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Introduction

In a previous paper [8] we have studied the structure of elements in dual
Jordan triple algebras whose squaring operation was assumed to be continuous
from various topologies into the weak* topology. Such elements admit interesting
compactness properties with a direct physical interpretation in case of (bounded)
weak*-weak* continuous squaring. The obvious disadvantage of such a concept
is that it works only in the presence of a predual. In [6] the notion of weakly
continuous elements (i.e. elements with weak-weak continuous squaring) in JB*s
was introduced to characterize the one-parameter groups of weakly continuous
holomorphic automorphisms of the unit ball. This concept applies to every JB*
but we have no nice spectral representations in general. Recently, a connection
was established in [3] between the weak and weak* continuity of elements in terms
of bidual embedding. However, it may be a quite hard problem to interpret the
results with seemingly simple structure gained by bidual embedding in the original
setting. This paper is devoted to the study of such a situation. We shall describe
the weakly continuous elements of spaces of continuous JB*-valued functions and
we shall completely characterize the ideals Cont,, (E) and Conty+(E) of all weak-
1esp. weak*-continuous elements in a dual JB*-triple E.

We recall that a JB* is a complex Banach space E equipped with a ternary
operation

ExEXE—FE (zvy,z2)— {zy*z}
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called the triple product satisfying the following conditions

(31) {zy*z} is symmetric and bilinear in the outer variables z,z and conjugate
linear in the inner variable y,

(32) [{ee e} = |||,
by writing a ¢ b* for the operator # — {ab*z} on F,
(I3) aob*{zy*z} = {(aob*x)y*z} —{z(a 0 b*y)* 2} + {zy*(a 0 b*2)} (Jordan iden-

tity),
(J4) a o a* is an E-hermitian operator with non-negative spectrum

for all a,b,2z,y,2z € E. It is well-known that (J2) is equivalent to the relation
laob*ll = llalllé] (a,b € B).

A closed linear subspace I C E is called a subtriple if {II*I} C E and an
ideal if {EE*I},{EI*E} C I. Two subsets A, B C E are said to be orthogonal if
Ao B* = 0. In that case also B o A* = 0 and we write A L B. By AL we denote
the subspace {z € E: 2 L A}. A vector e € E is a tripotent if {ee*e} = e, and the
tripotent e is called an atom in E if {¢E*e} = CE.

The simplest example of a non-trivial JB* is the complex line C with the triple
product {(€*n} := (€x. Every C*-algebra is a JB* in the triple product 2{zy*z} :=
zy*z + zy*z. Given a locally compact topological space Q@ and a topological vector
space V, we write Co(Q, V) for the space of all continuous functions f: Q — V such
that for each neighborhood U of 0 in V' the inverse image f~1(V\U) is precompact
in Q. If £ is a JB* then Co(€2, E') becomes a JB* under the pointwise triple product.
In particular the space Co(2) := Co(2,C) is a JB*.

A JB*-triple E is called a JBW™-triple if E is a dual Banach space. In that
case it has a unique predual E,. and we refer to w* := o(FE, E,) as the weak*
topology on E. The bidual E** of a JB* is a JBW* whose triple product extends
that in E. Any JBW"* E admits a unique decomposition into the orthogonal £°°-
direct sum of its atomic and purely non-atomic ideals

E=E,®E} .

Here E, is the weak* closed linear hull of the set of the atoms of E, and E} has
no atoms at all. Besides, E, has the orthogonal £*°-direct sum representation

Ea = Bmem En

where {E,, : m € M} is the set of all weak* closed minimal ideals in E. Each
E,, is isomorphic to some finite or infinite dimensional Cartan factor and E} is
isomorphic to a weak-operator closed subtriple of £(K) for some Hilbert space K.
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We refer to [7] for a systematic study of JB*s, and to [5] for a survey and more
complete references of the theory.

If £isaJB* @ € E and 7 is a linear topology on E then we say that the
element a is 7-continuous in E if the squaring operation z — {za*z} associated
with @ is 7-7 continuous at 0 when restricted to bounded subsets of £. We write

Cont.(E) := {7 — continuous elements of £} .

Without danger of confusion we shall denote by w the weak topology o(E, E*)
on a JB* E. We say that E is a weakly continuous JB* if E = Cont,, (E).

Finally we recall that a topological space T' without isolated points is said to
be perfect. A topological space S is called scattered if S has no non-empty perfect
subspaces. Scattered spaces were thoroughly studied under the name dispersed
spaces in [1].

