On the structure of inner derivations in partial Jordan-triple algebras

László L. Stachó*

To the honour of Prof. Tandori's 70-th and Prof. Leindler's 60-th birthdays

Communicated by P. T. Nagy

Absract. Partial Jordan-triples are algebras with three variables occuring naturally in the description of the holomorphic automorphism groups of bounded circular domains. The following question is studied: under which conditions can all inner derivations of a partial Jordan-triple be recovered from their restrictions to the complete algebraic base of the triple.

1. Introduction

Since the works [6,8,2] it is well-understood that the key to any kind of holomorphic classification of bounded circular domains in Banach spaces is the study of the so-called partial Jordan-triples. By a partial Jordan-triple we mean an algebraic structure $\mathbf{E} = (E, E_0, \{ * \})$ with a product of 3-variables where E is a complex Banach space, E_0 is a complex (closed) subspace of E and $\{ * \}$ is a continuous real-trilinear operation

$$E \times E_0 \times E \rightarrow E \qquad (x, a, y) \mapsto \{x, a^*, y\}$$

Received October 19, 1994.

AMS Subject Classification (1991): 17C65, 17C30, 32M05, 32M15, 32H20.

^{*} Supported by the Alexander von Humboldt Foundation and by the Hungarian NFS, Grant No. 7292.

symmetric complex bilinear in the outer variables x, y and conjugate linear in a such that the linear operators

$$(a \square b^*)x := \{a, b^*, x\}$$
 $(a, b \in E_0, x \in E)$,

satisfy the axioms

$$(J1) \qquad (a \square a^*) E_0 \subset E_0 \ , \ \ (a \square a^*|E_0) \in \operatorname{Her}_+(E_0) \ , \ \ ||a \square a^*|E_0|| = ||a||^2$$

$$(J2) a \square a^* \in \operatorname{Der}(\mathbf{E})$$

for all $a \in E_0$. Here $\operatorname{Her}_+(E_0)$ is the family of all E_0 -Hermitian operators*) with non-negative spectrum and $\operatorname{Der}(E)$ denotes the set of all derivations of \mathbf{E} . By a derivation of \mathbf{E} we mean a linear mapping $D: E \to E$ such that $D(E_0) \subset E_0$ and

$$D\{x,a^*,y\} = \{(Dx),a^*,y\} + \{x,(Da)^*,y\} + \{x,a^*,(Dy)\} \qquad (x,y \in E, a \in E_0).$$

The inner derivations of \mathbf{E} are the finite real-linear combinations of the derivations of the form $ia\Box a^*$ ($a \in E_0$). In the sequel we shall call the space E_0 the base of the partial Jordan-triple \mathbf{E} and we set $\mathbf{E}_0 := (E_0, E_0, \{*\})$. We shall use the notations $\mathrm{Der}_0(\mathbf{E}) := \{\text{inner derivations of } \mathbf{E}\}$. Remark that the partial Jordan-triples coinciding with their base spaces are the widely studied \mathbf{JB}^* -triples.

In 1990, Panou [11] obtained the complete partial Jordan-triple-axiomatics along with a structure description of all the possible partial Jordan-triples of the form $E = E_0 \oplus E_1$, $\{E_1, E_0^*, E_1\} = 0$ which can be associated with some finite dimensional bounded bicircular domain. His main tool to the structure description was the following fact [11, Prop. 1.6]: every inner derivation of the base of a partial Jordan-triple associated a finite dimensional bounded circular (not only bicircular) domain admits a unique inner derivative extension to the whole space.

In 1991, [13] gave the complete partial Jordan-triple-axiomatics of the socalled geometric partial Jordan-triples which can be associated with some bounded circular domain in a Banach space. To obtain finer results concerning the structure of such partial Jordan-triples, it seems to be useful to look for infinite dimensional generalizations of [11, Prop. 1.6]. Notice that Panou's proof relies heavily upon the fact that, in a finite dimensional geometric partial Jordan-triple \mathbf{E} , the norm closure \mathcal{K} of the group generated by $\exp(\mathrm{Der}_0(\mathbf{E}))$ is a compact subgroup of the unitary group with Lie-algebra $\mathrm{Der}_0(\mathbf{E})$. In infinite dimensions, even if the base

^{*)} i.e. bounded linear operators $A: E_0 \to E_0$ with $\|\exp(i\tau A)\| = 1$ ($\tau \in \mathbb{R}$). We shall always write $\|\cdot\|$ for the norm in any Banach space in consideration. For linear operators we take the usual operator-norm automatically.

of the geometric partial Jordan-triple is finite dimensional, the group \mathcal{K} may be non-compact. Before the appearence of [11], there was already a positive infinite dimensional result [12, Lemma 2.1] concerning the extendibility of inner derivations in partial Jordan-triples with commutative base.

In this short note first we prove the analog of [11, Prop. 1.6] to infinite dimensional partial Jordan-triples where the base is a finite dimensional Cartan factor. Our arguments are completely Jordan-theoretical and require no further assumptions beyond the axioms (J1),(J2). Moreover, the version of axiom (J1) used here requiring only $a \Box a^* | E_0 \in \operatorname{Her}_+(E_0)$ is somewhat weaker than its usual form in the literature postulating $a \Box a^* \in \operatorname{Her}_+(E)$. Then, by introducing the concept of quasigrids and using norm-density considerations, we generalize the result to partial Jordan-triples whose base spaces are c_0 -direct sums of elementary JB*-triples. In particular we get that the restriction mapping $D \mapsto D|E_0$ is a Liealgebra isomorphism between $\operatorname{Der}_0(\mathbf{E})$ and $\operatorname{Der}_0(\mathbf{E}_0)$ whenever the base space E_0 is a so-called compact JB*-triple (for def. see [3]).

