On weakly and weakly* continuous elements in Jordan triples

J. M. ISIDRO* and L. L. STACHÓ*

Dedicated to Professor Béla Szőkefalvi-Nagy on his 80th birthday

Introduction

In a previous paper [8] we have studied the structure of elements in dual Jordan triple algebras whose squaring operation was assumed to be continuous from various topologies into the weak* topology. Such elements admit interesting compactness properties with a direct physical interpretation in case of (bounded) weak*-weak* continuous squaring. The obvious disadvantage of such a concept is that it works only in the presence of a predual. In [6] the notion of weakly continuous elements (i.e. elements with weak-weak continuous squaring) in JB*s was introduced to characterize the one-parameter groups of weakly continuous holomorphic automorphisms of the unit ball. This concept applies to every JB* but we have no nice spectral representations in general. Recently, a connection was established in [3] between the weak and weak* continuity of elements in terms of bidual embedding. However, it may be a quite hard problem to interpret the results with seemingly simple structure gained by bidual embedding in the original setting. This paper is devoted to the study of such a situation. We shall describe the weakly continuous elements of spaces of continuous JB*-valued functions and we shall completely characterize the ideals $Cont_w(E)$ and $Cont_{w*}(E)$ of all weakresp. weak*-continuous elements in a dual JB*-triple E.

We recall that a JB^* is a complex Banach space E equipped with a ternary operation

$$E\times E\times E\longrightarrow E\quad (x,y,z)\longmapsto \{xy^*z\}$$

Received February 19, 1992.

^{*} Supported by the Xunta de Galicia, project XUGA 20702 B 90.

^{*} Supported by the Hungarian National Science Foundation, grant No. 91/3.

called the triple product satisfying the following conditions

- (J1) $\{xy^*z\}$ is symmetric and bilinear in the outer variables x, z and conjugate linear in the inner variable y,
- $(J2) ||\{xx^*x\}|| = ||x||^3,$

by writing $a \diamond b^*$ for the operator $x \mapsto \{ab^*x\}$ on E,

- (J3) $a \diamond b^* \{xy^*z\} = \{(a \diamond b^*x)y^*z\} \{x(a \diamond b^*y)^*z\} + \{xy^*(a \diamond b^*z)\}$ (Jordan identity),
- (J4) $a \diamond a^*$ is an E-hermitian operator with non-negative spectrum

for all $a, b, x, y, z \in E$. It is well-known that (J2) is equivalent to the relation $||a \diamond b^*|| = ||a|| ||b||$ $(a, b \in E)$.

A closed linear subspace $I \subset E$ is called a subtriple if $\{II^*I\} \subset E$ and an ideal if $\{EE^*I\}$, $\{EI^*E\} \subset I$. Two subsets $A, B \subset E$ are said to be orthogonal if $A \diamond B^* = 0$. In that case also $B \diamond A^* = 0$ and we write $A \perp B$. By A^{\perp} we denote the subspace $\{x \in E : x \perp A\}$. A vector $e \in E$ is a tripotent if $\{ee^*e\} = e$, and the tripotent e is called an atom in E if $\{eE^*e\} = \mathbb{C}E$.

The simplest example of a non-trivial JB* is the complex line \mathbb{C} with the triple product $\{\zeta\xi^*\eta\}:=\zeta\overline{\xi}\eta$. Every C*-algebra is a JB* in the triple product $2\{xy^*z\}:=xy^*z+zy^*x$. Given a locally compact topological space Ω and a topological vector space V, we write $\mathcal{C}_0(\Omega,V)$ for the space of all continuous functions $f\colon\Omega\to V$ such that for each neighborhood U of 0 in V the inverse image $f^{-1}(V\setminus U)$ is precompact in Ω . If E is a JB* then $\mathcal{C}_0(\Omega,E)$ becomes a JB* under the pointwise triple product. In particular the space $\mathcal{C}_0(\Omega):=\mathcal{C}_0(\Omega,\mathbb{C})$ is a JB*.

A JB*-triple E is called a JBW*-triple if E is a dual Banach space. In that case it has a unique predual E_* and we refer to $w^* := \sigma(E, E_*)$ as the weak* topology on E. The bidual E^{**} of a JB* is a JBW* whose triple product extends that in E. Any JBW* E admits a unique decomposition into the orthogonal ℓ^{∞} -direct sum of its atomic and purely non-atomic ideals

$$E = E_{\mathbf{a}} \oplus E_{\mathbf{a}}^{\perp} .$$

Here E_a is the weak* closed linear hull of the set of the atoms of E, and E_a^{\perp} has no atoms at all. Besides, E_a has the orthogonal ℓ^{∞} -direct sum representation

$$E_{\mathbf{a}} = \bigoplus_{m \in \mathcal{M}} E_m$$

where $\{E_m : m \in \mathcal{M}\}$ is the set of all weak* closed minimal ideals in E. Each E_m is isomorphic to some finite or infinite dimensional Cartan factor and E_a^{\perp} is isomorphic to a weak-operator closed subtriple of $\mathcal{L}(K)$ for some Hilbert space K.

