$.

3.2. LEMMA. Every homomorphism $X \to \mathbf{Z}_q$ vanishes on the subgroup

$$N := \{x \in X : (q, \text{order}(x)) = 1\}.$$

Proof. If $x,y \in \mathbb{N}$ and (q,n) = (q,m) = 1 with $n \cdot x = m \cdot y = 0$ then (q,nm) = 1 and

 $nm \cdot (k \cdot x + l \cdot y) = 0$ $(k, l \in \mathbf{Z})$. Thus N is a subgroup in X.

Let $\phi: X \to \mathbf{Z}_q$ be a homomorphism. Assume $x \in N, n \cdot x = 0$, (q, n) = 1 and let $\phi(x) = m + q\mathbf{Z}$. Then we get

$$q\mathbf{Z} = [0 \text{ in } \mathbf{Z}_q] = \phi(n \cdot x) = nm + q\mathbf{Z}$$
 i.e. $q|nm \Rightarrow q|m$.

Thus $\phi(x) = \frac{m}{q}q + q\mathbf{Z} = q\mathbf{Z} = 0$ in \mathbf{Z}_q .

3.3. COROLLARY. If $\phi: X \to \mathbf{Z}_q$ is a homomorphism then for some homomorphism $\phi_0: N \to \mathbf{Z}_q$ we have $\phi = \phi_0 \circ e$ where $e: x \mapsto x + N$ is the canonical map $X \to X/N$.

3.4. REMARK. The group X/N in Corollary 3.3 consists of elements Y such that $\operatorname{order}(Y) = \infty$ or such that $\operatorname{order}(Y) < \infty$ and the prime divisiors of $\operatorname{order}(Y)$ divide q.

3.5. LEMMA. a) The group Z is not Z_q -injective.

- b) Suppose we have $q = p^n u$, $r = p^m v$ where p is a prime, $m > n \ge 1$ and (p, u) = (p, v) = 1. Then \mathbf{Z}_r is not \mathbf{Z}_o -injective.
- c) If r|q then \mathbf{Z}_r is strongly \mathbf{Z}_q -injective.

PROOF. a) Consider the homomorphism $\phi_0: nq \mapsto n + q\mathbf{Z}$ of the subgroup $q\mathbf{Z}$ of \mathbf{Z} into \mathbf{Z}_q . Any homomorphism $\phi: \mathbf{Z} \to \mathbf{Z}_q$ should satisfy $\phi(q) = q \cdot \phi(1) = q\mathbf{Z} = 0$ in \mathbf{Z}_q . Thus $q\mathbf{Z} = \phi(q) \neq \phi_0(q) = 1 + q\mathbf{Z}$ i.e. ϕ can not extend ϕ_0 .

b) Consider the subgroup

$$X_0 := \{kp^{m-n}v + r\mathbf{Z} : k = 0, 1, \dots p^n - 1\}$$

of \mathbf{Z}_r with the homomorphism

$$\phi_0: kp^{m-n}v + r\mathbf{Z} \mapsto ku + a\mathbf{Z}$$

of X_0 into \mathbf{Z}_q . If ϕ is any homomorphism $\mathbf{Z}_r \to \mathbf{Z}_q$ extending ϕ_0 then $\phi(v + r\mathbf{Z}) = m + q\mathbf{Z}$ for some $m \in \mathbf{N}$ and

$$u + q\mathbf{Z} = \phi_0(p^{m-n}v + r\mathbf{Z}) = \phi(p^{m-n}v + r\mathbf{Z}) = p^{m-n}\phi(v + r\mathbf{Z}) = p^{m-n}m + q\mathbf{Z}$$

that is $u = p^{m-n}m + tq$ for some $t \in \mathbf{Z}$. However, (p, u) = 1 while $(p, p^{m-n}m + tq) = p$. This contradiction establishes b).

c) Assume r|q, let X_0 be a proper subgroup of \mathbf{Z}_r and let $\phi_0: X_0 \to \mathbf{Z}_q$ be a homomorphism. The group X_0 is cyclic, its order $r_0|r$ and hence also $r_0|q$. In particular

$$X_0 = \{k\frac{r}{r_0} + r\mathbf{Z} : k = 1, \dots, r_0\}$$

and we can write

$$\phi_0: k\frac{r}{r_0} + r\mathbf{Z} \mapsto m + q\mathbf{Z}$$
 for some $m \in \{1, \dots, q\}$.