2. The case of finite dimensional factor base

Lemma 2.1. Given a derivation D of a partial Jordan-triple \mathbf{E} and an element $a \in E_0$ in the base E_0 of \mathbf{E} , we have

$$[D, a \square a^*] = (Da) \square a^* + a \square (Da)^*.$$

Proof. For any $x \in E$, by axiom (J2) we have

$$[D, a \square a^*] x = D\{a, a^*, x\} - \{a, a^*, (Dx)\} = \{(Da), a^*, x\} + \{a, (Da)^*, x\}$$
$$= ((Da) \square a^* + a \square (Da)^*) x.$$

Corollary 2.2. A derivation $D \in Der(E)$ vanishing on the base E_0 commutes with every inner derivation of \mathbf{E} .

Proposition 2.3. Suppose the base E_0 of the partial Jordan-triple ${\bf E}$ is a finite dimensional Cartan factor. Then for any inner derivation D_0 of ${\bf E}_0$ there is a unique inner derivation D of ${\bf E}$ with $D_0 = D|E_0$.

Proof. Let $D_0 \in \text{Der}(\mathbf{E}_0)$. Using spectral decomposition [9], we can write $D_0 = i \sum_{j=1}^n \alpha_j a_j \Box a_j^* | E_0$ for some minimal tripotents $a_1, \ldots, a_n \in E_0$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. Now the operator $i \sum_{j=1}^n \alpha_j a_j \Box a_j^*$ is an inner derivation extending D_0 to the whole E. Since real linear combinations of inner derivations are inner derivations, it suffices to show that

$$\sum_{j=1}^n \alpha_j a_j \square a_j^* = 0 \quad \text{whenever} \quad \sum_{j=1}^n \alpha_j \{a_j, a_j^*, c\} = 0 \qquad (c \in E_0)$$

and a_0, \ldots, a_n are minimal tripotents in E_0 .

Since $\dim(E_0) < \infty$, the group of all linear isometries of E_0 is a compact finite dimensional Lie group whose Lie algebra is $Der(E_0)$. Consider its identity component \mathcal{U} . That is, \mathcal{U} is the closed subgroup of $\mathcal{L}(E_0)$ generated by the operators $\exp(ia \square a^*)$ $(a \in E_0)$. Then

$$\operatorname{Span}(\mathcal{U}a) = E_0 \qquad (0 \neq a \in E_0) .$$

Indeed, the subspace $\operatorname{Span}(\mathcal{U}a)$ is $\operatorname{Der}(E_0)$ -invariant. It is well-known [5] that Derinvariant subspaces are ideals in JB*-triples, and the only ideals in the factor E_0 are $\{0\}$ and E_0 . By writing simply $\int dU$ for the integration with respect to the normalized Haar measure*) on \mathcal{U} ,

$$\int (Ue)\Box (Ue)^*dU = \int (Uf)\Box (Uf)^*dU \qquad (e, f \text{ minimal tripotents in } E_0)$$

because the group \mathcal{U} is transitive (i.e. f = Ue for some $U \in \mathcal{U}$ above) on the manifold of minimal tripotents in factors [9].

Let us fix $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and minimal tripotents $a_1, \ldots, a_n \in E_0$ such that

$$Dc=0, \qquad (c\in E_0) \quad ext{where} \quad D:=\sum_{j=1}^n lpha_j a_j\,\square\, a_j^*.$$

^{*)} For Borel-measurable functions $\phi: \mathcal{U} \to \mathcal{L}(E)$ with finite range, $\int \psi dU := \sum_{L \in \operatorname{ran}\psi} dU(\phi^{-1}(L)) \cdot L$. For continuous $\Phi: \mathcal{U} \to \mathcal{L}(E)$, the Cauchy-type definition $\int \Phi dU := \lim_n \int \phi_n dU$ whenever $\left(\phi_n\right)_{n=1}^{\infty}$ is a sequence of Borel functions of finite range tending uniformly to Φ makes sense.

Since $D|E_0 = 0$, by 2.2, D commutes with any inner derivation of E. Hence

$$D = \exp \operatorname{ad}(ia \square a^*) D = \exp(ia \square a^*) D \exp(ia \square a^*)^{-1} \qquad (a \in E_0),$$

$$D = UDU^{-1} \qquad (U \in \mathcal{U}),$$

$$D = \int UDU^{-1} dU = \sum_{j=1}^n \alpha_j U(a_j \square a_j^*) U^{-1} dU = \sum_{j=1}^n \alpha_j (Ua_j) \square (Ua_j)^* dU$$

$$= \sum_{j=1}^n \alpha_j Z$$

where

$$Z:=\left[\int (Ue)\Box (Ue)^*dU:\ e\ ext{min.trip.}\in E_0
ight]$$
 .

By Schur's lemma, the operator Z is a multiple of the identity when restricted to E_0 (since $Z|E_0$ commutes with U). Morever

$$Z|E_0 = \gamma \operatorname{id}_{E_0}$$
 with some $\gamma > 0$,

because $e \square e^* \neq 0$ is a positive E-Hermitian operator whenever $0 \neq e \in E_0$. Consequently, from the assumption $D|E_0$ it follows $\sum_j \alpha_j = 0$ whence also $D = \sum_j \alpha_j Z = 0$.

Corollary 2.4. If the base E_0 of \mathbf{E} is a finite dimensional Cartan factor, then the restriction map $D \mapsto D|E_0$ of the complex operator Lie algebra $\mathcal{D} := \operatorname{Span}_{\mathbb{C}} E_0 \square E_0^*$ is injective. The center \mathcal{Z} of \mathcal{D} is 1-dimensional. The mapping

$$P: \sum_{j} \lambda_{j} e_{j} \square e_{j}^{*} \mapsto \sum_{j} \lambda_{j} Z \qquad (\lambda_{j} \in \mathbb{C}, e_{j} \text{ min.trip.} \in E_{0})$$

is a well-defined contractive projection of \mathcal{D} onto \mathcal{Z} .