1. The dual of Cy(S, F) for a scattered space S

Lemmal.l. Let Q and V be a locally compact totally disconnected topological space
and a topological vector space, respectively. Then the linear submanifold

Fi={peC(,V): () is finite}

is dense in Co(Q, V') with respect to the topology of uniform convergence.

Proof. Let f € Co(Q, V) and a balanced neighborhood W of 0 in V be arbitrarily
given. Since the space Q is totally disconnected, for every z € Q there exists an
open-closed neighborhood U, of z such that f(U,) C f(2)+W. Since f € Co(Q, V),

we can choose a finite family {z,...,%,} of points such that U1 Uer D {z €
: f(z) ¢ W}. Thus, by setting Go := Q\ Up., Uz, and defining recursively
Gy == Uy, \Uf;& G; (k =1,...,n), we obtain a disjoint open-closed covering

{Go, G4, ..., Gn} of Q with the property
n
F@) =" fler)le,(z) e W (z€Q)
k=1

where the symbol 1¢ stands for the indicator function of the set G (i.e. 1g(z) :=
[1 for # € G and 0 else]). Since the sets G} are open-closed, we have

k=1 F(zr)1g, € Co(R, V) which completes the proof. .
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Henceforth let S and E denote a locally compact scattered topological space
and a Banach space, respectively. For any function ¢ € Co(S) and vector v € E we
shall write v for the vector valued function z +— ¢(z)v on S.

Since scattered spaces are totally disconnected, we have in particular the
following,.

Corollary 1.2. The linear submanifold Co(S) @ E spanned by the set {pv : ¢ €
Co(S),v € E} is dense in Co(S, E).

Proposition 1.3. For the dual of Co(S, E) we have

Co(S, ) = {If = 3 (be, f())] : 62 € B*(0 € 8), > lldoll < 0 .

z€ES z€S

Proof. Let ® € Co(S, E)* be arbitrarily fixed and let us write G := { open-closed
subsets of S}. Define

wG) =1el{f: F(S\G)=0}] (Geg).

Observe that y is a finitely additive bounded non-negative measure on G. Therefore
there exists a bounded positive linear functional Ay on the linear submanifold
L := {yp : ¢(S5) is finite} of Co(S) such that

Ao(lg) = Q) (Geg).

By Lemma 1.1 the functional A¢ admits a unique continuous extension A € Co(S)} .
According to a well-known result [1] on scattered spaces,

Alp) = Z%‘P(mk) (¢ € Co(S5))
k=1

for some sequences zy,y,... € S and ay, a,... > 0 with 3, ax < oo.

Consider any function f € Co(S, E) with finite range. We can write f =
ZZ=1 1g, vr with asuitable disjoint family Gy, ..., G, € G and vectors v1,...,v, €
E. Hence

(@, 11 <D 1@, 1e,u)] < Y (Go)llvell
k=1 k=1
=fl|f(9«‘)lld#(w) = (Ao, [z = [|f(@)II]) -
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By the density of {g : ran(g) is finite} in Co(S, E) it follows

(2, )] < (A, [z llg(2)) = D axllg(en)l] (9 € Co(S, E)) .
k=1

in particular

(1) (@, p0)] < awip(ar)] o] (p €Co(S,E), vEE).

For fixed v € E we have [p — (®,pv)] € Co(S)*. Thus, by the Riesz-Kakutani
representation theorem,

(‘I’»Sm)) = /‘Pdﬂv (90 € Co(S, E), vE E)

for suitable (uniquely defined) Radon measures y, of bounded variation on S.
Taking into account (1), the Radon-Nikodym theorem implies the existence of
bounded sequences 3}, %,... (v € E) such that

Hy = Zﬂzéxkr I/Bi)l < al“““» lﬁgl < O‘?“v”’ o (v € E),

k=1
where 6, denotes the usual Dirac measure of weight 1 at the point z € .

For fixed ¢ € Co(S), the functional v — (®, pv) is linear on E. Hence the
mapping v — f, is also linear. It follows

qSk::[vr——)ﬁ}c’]EE'*, ||¢k||§ak (k:l,?,...).

That is
(2) (®,9) =) (¢x, f(zx)) (9 € Co(S, E))
k=1

which shows that any bounded linear functional on Co(S, E) is of the form f —
2 zes{de, f(2)) with 3=, o ||éz|| < co. The converse of this statement is trivial. u
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Corollary 1.4. If S is a locally compact scattered topological space and E is a Ba-
nach space, a bounded net (f; :i € I) in Co(S, E) converges weakly to 0 if and only
if for every fized x € S the net (f;(x) : i € I) converges weakly to 0 in E.