Then we have

$$q\mathbf{Z} = [0 \text{ in } \mathbf{Z}_q] = \phi_0(r\mathbf{Z}) = r_0 \cdot \phi_0\left(\frac{r}{r_0} + r\mathbf{Z}\right) = r_0m + q\mathbf{Z}.$$

It follows $q|r_0m$. Hence $\frac{q}{r_0}|m$ and $\frac{r}{r_0}|m$. Therefore the homomorphism

$$\phi: j + r\mathbf{Z} \mapsto j \frac{m}{r/r_0}$$

is a well-defined homomorphic extension of ϕ_0 from X_0 to $\mathbf{Z}_r = \{j + r\mathbf{Z} : j = 1, \dots, r\}$.

If the homomorphism ϕ_0 is trivial then m=q in the above construction. In this case $1 \le \frac{m}{r/r_0} = \frac{q}{r/r_0} < q$. Thus is $\phi(1+r\mathbf{Z}) \ne q\mathbf{Z}$, i.e. the extension ϕ is not trivial.

3.6. LEMMA. Let X and G be Abelian groups and let Y_1, Y_2 be subgroups of X. Suppose $\psi_1: Y_1 \to G$ and $\psi_1: Y_1 \to G$ are homomorphisms coinciding on $Y_1 \cap Y_2$. Then ψ_1 and ψ_2 admit a common homomorphic extension to $Y_1 + Y_2$.

PROOF. If $y_1, y_1' \in Y_1$ and $y_2, y_2' \in Y_2$ satisfy $y_1 + y_2 = y_1' + y_2'$ then $y_1 - y_1' = y_2 - y_2' \in Y_1 \cap Y_2$ whence $\psi_1(y_1) - \psi_1(y_1') = \psi_2(y_2) - \psi_2(y_2')$ that is $\psi_1(y_1) + \psi_2(y_2) = \psi_1(y_1') + \psi_2(y_2')$. Therefore the mapping

$$\psi(y) := [\psi_1(y_1) + \psi_2(y_2) : y = y_1 + y_2, \ y_1 \in Y_1, y_2 \in Y_2] \qquad (y \in Y_1 + Y_2)$$

is a well defined homomorphic extension of ψ_1 and ψ_2 .

3.7. PROPOSITION. The Abelian group X is strongly \mathbf{Z}_q -injective if and only if $\operatorname{order}(x)|q$ for all $x \in X$.

PROOF. Necessity: Suppose X is strongly \mathbf{Z}_q -injective. Then X is \mathbf{Z}_q -injective and hence every subgroup of X is \mathbf{Z}_q -injective. In particular for all $x \in X$, the cyclic subgroups $\langle x \rangle$ are \mathbf{Z}_q -injective. Now from Lemma 3.5 a) we see that $\operatorname{order}(x) < \infty$ $(x \in X)$. Thus we can write

$$X = X_0 + N$$

where

$$X_0 := \{x \in X : \forall p \text{ prime } p | \text{order}(x) \Rightarrow p | q\},$$

 $N := \{x \in X : (q, \text{order}(x)) = 1\}.$

(Indeed, if $x \in X$ then we have a decomposition order (x) = q'n where $n = \max\{s : s | \text{order}(x), (q, s) = 1\}$. Clearly, $\forall p \text{ prime } p | q' \Rightarrow p | q \text{ and } (q', n) = 1$. For some $k, l \in \mathbb{Z}$, kn + lq' = 1. Then $x = k \cdot x_1 + l \cdot x_0$ where $x_0 := n \cdot x$ and $x_1 := q' \cdot x$. Since $\text{order}(x_0)$

= order(x)/n=q' and order $(x_1)/q'=n$, we have $x_0 \in X_0, x_1 \in N$ and $x \in \langle x_0 \rangle + \langle x_1 \rangle \subset X_0 + N$.) From Lemma 3.5 b) applied to the \mathbf{Z}_q -injective subgroups $\langle x \rangle$ with $x \in X_0$ it follows that $p^m|q$ whenever p is a prime with $p^m|\text{order}(x)$. That is order(x)|q for $x \in X_0$. On the other hand, by Corollary 3.3, the trivial homomorphism of X_0 extends only trivially to $X = X_0 + N$. Hence $X + X_0$.