Proof. To prove the first statement, we only need to notice that any operator $D \in \mathcal{D}$ has the form

$$D = A + iB$$
, $A = \sum_{j=1}^{n} \alpha_{j} a_{j} \Box a_{j}^{*}$, $B = \sum_{j=1}^{n} \beta_{j} b_{j} \Box b_{j}^{*}$

with $\alpha_1, \beta_1, \ldots, \alpha_n, \beta_n \in \mathbb{R}$. Since the operators $A|E_0, B|E_0$ are E_0 -Hermitian, $D|E_0$ vanishes if and only if $A|E_0 = B|E_0 = 0$. By Proposition 2.3, the latter is equivalent to A = B = 0.

To see that the mapping P is a projection, observe that if $a \in E_0$ and $U := \widehat{U}|E_0$ where $\widehat{U} := \exp(i\tau a \Box a^*)$ and with $\tau \in \mathbb{R}$ and $a \in E_0$ then $(Ue)\Box(Ue)^* = \widehat{U}(e\Box e^*)\widehat{U}^{-1}$ $(e \in E_0)$. Therefore every operator $U \in \mathcal{U}$ admits a (not necessarily unique) surjective isomorphic extension \widehat{U} from E_0 to E such that $(Ue)\Box(Ue)^* = \widehat{U}(e\Box e^*)\widehat{U}^{-1}$ $(e \in E_0)$. With such an extension operation

$$PD = \int \widehat{U} D\widehat{U}^{-1} dU \qquad (D \in \mathcal{D}) .$$

Since $\|\widehat{U}D\widehat{U}^{-1}\| = \|D\|$ for all $U \in \mathcal{U}$, the mapping P is contractive.

Remark 2.5. Although the closed subgroup \mathcal{U} of $\mathcal{L}(E_0)$ generated by the family $\{\exp(ia\Box a^*)|E_0: a\in E_0\}$ of operators is a finite dimensional compact Lie group if $\dim(E_0)<\infty$, the closed subgroup $\widetilde{\mathcal{U}}$ of $\mathcal{L}(E)$ generated by $\{\exp(ia\Box a^*): a\in E_0\}$ need not be a finite dimensional compact Lie group if the partial Jordan-triple E is infinite dimensional. The proof by Panou [11] using Levi-Malcev decomposition for the special case $\dim(E)<\infty$ of the Proposition relies heavily upon the compactness of the group of surjective linear isomerties of E.

3. Extendibility of derivations of $c_{m{0}}$ -direct sums

Definition 3.1. A partial Jordan-triple $\mathbf{E} := (E, E_0, \{ * \})$ has the inner derivation extension property (IDEP for short) if for every inner derivation $D_0 \in \mathrm{Der}_0(\mathbf{E}_0)$ of the base E_0 there is only a unique inner derivation $D \in \mathrm{Der}_0(\mathbf{E})$ with $D_0 = D|E_0$.

Proposition 3.2. Suppose the base E_0 of the partial Jordan-triple $\mathbf{E} = (E, E_0, \{ * \})$ is the c_0 -direct sum of a family \mathcal{F} of closed ideals such that the subtriples $(E, F, \{ * \})$ have IDEP for all $F \in \mathcal{F}$. Then \mathbf{E} has IDEP.

Proof. It suffices to see that

$$D:=\sum_{k=1}^n \alpha_k a_k \square a_k^* = 0 \quad \text{whenever} \quad D_0:=D|E_0=0,$$

where $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $a_1, \ldots, a_n \in E_0$. For any subfamily $\mathcal{Z} \subset F$, let $P_{\mathcal{Z}}$ denote the projection of E_0 onto the closed ideal $\otimes^{c_0} \mathcal{Z}$ along the complementer ideal $\otimes^{c_0} \left(\mathcal{F} \setminus \mathcal{Z} \right)$. By the definition of c_0 -direct sums, $\lim_{\mathcal{Z} \text{ finite} \subset \mathcal{F}} ||a - P_{\mathcal{Z}}a|| = 0$ for any $a \in E_0$). Therefore

$$\lim_{\mathcal{Z} \text{ finite} \subset \mathcal{F}} \|P_{\mathcal{Z}} a \square P_{\mathcal{Z}} a^* - a \square a^*\| = 0 \qquad (a \in E_0) \ .$$

On the other hand, the operators $a \square a^*$ act componentwise on E_0 , i.e.

$$P_{\mathcal{Z}}a\Box P_{\mathcal{Z}}a^*|E_0 = P_{\mathcal{Z}}(a\Box a^*)|E_0 \qquad (a \in E_0, \mathcal{Z} \subset \mathcal{F})$$
.

By passing to finite linear combinations, it follows

$$D = \lim_{z \text{ finiteC} \mathcal{F}} \sum_{k=1}^{n} \alpha_k P_{\mathcal{Z}} a_k \Box P_{\mathcal{Z}} a_k^* = \lim_{z \text{ finiteC} \mathcal{F}} \sum_{k=1}^{n} \alpha_k \sum_{F \in \mathcal{Z}} P_{\{F\}} a_k \Box P_{\{F\}} a_k^*.$$

Here we have

$$0 = P_{\{F\}} D_0 | E_0 = \sum_{k=1}^n \alpha_k P_{\{F\}} a_k \square P_{\{F\}} a_k^* | E_0 \qquad (F \in \mathcal{F}) .$$

Hence, by assumption, for the inner derivative extension of $D_0|F$ to $(E, F, \{*\})$ we get

$$0 = \sum_k \alpha_k P_{\{F\}} a_k \Box P_{\{F\}} a_k^* \qquad (F \in \mathcal{F}) \ .$$

Thus

$$D = \lim_{Z \text{ finiteC} \mathcal{F}} \sum_{k=1}^{n} \alpha_k \sum_{F \in \mathcal{Z}} P_{\{F\}} a_k \square P_{\{F\}} a_k^*.$$

Remark 3.3. By a result of Bunce-Chu [3], the c_0 -direct sums of finite dimensional Cartan factors are the so-called *compact* JB*-triples i.e. JB*-triples whose inner derivations are compact operators. Thus in view of Proposition 2.3 we have the following.