Proof. If (f; : i € I) converges weakly to 0 in Co(S, E) then for the functionals
Po,p 0 f — (¢, f(z)) we have 0 = lim; D, 4 = lim;(p, f(z)) whenever & € S and
¢ € E*. Thus (f;(z) : 7 € I) converges weakly to 0 for each z € S in this case.
Suppose lim;(¢, f(z)) = 0 (z € S,¢ € E*). Let ® be any bounded linear
functional on Co(S, E). By Proposition 1.3, we have a representation of the form
(2) with suitable 21, 23,... € S and ¢1, 63, ... € E* such that 3, ||#%]| < co. Given
any € > 0, we can choose n such that 3, [|#x|/sup; ||fi|| < €/2. Then we can
choose 9 € I such that |7, (#%, fi(zx)| < €/2 whenever i > iy in I. It follows

@, A < 1D (e file)l + S Nl izl < (i > io)
k=1

k>n

which completes the proof.

2. Weakly continuous elements in Cy(2, E)

Lemma 2.1. Let E,F be JB"s, a € Conty(E) and let T be a J*-homomorphism
of E onto F'. Then T(a) € Conty(F).

Proof. Consider any weak neighborhood W of 0 in F. Since T-1(W) is a weak
neighborhood and since a € Cont,, (E), there exists a weak neighborhood U of 0 in
E such that

{lUNB(E)a*[UNB(E)} c T-Y(W) .

By a well-known theorem of Dang-Horn [2], by writing H for the kernel
H := T~'{0}, the JB* F is isometrically isomorphic to the factor space E/H
by the factor mapping T'/H. Therefore we have T(B(E)) = B(F) and the image
V :=T(U) is a weak neighborhood of 0 in F. Hence

T{[UNB(E)a"[UNnB(E)} = {[VNB(F)T(a)*[VNB(F)]} C W

proving T'(a) € Cont,, (F). .

Since J*-homomorphic images of JB*s are JB*s, the above Lemma can be
interpreted as follows.
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Corollary 2.2. The J*-homomorphic image of a weakly continuous IB* is a weakly
continuous JB*.

Lemma 2.3. Assume a € Conty, Co(Q, E) where Q is a locally compact topolog-
ical space and E is some JB*. Then the function ¢ : w v [la(w)|| belongs to
Conty, Co(Q).

Proof. Given any bounded linear functional @ on Co(Q2), by the Riesz-Kakutani
representation theorem there is a unique Radon measure vg of bounded variation
on {2 such that

(@, Ya) = / Pdve (¥ € Co())

where a denotes the function w — Y(w)a(w).

Suppose ¢ ¢ Cont,,Co(2). Then there exists a bounded net (i -1 € 1)
converging weakly to 0 in Co(Q2) and a Radon measure @ of bounded variation on
€ such that

: 2
liler;l/%sadméo-

Define Qo := {w € Q : p(w) # 0} and let T : Cy(p) — Co(Q, E) be the isometric
embedding

T(¥) = [p(w)pw)  a(w) ifw € o, 0ifwe N\ QO] .
The functional
Wo(T(w) = [ au (6 € Co(Q)

1s a well-defined bounded linear functional on the subspace T(Co(Q0)) of Co(Q2, E).
Let ¥ denote any Hahn-Banach extension of ¥, to Co(Q, E).

Consider the net a; := 4;a (i € I) in Co(Q, E). It is obviously bounded and
for every ® € Co(£2, E)*

(@,a;) = /1/)z‘dl/<1> —0

since 1; — 0 weakly in Co(Q). Thus ¢; — 0 weakly in Co(S2, F). However, this
contradicts the weak continuity of the element a in Co(, E') because

(¥, {asa*a;}) = / bippidp /0.
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Theorem 2.4. Let 2 be a locally compact topological space and let P be the mazimal
perfect subset of Q. Then we have

ContyCo(, E) = {f € Co(Q, E) : fIP =0 and = f(Q2) C Cont,(E)}.

Proof. Let us write U := {f € Co(Q, E) : f|P =0, f(£2) C Cont, (£)}. With the
aid of the homomorphisms T,,(f) = f(w) (w € @, f € Co(£2, E)) it is immediate
from Lemma 2.1 that f(Q2) C Conty(E) = Tw(Co(R2, E)) for every w € Q. In [3] it
is proved that Cont,,Co(Q) = {f € Co(Q, E) : f|P = 0}. Hence by Lemma 2.3 it
follows Cont,, Co(Q2, E) C U

To prove the converse inclusion, notice first that U is a closed ideal in Co(Q, E).
Therefore, by [3], it suffices to see that U is a weakly continuous JB*.