Sufficiency: Assume order(x)|q $(x \in X)$ and let Y_0 be a proper subgroup of X. Consider any element $y_1 \in X$ lying outside Y_0 . Let ψ_0 denote the trivial homomorphism of Y_0 into \mathbf{Z}_q and set $Y_1 := \langle y_1 \rangle$. By Lemma 3.5 c), the trivial homomorphism of $Y_1 \cap Y_0$ admits a non-trivial extension $\psi_1 : Y_1 \to \mathbf{Z}_q$. By Lemma 3.6, there exists a homomorphism $\phi_0 : Y_0 + Y_1 \to \mathbf{Z}_q$ with $\phi_0|_{Y_0} = \psi_0$ and $\phi_0|_{Y_1} = \psi_1 \neq 0$. It remains to extend ϕ_0 homomorphically to X. The Zorn lemma establishes the existence of a maximal homomorphic extension $\phi: Y \to \mathbf{Z}_q$ of ϕ_0 where Y is a subgroup of X containing $Y_0 + Y_1$. Suppose $Y \neq X$. Then we can choose an element $y* \in X$ lying outside Y. However, now a similar construction to that of ϕ_0 gives a (non-trivial) homomorphic extension $\phi*: Y + \langle y* \rangle \to \mathbf{Z}_q$ of ϕ contradicting its maximality.

3.8. PROPOSITION. The Abelian group X is \mathbb{Z}_q -injective if and only if $(\operatorname{order}(x), q^2)|q$ for all $x \in X$.

PROOF. Necessity: Let X be \mathbf{Z}_q -injective and consider any $x \in X$. The cyclic subgroup $\langle x \rangle$ is necessarily also \mathbf{Z}_q -injective. From Lemma 3.5 a) b) we deduce that $\operatorname{order}(x) < \infty$ and $p^m|q$ whenever $p^m|\operatorname{order}(x)$ for the prime divisors of q. This latter can be stated equivalently as $(\operatorname{order}(x), q^2)|q$.

Sufficiency: Suppose $(\operatorname{order}(x), q^2)|q$. With the subgroup N introduced in Lemma 3.2, we have $\operatorname{order}(x+N)|q$ in X/N. Thus, by Proposition 3.7, the factor group X/N is (strongly) \mathbb{Z}_q -injective. Since any homomorphism $X \to \mathbb{Z}_q$ factorizes through X/N (Corollary 3.3), the \mathbb{Z}_q -injective of X follows.

4. PROOF OF THEOREM 1.1. AND COROLLARY 1.4

PROOF OF THEOREM 1.1.

Let $(p_1, p_2, ...)$ denote the sequence of primes. Since every positive rational number $R \in \mathbf{Q}_+$ can be written in a unique way in the form

$$R = \prod_{i=1}^{\infty} p_i^{n_i} \qquad n_1, n_2, \ldots \in \mathbf{Z}, \lim_{i \to \infty} n_i = 0$$

the multiplicative group of \mathbf{Q}_+ is isomorphic to the additive group of $\mathcal{Z} := \{(n_1, n_2, \ldots) : n_i \in \mathbf{Z}, \lim_i n_i = 0\}$ of all integer valued sequences with finite support. Therefore the multiplicative group $\mathbf{Q}_+/\mathbf{Q}_+^q$ is isomorphic to the additive group $\mathcal{Z}_q := \{(n_1 + q\mathbf{Z}, n_2 + q\mathbf{Z}, \ldots) : n_i \in \mathbf{Z}, \lim_i n_i = 0\}$ of all \mathbf{Z}_q -valued sequences with finite support. Since the order of every element in \mathcal{Z}_q is obviously a divisor of the number q, the same holds in $\mathbf{Q}_+/\mathbf{Q}_+^q$. Thus, by Proposition 3.7, the multiplicative group $\mathbf{Q}_+/\mathbf{Q}_+^q$ is strongly \mathbf{Z}_q -injective. Hence Corollary 2.5 shows that a subset $A \subset \mathbf{N}$ is mod_q -uniqueness family if and only if

$$\langle e^{(q)}(A) \rangle = \mathbf{Q}_{+}/\mathbf{Q}_{+}^{q}$$

with the canonical homomorphism (2.1). The statement (1.2) is an elementary transcription of (4.1).