Corollary 3.4. A partial Jordan-triple whose base is a compact JB^* -triple, has IDEP. In particular, partial Jordan-triples with finite dimensional base have IDEP.

4. Quasigrids

Definition 4.1. A subset Q of the base E_0 of a partial Jordan-triple $(E, E_0, \{ * \})$ is a *quasigrid* if every finite subset of Q generates a finite dimensional subtriple of E_0 .

Remark 4.2. A family G consisting of tripotents in E_0 is called [10] a *grid* if $(e \square e^*)f = \lambda f$ for some $\lambda \in \{0, \frac{1}{2}, 1\}$ whenever $e, f \in G$. Clearly, grids consisting of minimal tripotents are quasigrids.

A further important example of quasigrids is given by the following two lemmas.

Lemma 4.3. Let H, K be Hilbert spaces. Then the family r(H,K) of all operators with finite rank (finite dimensional range) is a quasigrid in $\mathcal{L}(H,K)$ (equipped with the canonical triple product $\{a,b^*,c\} := \frac{1}{2}ab*c+\frac{1}{2}cb*a$ where b^* means the adjoint of the operator b).

Proof. Any finite rank operator is a finite linear combination of 1-rank operators of the form $e \otimes f^* : h \mapsto \langle h, f \rangle e$ (where $e \in K$, $f \in H$). If $e_1, \ldots, e_N \in K$ and $f_1, \ldots, f_N \in H$ then $\{e_i \otimes f_j^*, (e_k \otimes f_\ell^*)^*, e_m \otimes f_n^*\} \in \operatorname{Span}\{e_p \otimes f_q^* : p, q = 1, \ldots, N\} =: S$. Thus if the finite family $F \in r(H, K)$ consists of finite linear combinations of the operators $e_1 \otimes f_1^*, \ldots, e_N \otimes f_N^*$ then the subtriple generated by F is contained in the N^2 -dimensional subtriple S of $\mathcal{L}(H, K)$.

Corollary 4.4. If $\dim(H) < \infty$ or $\dim(K) < \infty$ then $\mathcal{L}(H, K)$ is a quasigrid itself. In particular H ($\simeq \mathcal{L}(H, \mathbb{C})$) is a quasigrid itself.

Proof. In this case we have $\mathcal{L}(H, K) = r(H, K)$.

Lemma 4.5. A spin factor is a quasigrid itself.

Proof. According to [7,(4.11)], in general, Jordan-triples of finite rank are quasigrids in our terminology. A direct proof giving more insight is also very simple:

A spin factor can be viewed as a Hilbert space H endowed with the triple product

$$\{a,b^*,c\}:=rac{1}{2}\langle a,b
angle c+rac{1}{2}\langle c,b
angle a-rac{1}{2}\langle \overline{a},\overline{c}
angle \overline{b}$$

where the operation $\overline{}: \sum_i \xi_i e_i \mapsto \sum_i \overline{\xi_i} e_i$ is a conjugation with respect to a given orthonormed bases $\left\{e_i\right\}_{i\in I}$. It is immediate that the subtriple generated by the family $\{a_1,\ldots,a_n\}$ is contained in $\operatorname{Span}\{a_1,\overline{a_1},\ldots,a_n,\overline{a_n}\}$.

Definition 4.6. Given a partial Jordan-triple $\mathbf{E} := (E, E_0, \{*\})$ and a quasigrid $Q \subset E_0$, the finite real linear combinations of derivations from $\{ia \Box a^* | E_0 : a \in Q\}$ (respectively $\{ia \Box a^* | E_0 : a \in Q\}$) will be called Q-derivations of \mathbf{E}_0 (respectively Q-derivations of \mathbf{E}).

Theorem 4.7. If Q is a quasigrid in the base E_0 of the partial Jordan-triple $\mathbf{E} = (E, E_0, \{*\})$ then every inner Q-derivation A of \mathbf{E}_0 admits a unique extension \widetilde{A} to E wich is an inner derivation of \mathbf{E} .

Proof. Suppose

$$iA = \sum_{j=1}^{n} \alpha_{j} a_{j} \Box a_{j}^{*} | E_{0} = \sum_{k=1}^{m} \beta_{k} b_{k} \Box b_{k}^{*} | E_{0}$$

where $a_1, \ldots, a_n, b_1, \ldots, b_m \in Q$ and $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in \mathbb{R}$. Let F_0 denote the subtriple of E_0 generated by the family $\{a_1, \ldots, a_n, b_1, \ldots, b_m\}$. Since Q is a quasigrid, $\dim(F_0) < \infty$. On the other hand the mapping $A_0 := A|F_0$ is an inner derivation of F_0 . Thus we may apply Proposition 2.3 to the partial Jordantriple $(E, F_0, \{*\})$ and the derivation A_0 of F_0 to conclude that $\sum_{j=1}^n \alpha_j a_j \square a_j^* = \sum_{k=1}^m \beta_k b_k \square b_k^*$ on the whole E.

Corollary 4.8. If the base E_0 is isomorphic to $\mathcal{L}(H,K)$ and one of the Hilbert spaces H,K is finite dimensional then the partial Jordan-triple $(E,E_0,\{*\})$ has IDEP.

Definition 4.9. Given a Q-derivation D of the base E_0 , we call the unique Q-derivation \widetilde{D} of E with $D = \widetilde{D}|E_0$ the Q-extension of D.