Define S := Q\ P. It is well-known that S is an open scattered subset of
the space . It is also immediate that the ideal U is isometrically isomorphic to
Co(S, Conty, (E)) by the restriction f s f|S.

In general, let F' be a weakly continuous JB*. We prove that Co(S, F) is a
weakly continuous JB* as follows. Let (f; : ¢ € I) be a bounded net in Co(S) A
converging weakly to 0. By Corollary 1.4 this means that

(¢, fi(z)) — 0 (zx€S8, ¢eF).
Since F is a weakly continuous JB*, for every fixed f € Co(S, F') we have hence
(¢, {fi(e)f(2)" fi(x)}) — O (z€S, ¢eF).

Again by Corollary 1.4, this latter relation means that the net ({f;f*f;} : ¢ € I)
converges weakly to 0 in Co(S, F). That is, any element of Co(S, F) is weakly

continuous.
B

3. Weak*-continuous elements of JBW*s

Throughout this section let £ be a JBW* with the decomposition
E=E,® E}

into atomic and completely non-atomic parts (see [4],[8]) and with the Cartan factor
decomposition
by = Dmem Fo .

According to this decomposition we write every ® € F in the form

L
:c:ma@ma:xjeameMmm‘
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Remark 3.1. For the Cartan factors Fy, the ideals Conty«F,, are completely de-
wribed in [8]. Namely, infinite dimensional spin factors admit no non-trivial weal*-
tontinuous elements and the weak*-continuous elements of factors of type LILIIT
torrespond to compact operators in the canonical operator representation. The
exceptional factors of type V,VI are finite dimensional and hence obviously weak*-
continuous.

Concerning the weakly continuous part of Cartan factors, it is shown in [6]
that Conty, Fy, = Conty,« Fyy, for every m € M.

lemma 3.2. A bounded net (z; :i € I) in E converges weakly* to 0 if and only if

3) wk — lime =0, wk —limz;m =0 (m e M).
(3 3

Proof. The necessity of these relations is clear.

Suppose (3) holds and let ® € E* be a linear functional which is continuous
also with respect to the weak* topology in E. Remark (cf. [4]) that the family of
all w¥-continuous linear functionals of £ can be identified with the predual of F,
and by setting

¢l = o|EL bm = B|Fy,  (meE M)

we have

2l =lléali+ D llémll -

meM

We may assume without loss of generality that lz:all, llZim|] <1 (i € I). Given
€ > 0 arbitrarily, we can find a finite subset A of M such that

3T lgmll<e/2

meM\N

and then we can find iy € I with

[(g3a)] + Z Hém, zim)| < /2.

meN

Hence
l(@,xi)l<5 (i_>_io)

which proves w+—lim; 2; = 0 by the arbitrariness of ® € E, and e > 0.
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Proposition 3.3. We have

Conty+ (E) = ®mem Conty (F).

Proof. According to the main theorem of [8], by writing {Fp, : Mo} for the family
of all infinite dimensional spin factors of E, we have

Conty«(E) = comp,,(E) C ®mer\Mo0mpy, (Fin) = Bmer Contoy+ (Frp)

"To prove the converse inclusion, fix a = @peaam € DmemContys (Fy, ) arbitrarily.
Furthermore let

4 L 1
T = 8;® Ta = Z Pmem Tim (Z € I)

be a bounded net in E converging to 0 with respect to the weak* topology. Since
the net (z; : i € I) is bounded, the net ({z;a*z;} : i € I) is also bounded in E.
By assumption a,, = 0 for m € Mg and e} = 0. Hence, for every index ¢ € I,
{zimanzin} = 0 (m € Mo) and {zat L} = 0. On the other hand, we know
[8] that, in the usual Hilbert space operator representation, Conty«(F,) consists
of compact operators for all infinite dimensional factors F,, with m € M \ M.
Therefore

wr—lim {2z (al )z} = 0, wi—lim {z;may Zim} =0 (m e M).
2 (3

Hence Lemma 3.2 establishes wx—lim; {z;a* z;} = 0 which completes the proof.

4. Weakly continuous elements of JBW*s

Lemmad.1. Let J be an arbitrary non-empty set. Then

Conty, (£2°(J)) = co(J).

Proof. Regarding J as a discrete topological space, we have Co(J) = co(J). Since
J 1s obviously scattered, hence co(J) is a weakly continuous JB*. Since co(J) is an
ideal in £°°(J), by [3] it follows co(J) C Conty, (£ (J)).