PROOF OF COROLLARY 1.4.

The finite Abelian group G is the direct sum of (finitely many) cyclic subgroups say G_1, \ldots, G_t . The canonical projections $\pi_i: G \to G_i$ are homomorphisms and a homomorphism $\phi: X \to G$ vanishes if and only if $\pi_i \circ \phi = 0$ for $i = 1, \ldots, t$. Therefore a subset $A \subset \mathbb{N}$ is a family of G-uniqueness if and only if A is a family of G_i -uniqueness simultaneously for every index $i = 1, \ldots, t$. By writing q_i for the cardinality of G_i , this means that A is a family of mod_{q_i} -uniqueness for all $i = 1, \ldots, t$.

Let us denote by q the least common multiple of q_1, \ldots, q_t . It is well-known that $q = \max_{g \in G} \operatorname{order}(g)$.

Assume first that $A \subset \mathbb{N}$ is a family of mod_{q_i} -uniqueness simultaneously for $i=1,\ldots,t$. Consider any completely additive function $f:\mathbb{N}\to \mathbb{Z}$ such that q|f(a) for all $a\in A$. Then $q_i|f(a)$ for all $a\in A$ and $i=1,\ldots,t$. Consequently $q_i|f(n)$ for all $n\in \mathbb{N}$ and $i=1,\ldots,t$ and hence q|f(n) for all $n\in \mathbb{N}$. That is the set A is a family of mod_q -uniqueness whenever it is a family of G-uniqueness.

Conversely, let A be a family of mod_q -uniqueness. Consider any number $n \in \mathbb{N}$. By (1.2), we can write

$$n = L^q \prod_{i=1}^s a_i^{r_j}$$

with some $L \in \mathbf{Q}_+$ and finite sequences $a_1, \ldots, a_s \in A$ and $r_1, \ldots, r_s \in \mathbf{N}$. However, then we have automatically

$$n = (L^{q/q_i})^{q_i} \prod_{i=1}^a a_j^{r_j}$$
 $(i = 1, \dots, t)$

which shows by Theorem 1.1 that A is a mod_{q_i} -uniqueness family for $i=1,\ldots,t$. Thus A is a family of G-uniqueness whenever it is a family of mod_{q} -uniqueness.

REFERENCES

- 1. Dress, F., Volkmann, B.: Ensembles d'unicité pour les fonctions arithmetiques additives ou multiplicatives. C.R. Acad, Sci. Paris, Sér A. 287, 43-46 (1978).
- 2. Elliott, P. D. T. A.: A conjecture of Kátai. Acta Arith. 26, 11-20 (1974).
- 3. Hoffmann, P.: Note on a problem of Kátai. Acta Math. Hung. 45, 261-262 (1985).
- Indlekofer, K.-H.: On sets characterizing additive arithmetical functions. Math. Z. 146, 285-290 (1976).
- 5. Indlekofer, K.-H.: On sets characterizing additive and multiplicative arithmetical functions. Ill. J. Math. 25, 251-257 (1981).
- Kátai, I.: On sets characterizing number-theoretical functions. Acta Arith. 13, 315-320 (1968).
- Kátai, I.: On sets characterizing number-theoretical functions (II). Acta Arith. 16, 1-4 (1968).
- 8. Wolke, D.: Bemerkungen über Eindeutigkeitsmengen additiver Funktionen. Elem. Math. **33**, 14-16 (1978).

János FEHÉR Dept. of Mathematics JPTE University, Pécs Ifjúság út 6 H-7624 PÉCS HUNGARY

Karl-Heinz INDLEKOFER Fachbereich Math.-Infor. Universität Paderborn Warburger Str. 100 D-33100 PADERBORN DEUTSCHLAND

László L. STACHÓ Bolyai Institute JATE University Szeged Aradi Vértanúk tere 1 H-6720 SZEGED HUNGARY