5. Elementary triples in the base

In [4] one has introduced the concept of elementary JB*-triples as the smallest infinite dimensional analogues of the classical finite dimensional Cartan factors. Namely, an elementary JB*-triple of Type I is an isometric copy of a space $c_0(H, K)$ of all compact operators acting between two Hilbert spaces H, K (regarded as a subtriple of $\mathcal{L}(H, K)$ with the mentioned operator triple product). An elementary JB*-triple of Type II is an isometric copy of the subtriple $c_0^{\mathcal{B}^+}(H)$ of some $c_0(H, H)$ consisting of the operators with symmetric matrix with respect to some given orthonormed bases \mathcal{B} in H. Similarly, an elementary JB*-triple of Type III is a copy of some space $c_0^{\mathcal{B}^-}(H)$ (the subtriple of $c_0(H, H)$ consisting of the operators with

antisymmetric matrix with respect to some orthonormed basis \mathcal{B}). Elementary JB*-triples of Type IV are spin factors (possibly infinite dimensional) and those of Type V and VI are the 18- and 27-dimensional expectional Cartan factors.

Thus, in terms of quasigrids, one can characterise elementary JB*-triples as irreducible JB*-triples admitting a norm-dense quasigrid. Indeed, if we consider an elementary JB*-triple F of Type I, II or III as a subtriple of a $c_0(H, K)$ -space as described above then $F \cap r(H, K)$ is a norm-dense quasigrid in F. (Triples of Types IV,V,VI are quasigrids).

Our next aim will be to extend the result of the Proposition to elementary JB*-triples of Type I, II, III.

Remark 5.1. Recall that if H_0, K_0 are finite dimensional Hilbert spaces then the inner derivations of the typical factor $F_1 := c_0(H_0, K_0)$ of Type I are the mappings of the form $x \mapsto iBx + ixA$ whith any couple of self-adjoint operators $A \in \mathcal{L}(K_0, K_0)$, $B \in \mathcal{L}(H_0, H_0)$ such that $\operatorname{trace}(A) = \operatorname{trace}(B)$. The inner derivations of the triples of Type II, resp. III $F_2 := c_0^{\mathcal{B}^+}(H_0)$ and $F_3 := c_0^{\mathcal{B}^-}(H_0)$] are the mappings of the form $x \mapsto iAx + ixA^T$ (defined on F_2 and F_3 , resp.) with any self-adjoint $A \in \mathcal{L}(H_0)$ where A^T is the operator whose matrix is the transpose of that of A with respect to the basis \mathcal{B} .

It follows immediately that for the norm closure of the inner derivations of the infinite dimensional analogues of the factors F_1, F_2, F_3 (i.e. the spaces $c_0(H, K), c_0^{\mathcal{B}^{\pm}}$ with infinite dimensional Hilbert spaces H, K) are the mappings of the form $x \mapsto iBx + ixA$ resp. $x \mapsto iAx + ixA^T$ (with arbitrary self-adjoint compact operators $A: H \to H$ and $B: K \to K$).

Lemma 5.2. Given a self-adjoint operator A with finite rank on a Hilbert space H, there exists a finite sequence $\delta_1, \ldots, \delta_m \in \mathbb{R}$ and there are orthogonal projections P_1, \ldots, P_m with finite rank such that

$$A = \sum_{k=1}^{m} \delta_k P_k$$
, $\sum_{k=1}^{m} |\delta_k| \le 2||A||$.

Proof. We can write

$$A = \sum_{j=1}^{n} \left(\lambda_j R_j + \mu_j S_j \right) \qquad \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n = 0 = \mu_n \ge \mu_{n-1} \ge \dots \ge \mu_1$$

with projections $R_1, S_1, \ldots, R_n, S_n$ to pairwise orthogonal finite dimensional subspaces. Here $||A|| = \max \lambda_1, -\mu_1$. Thus the choice m := 2n - 2,

$$\delta_k := \lambda_k - \lambda_{k+1} , \qquad P_k := \sum_{j \le k} Q_j ,$$

$$\delta_{k+n-1} := \mu_k - \mu_{k+1} , \qquad P_{k+n-1} := \sum_{j \le k} S_j \quad (k = 1, \dots, n-1)$$

suits our requirements.

Lemma 5.3. Let H, K be infinite dimensional Hilbert spaces with an orthonormed basis \mathcal{B} in H. For k=1,2,3 let \mathbf{E}^k be a partial Jordan-triple whose base E_0^k is the elementary JB^* -triple

$$E_0^1 := c_0(H,K) \; , \qquad E_0^2 := c_0^{\mathcal{B}+}(H) \; , \qquad E_0^3 := c_0^{\mathcal{B}-}(H) \; ,$$

and in each case let Q^k be the quasigrid of all finite rank operators in E_0^k . Suppose $A \in r(H, H)$ is a self-adjoint operator with trace(A) = 0. Then the Q^k -extensions \widetilde{D}_k of the derivations

$$D_1 \colon E_0^1 \ni a \mapsto iaA \;, \qquad D_2 \colon E_0^2 \ni a \mapsto iAa + iaA^T , \qquad D_2 \colon E_0^3 \ni a \mapsto iAa + iaA^T ,$$

where T denotes operator transposition with respect to \mathcal{B} , satisfy the norm-estimate

$$||\widetilde{D}_k|| \le 4M||A||$$

whenever $||\{x, a^*, x\}|| \le M||x||^2||a|| \quad (a \in E_0^k, x \in E^k, k = 1, 2, 3).$