If a € £°(J) \ co(J) then for some infinite sequence ji,Jo,,... we have
inf,2; [a;,| > 0. Let ¢1,¢3,... be an enumeration of the rational numbers ly-
ing in the interval [0,1]. Given any continuous function f & C([0,1]), define
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a:fn = f(gn)/@G, and zjfn = flgn) for (n = 1,2,..) and let zfn = m{n =0
for j € J\ {j1,j2,...}. Then for the sequences z/ := (:cfn i J € J) and
o= (zjfn 1 J € J) we have ¢/, 2/ € £°(J) and 2/ = {z/a*1,}. Thus for any
f € C([0,1]) the sequence z/ belongs to the ideal U/, of £°(J) generated by the sin-
gleton a. It is proved in [3] that a € Cont,, (¢°(J)) if and only if U, is a weakly con-
tinuous JB*. However, U, cannot be weakly continuous because {zf: fec(o, 1))}
is a subtriple of U, which is isometrically isomorphic to C([0,1]) by the mapping

f+— 2/ and (also by [3]) the JB* ([0, 1]) is not weakly continuous. .

Proposition 4.2. Suppose E = @;c1E; where @ means (°-direct sum of pairwise
orthogonal ideals. Then Cont,, (E) coincides with the co-direct sum ;¢ Conty, (E;).

Proof. By [3], Cont,(F) is the largest weakly continuous closed ideal of E.
Since each Conty, (E;) is a weakly continuous ideal of E, hence ®;2;Conty, (E;) C
Conty (E).

To see the converse inclusion, assume a = ®icra; (with a; € E; (i € )
belongs to Conty (E). One verifies directly that a; € Cont,, (E;) for every i € I.
Suppose additionally that a ¢ @fg 1Conty, (E;). Then we can find ¢ > 0 and a

sequence i1,%y,...in I such that ||a;,|| > ¢ for n = 1,2,.... It is established in
(3] that finite linear orthogonal combinations of weakly continuous tripotents are
dense in Cont,, (). Therefore there exists a finite orthogonal family u®, u?, ... v
of tripotents in Cont,, (E) and constants a7, ..., ay with lla — ZkN=1 apuk|| < e/2.
Using the canonical decompositions u* = @ uf (k=1,..., N ), it follows

N

max{lag| : uf, #0} =D apub || > /2 (n=1,2,..).
k=1

In particular, for some index ko, Iy := {i € I : uf® # 0} is infinite. Since ute €
Cont,, (E) and since Cont,, (E) is an ideal in E, the subtriple

U := @ier,Cule = {@ierodiute : _squ [Xi] < oo}
s€lp

1s contained in Conty (E). Consequently U is a weakly continuous JB*. However,
U is isometrically isomorphic to £°°(Iy) whence, by 4.1 and the infiniteness os Iy,

we cannot have U = Cont,, (U), a contradiction. u
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Theorem 4.3. Let E be a JBW™ with the factor decomposition

E=FE.®Ey = ®memFrn ® EX
described at the beginning of Section 3. Then

Conty (E) = @2 sy Conty (Fr) = @2 oy Conty,s (Frr)

Proof. In view of Remark 3.1 and Proposition 4.2 it suffices to see that
Conty, (E}) = {0} .

Since the weakly continuous tripotents in Cont,, (EL) span a dense linear subman-
ifold (see [3]), it suffices to prove only that non-trivial tripotents in Cont,, (E;-) are
not weakly continuous.

Let u # 0 be any tripotent in Ey. Since EL is an atom free JBW*, by [4]
there exist an orthogonal couple u;, u} of non-zero tripotents in £ such that

u = ug + uj {wuus} = uy, {uu™ui} =) .

Similarly we can split 4} into a non-trivial orthogonal tripotent sum wuy + u} with
the property {uju}*us} = ua, {¢ju}"u4} = u}. Thus, continuing in this manner,
we can construct an orthogonal sequence uj, ug, us, .. . of non-zero tripotents such
that

vou*(up) = ug (k=1,2,..).

Since Ef has a predual, for any bounded sequence of constants \ = (A1, A2,
the element
H
2 = wx— lim Z’\kuk

n—+00
k=1

is well defined (see [4]). The mapping A ++ z* is an isometric isomorphism between

the space £%° and the subtriple X := {z* : A € £*°}. Observe that X is a closed
subtriple of the ideal U, of E} generated by the singleton u. By Lemma 4.1 the
JB* X is not weakly continuous. Therefore U, is no weakly continuous JB* and

hence the tripotent u cannot belong to Cont,, (EL). .
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Corollary 4.4. If E is « JBW™ then any weakly continuous element of E is the co-
direct sum of an orthogonal family of scalar multiples of weakly continuvous atoms.
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