Proof. Let us write the operator A in the form

$$A = \sum_{j=1}^{m} \delta_j P_j$$
, $\sum_{j=1}^{m} |\delta_j| \le 2||A||$

with orthogonal projections $P_j \in r(H, H)$ and coefficients $\delta_j \in \mathbb{R}$. Choose a a finite dimensional subspace H_0 in H such that $N := \dim(H_0) \ge \operatorname{rank}(P_j)$ $(j = 1, \ldots, n)$ and let P_0 denote the orthogonal projection of H onto H_0 . Consider the derivations

$$D_{1,j}: E_0^1 \ni a \mapsto ia \left(P_j - \frac{\operatorname{rank}(P_j)}{N} P_0 \right),$$

$$D_{2,j}: E_0^2 \ni a \mapsto i P_j a + ia P_j^T,$$

$$D_{3,j}: E_0^3 \ni a \mapsto i \left(P_j + \frac{\operatorname{rank}(P_j)}{N} P_0 \right) a + ia \left(P_j + \frac{\operatorname{rank}(P_j)}{N} P_0 \right)^T$$

630 L. L. Stachó

for any index j. Observe that

$$D_k = \sum_{j=1}^n i\delta_j D_{k,j}$$
 $(k = 1, 2, 3)$

due to the assumption $\operatorname{trace}(A) = \sum_{j=1}^n \delta_j \operatorname{rank} P_j = 0$. Thus, by the previous lemma, it suffices to check that each $D_{k,j}$ is a Q^k -derivation of \mathbf{E}_0^k whose Q^k -extension $\widetilde{D}_{k,j}$ to E^k satisfies the norm estimate

$$\|\widetilde{D}_{k,j}\| \leq 4M$$
.

Let us fix an index j arbitrarily and write

$$P := P_j, \quad r := \operatorname{rank}(P).$$

Remark that $r \leq N$. Let us fix orthonormed bases $\{e_1, \ldots, e_r\}$ and $\{f_1, \ldots, f_N\}$ in PH and P_0H , respectively.

Case of E^1 . Choose also an orthonormed set $\{g_1, \ldots, g_N\}$ in the space K and write R_0 for the orthogonal projection of K onto the span of $\{g_1, \ldots, g_N\}$. For any system $1 \le i_1 < i_2 < \cdots < i_r \le N$, the operators

$$I_{i_1,...,i_r} := \sum_{s=1}^r g_{i_s} \otimes e_s^*, \quad I := \sum_{t=1}^N g_t \otimes f_t^*$$

are partial isometries belonging to the quasigrid Q^1 . Indeed, an immediate calculation shows that $I_{i_1,\ldots,i_r}I^*_{i_1,\ldots,i_r}I_{i_1,\ldots,i_r}=I_{i_1,\ldots,i_r}$. For any $a\in E^1_0$ we have

$$\begin{split} 2 \sum_{1 \leq i_1 < \dots < i_r \leq N} \left(I_{i_1, \dots, i_r} \square I_{i_1, \dots, i_r}^* \right) a \\ &= \sum_{1 \leq i_1 < \dots < i_r \leq N} \left(I_{i_1, \dots, i_r} I_{i_1, \dots, i_r}^* a + a I_{i_1, \dots, i_r}^* I_{i_1, \dots, i_r} \right) \\ &= \left(\sum_{1 \leq i_1 < \dots < i_r \leq N} \sum_{s=1}^r g_{i_s} \otimes g_{i_s}^* \right) a + a \left(\sum_{1 \leq i_1 < \dots < i_r \leq N} \sum_{s=1}^r e_s \otimes e_s^* \right) \\ &= \binom{N-1}{r-1} \left(\sum_{t=1}^N g_t \otimes g_t^* \right) a + a \binom{N}{r} \sum_{s=1}^r e_s \otimes e_s^* \\ &= \binom{N-1}{r-1} R_0 a + a \binom{N}{r} P, \\ 2 \left(I \square I^* \right) a = I I^* a + a I^* I = R_0 a + a P_0. \end{split}$$

Hence

$$D_{1,j}a = 2i\binom{N}{r}^{-1} \sum_{1 \le i_1 < i_2 < \dots < i_r \le N} (I_{i_1,\dots,i_r} \square I_{i_1,\dots,i_r}^*) a - \frac{2ir}{N} (I \square I^*) a \quad (a \in E_0^1).$$

Therefore for the Q^1 -extension of D_1 to E^1 we get

$$\widetilde{D}_{1,j} = 2i \binom{N}{r}^{-1} \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq N} I_{i_1,\dots,i_r} \square I_{i_1,\dots,i_r}^* - \frac{2ir}{N} I \square I^*.$$

Since $||b\square b^*|| \leq M$ for any $b \in E_0^1$ with ||b|| = 1, it follows

$$\|\widetilde{D}_{1,j}\| \le 2 {N \choose r}^{-1} \sum_{1 \le i_1 \le i_2 \le \dots \le i_r \le N} M + \frac{2r}{N} M \le 4M.$$

Case of \mathbb{E}^2 . Now we have simply

$$D_{2,j}a = 2i \Big(J \square J^* \Big) a \qquad (a \in E_0^2)$$

with the partial isometry

$$J:=\sum_{s=1}^n e_s\otimes \overline{e_s}^*.$$

Hence the Q^2 -extension of D_2, j to E^2 is $\widetilde{D}_{2,j} = 2iJ\Box J^*$ with $||\widetilde{D}_2|| \leq 2M$. Case of \mathbf{E}^3 . For any system of indices $1 \leq i_1 < i_2 < \cdots < i_r \leq N$ set

$$J_{i_1,\ldots,i_r} := \sum_{s=1}^r \left(e_s \otimes \overline{f_{i_s}}^* - f_{i_s} \otimes \overline{e_s}^* \right).$$

Since the set $\{e_1,\ldots,e_r,f_1,\ldots,f_N\}$ is orthonormed in H, we have $J_{i_1,\ldots,i_r}=J_{i_1,\ldots,i_r}J_{i_1,\ldots,i_r}^*J_{i_1,\ldots,i_r}^*$, that is the operators $J_{i_1,\ldots,i_r}\in Q^3$ are partial isometries.

632 L. L. Stachó

Observe that, for any $a \in E_0^3$,

$$\begin{split} 2 \sum_{1 \leq i_1 < \dots < i_r \leq N} \left(J_{i_1, \dots, i_r} \square J_{i_1, \dots, i_r}^* \right) a \\ &= \sum_{1 \leq i_1 < \dots < i_r \leq N} \left(J_{i_1, \dots, i_r} J_{i_1, \dots, i_r}^* a + a J_{i_1, \dots, i_r}^* J_{i_1, \dots, i_r} \right) \\ &= \sum_{1 \leq i_1 < \dots < i_r \leq N} \sum_{s=1}^r \left(e_s \otimes e_s^* + f_{i_s} \otimes f_{i_s}^* \right) a + \\ &\quad + a \sum_{1 \leq i_1 < \dots < i_r \leq N} \sum_{s=1}^r \left(\overline{e_s} \otimes \overline{e_s}^* + \overline{f_{i_s}} \otimes \overline{f_{i_s}}^* \right) \\ &= \binom{N}{r} \left(\sum_{s=1}^r (e_s \otimes e_s^*) a + a \sum_{s=1}^r (e_s \otimes e_s^*)^T \right) + \\ &\quad + \binom{N-1}{r-1} \left(\sum_{t=1}^N (f_t \otimes f_t^*) a + a \sum_{t=1}^N (f_t \otimes f_t^*)^T \right) \\ &= \binom{N}{r} (Pa + a P^T) + \binom{N-1}{r-1} (P_0 a + a P_0^T). \end{split}$$

Thus

$$D_{3,j}a = 2i \binom{N}{r}^{-1} \sum_{1 \le i_1 \le i_2 \le \dots \le i_r \le N} \left(J_{i_1,\dots,i_r} \square J_{i_1,\dots,i_r}^* \right) a \qquad (a \in E_0^3)$$

whence for the Q^3 -extension to E^3 we obtain

$$\widetilde{D}_{3,j} = 2i \binom{N}{r}^{-1} \sum_{1 \le i_1 < \dots < i_r \le N} J_{i_1,\dots,i_r} \square J_{i_1,\dots,i_r}^*,$$

$$\|\widetilde{D}_{3,j}\| \le 2 \binom{N}{r}^{-1} \sum_{1 \le i_1 < \dots < i_r \le N} M = 2M.$$

Remark 5.4. By changing the roles of the spaces K and H in the treatment of the case of E^1 above, we can see that also that the Q^1 -extension $\widetilde{D'_1}$ of a Q^1 -derivation

$$D_1': E_0^1 \ni a \mapsto iBa$$
 (B self-adjoint $\in r(K, K)$, trace(B) = 0)

satisfies the norm estimate

$$\|\widetilde{D_1'}\| \le 4M\|B\|.$$

Lemma 5.5. With the notations of Lemma 5.3 and Remark 5.4, we have the norm estimates

$$4M(||A|| + ||B||) \ge ||D_1 + D_1'|| \ge \max\{||A||, ||B||\},$$

$$4M||A|| \ge ||D_2|| \ge ||A||,$$

$$4M||A|| \ge ||D_3|| \ge ||A||$$

even if trace(A), $trace(B) \neq 0^*$.

Proof. For the cases $\operatorname{trace}(A)$, $\operatorname{trace}(B) = 0$, the upper estimates are already established. Each of the quasigrids $c_0^{\mathcal{B}\pm}(H)\cap r(H,H)$, r(H,K) contains partial isometries of arbitrarily large rank whenever the underlying Hilbert spaces H,K are infinite dimensional. Hence, for k=1,2,3, any Q^k -derivation of \mathbf{E}^k can be perturbed by a Q^k -derivation of the form $\varepsilon I \square I^*$ of arbitrarily small norm in a manner such that the perturbed derivation have the form $a \mapsto iB'a + iaA'$ with $\operatorname{trace}(A') = \operatorname{trace}(B') = 0$. Therefore the upper norm estimates extend also to the case. Next we proceed to the lower estimates.

Case of \mathbf{E}^1 . Given a couple of unit vectors $u \in H$ and $v \in K$, we have $-i(D_1 + D_1')(v \otimes u^*) = v \otimes (Au)^* + (Bv) \otimes u^*$, $||v \otimes u^*|| = 1$. Choosing first u to be an eigenvector of A with eigenvalue of highest modul and v from the kernel of B (by assumption A, B have finite rank), we have $||(D_1 + D_1')(v \otimes u^*)|| = ||(Au) \otimes v^*|| = ||Au|| \cdot ||v|| = ||A||$. Therefore $||D_1 + D_1'|| \geq ||A||$. Choosing v to be an eigenvector of B with eigenvalue of highest module and u from the kernel of A, similarly we get $||D_1 + D_1'|| \geq ||B||$.

Case of \mathbf{E}^2 . If $u, v \in H$ are unit vectors and u is an eigenvector of A with eigenvalue $\lambda \in \{\pm ||A||\}$ and v belongs to the kernel of A then

$$D_2(u \otimes \overline{v}^* + v \otimes \overline{u}^*) = i\lambda(u \otimes \overline{v}^* + v \otimes \overline{u}^*).$$

Hence immediately $||D_2|| \ge ||A||$.

Case of \mathbf{E}^3 . A similar argument to the one used for \mathbf{E}^2 with $u \otimes \overline{v}^* - v \otimes \overline{u}^*$ instead of $u \otimes \overline{v}^* + v \otimes \overline{u}^*$.

Proposition 5.6. A partial Jordan-triple $\mathbf{E} := (E, E_0, \{ * \})$ whose base E_0 is an elementary JB^* -triple has IDEP.

^{*)} For any operator $c \in r(H, K)$ we have $\operatorname{trace}(c^*c) = \operatorname{trace}(cc^*)$. Since $(c \square c^*)a = (cc^*a + ac^*c)/2$ $(a, c \in c_0(H, K))$, it follows that the mapping $[c_0(H, K) \ni a \mapsto iBa + iaA]$ with $A \in r(H, H)$, $B \in r(K, K)$ is an r(H, K)-derivation if and only if $\operatorname{trace}(A) = \operatorname{trace}(B)$.

Proof. If E_0 itself is a quasigrid then the statement is already contained in Proposition 2.3.

If E_0 is not a quasigrid then E_0 is isometrically isomorphic to some space of the form $c_0(H,K)$ or $c_0^{\mathcal{B}\pm}(H)$ with infinite dimensional underlying Hilbert spaces H,K. Thus we may assume that E_0 coincides with one of the mentioned operator spaces. These cases are considered in Lemmas 5.3, 5.5. In any case, let Q denote the quasigrid of all finite rank elements of E_0 . Furthermore, let \mathcal{D} resp. \mathcal{D}_0 be the families of all Q-derivations of E resp. the base space E_0 . According to the norm estimates of the previous lemma, the Q-extension

$$T:\mathcal{D}_0 \to \mathcal{D}$$

$$D \mapsto [\widetilde{D} \in \mathcal{D} : \ \widetilde{D}|E_0 = D]$$

is a bijective linear operation $\mathcal{D}_0 \leftrightarrow \mathcal{D}$ such that

$$||T|| \le 4M$$
, $||T^{-1}|| \le 1$.

(The inverse $T^{-1}: \widetilde{D} \mapsto \widetilde{D}|E_0$ is obviously contractive). Therefore the operation T admits a unique linear bicontinuous extension

$$\overline{T}:\overline{\mathcal{D}_0}\leftrightarrow\overline{\mathcal{D}}$$

where $\overline{\mathcal{D}_0}$ resp. $\overline{\mathcal{D}}$ denote the closures of the linear submanifolds \mathcal{D}_0 resp. \mathcal{D} in the spaces $\mathrm{Der}(E_0)$ resp. $\mathrm{Der}(E)$ with respect to operator norm. Since the quasigrid Q is norm dense in E_0 , and since $\{ia\Box a^*: a\in Q\}\subset \mathcal{D}_0$, by the continuity of the mapping $a\mapsto a\Box a^*$ we have

$$a \square a^* = \lim_{Q \ni a_i \to a} a_i \square a_i^* = \lim_{Q \ni a_i \to a} T(a_i \square a^* | E_0) = \overline{T}(\lim_{Q \ni a_i \to a} a_i a | E_0)$$
$$= \overline{T}(a \square a^* | E_0) \qquad (a \in E_0).$$

Hence, by the linearity of the mapping \overline{T} ,

$$\sum_{k=1}^{n} \alpha_k a_k \Box a_k^* = \overline{T} \Big(\sum_{k=1}^{n} \alpha_k a_k \Box a_k^* | E_0 \Big) = 0 \quad \text{whenever} \quad \sum_{k=1}^{n} \alpha_k a_k \Box a_k^* | E_0 = 0.$$

Thus inner derivations of E_0 admit unique inner derivative extensions to E.

In view of Proposition 3.2 our main result is immediate.

- heorem 5.7. A partial Jordan-triple whose base is a co-direct sum of a family of lementary JB*-triples has IDEP.
 - **Definition 5.8.** Let us call a derivation of a partial Jordan-triple a σ -inner derivation if it is the norm limit of some sequence of inner derivations.

 $A_{\rm S}$ a by-product of the proof of Theorem 5.6, we have also obtained the following result.

Corollary 5.9. Let $(E, E_0, \{*\})$ be a partial Jordan-triple whose base E_0 is an elementary JB^* -triple with infinite rank or finite dimensions*). Then any σ -inner derivation of E_0 admits a unique σ -inner derivative extension to E

References

- [1] T. J. BARTON and Y. FRIEDMAN, Bounded derivations of JB*-triples, Quart J. Math. Oxford, 41 (1990), 255-268.
- [2] BRAUN, W. KAUP and H. UPMEIER, On the automorphisms of circular and Reinland domains in complex Banach spaces, Manuscripta Math., 25 (1978), 97-133.
- [3] J. Bunce and C.-H. Chu, Compact Operations, Multipliers and Radon-Nikodým poperty in JB*-triples, Pacific J. Math., 153 (1992), 249-265.
- [4] J. Bunce and C.-H. Chu, Dual spaces of JB*-triples and the Radon-Nikodým groperty, Math. Z. (1994).
- [5] DINEEN and R. TIMONEY, The centroid of a JB*-triple system, Math. Scand., \$\frac{1}{2}\$ (1988), \$327-342.
- [6] W. KAUP, Über das Randverhalten von holomorphen Automorphismen beschränkter Gebiete, Manuscripta Math., 3 (1970), 257-270.
- [7] W. KAUP, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I., Math Ann., 257 (1981), 463-481.
- [8]W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, *Proc. Amer. Math. Soc.*, 58 (1976), 129-133.
- [90. Loos, Bounded symmetric domains and Jordan pairs, Univ. of California, Irvine. 1970.
- [16] E. Neher, Jordan Triple Systems by the Grid Approach, Lecture Notes in Math. 1280, Springer-Verlag, Berlin Heidelberg, 1987.
- [1] D. Panou, Bounded bicircular domains in \mathbb{C}^n , Manuscripta Math., 68 (1990), 373-390.

^{*)} other words, the elementary JB*-triple E_0 is not isomorphic to some infinite directional spin factor or to some $c_0(H, K)$ with finite dimensional H and infinite dimensional K.

- [12] L. L. Stachó, On the spectrum of inner derivations in partial Jordan triples, Math. Scand., 66 (1990), 242-248.
- [13] L. L. Stachó, On the algebraic classification of bounded circular domains, Proc. Roy. Irish. Acad. Sect. A, 91 (1991), 219-238.
- L. L. Stachó, JATE Bolyai Insitute, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary; and Janus Pannonius University, Ifjúság út 6, H-7630 Pécs, Hungary