We refer to [7] for a systematic study of JB*s, and to [5] for a survey and more complete references of the theory.

If E is a JB* $a \in E$ and τ is a linear topology on E then we say that the element a is τ -continuous in E if the squaring operation $x \mapsto \{xa^*x\}$ associated with a is τ - τ continuous at 0 when restricted to bounded subsets of E. We write

$$\operatorname{Cont}_{\tau}(E) := \{ \tau - \text{continuous elements of } E \}$$
.

Without danger of confusion we shall denote by w the weak topology $\sigma(E, E^*)$ on a JB* E. We say that E is a weakly continuous JB* if $E = \operatorname{Cont}_w(E)$.

Finally we recall that a topological space T without isolated points is said to be perfect. A topological space S is called scattered if S has no non-empty perfect subspaces. Scattered spaces were thoroughly studied under the name dispersed spaces in [1].

1. The dual of $\mathcal{C}_0(S,F)$ for a scattered space S

Lemma 1.1. Let Ω and V be a locally compact totally disconnected topological space and a topological vector space, respectively. Then the linear submanifold

$$F:=\{arphi\in\mathcal{C}_0(\Omega,V):arphi(\Omega) \qquad \textit{is finite}\}$$

is dense in $C_0(\Omega, V)$ with respect to the topology of uniform convergence.

Proof. Let $f \in \mathcal{C}_0(\Omega, V)$ and a balanced neighborhood W of 0 in V be arbitrarily given. Since the space Ω is totally disconnected, for every $x \in \Omega$ there exists an open-closed neighborhood U_x of x such that $f(U_x) \subset f(x) + W$. Since $f \in \mathcal{C}_0(\Omega, V)$, we can choose a finite family $\{x_1, \ldots, x_n\}$ of points such that $\bigcup_{k=1}^n U_{x_k} \supset \{x \in \Omega : f(x) \notin W\}$. Thus, by setting $G_0 := \Omega \setminus \bigcup_{k=1}^n U_{x_k}$ and defining recursively $G_k := U_{x_k} \setminus \bigcup_{j=0}^{k-1} G_j \quad (k=1,\ldots,n)$, we obtain a disjoint open-closed covering $\{G_0, G_1, \ldots, G_n\}$ of Ω with the property

$$f(x) - \sum_{k=1}^{n} f(x_k) 1_{G_k}(x) \in W \qquad (x \in \Omega)$$

where the symbol 1_G stands for the indicator function of the set G (i.e. $1_G(x) := [1 \text{ for } x \in G \text{ and } 0 \text{ else}]$). Since the sets G_k are open-closed, we have $\sum_{k=1}^n f(x_k) 1_{G_k} \in \mathcal{C}_0(\Omega, V)$ which completes the proof.

Henceforth let S and E denote a locally compact scattered topological space and a Banach space, respectively. For any function $\varphi \in \mathcal{C}_0(S)$ and vector $v \in E$ we shall write φv for the vector valued function $x \mapsto \varphi(x)v$ on S.

Since scattered spaces are totally disconnected, we have in particular the following.

Corollary 1.2. The linear submanifold $C_0(S) \otimes E$ spanned by the set $\{\varphi v : \varphi \in C_0(S), v \in E\}$ is dense in $C_0(S, E)$.

Proposition 1.3. For the dual of $C_0(S, E)$ we have

$$\mathcal{C}_0(S, E)^* = \Big\{ [f \mapsto \sum_{x \in S} \langle \phi_x, f(x) \rangle] : \phi_x \in E^*(x \in S), \sum_{x \in S} ||\phi_x|| < \infty \Big\}.$$

Proof. Let $\Phi \in \mathcal{C}_0(S, E)^*$ be arbitrarily fixed and let us write $\mathcal{G} := \{$ open-closed subsets of $S\}$. Define

$$\mu(G) := ||\Phi|\{f : f(S \setminus G) = 0\}|| \qquad (G \in \mathcal{G}).$$

Observe that μ is a finitely additive bounded non-negative measure on \mathcal{G} . Therefore there exists a bounded positive linear functional Λ_0 on the linear submanifold $L := \{\varphi : \varphi(S) \text{ is finite}\}\$ of $\mathcal{C}_0(S)$ such that

$$\Lambda_0(1_G) = \mu(G) \qquad (G \in \mathcal{G}).$$

By Lemma 1.1 the functional Λ_0 admits a unique continuous extension $\Lambda \in \mathcal{C}_0(S)_+^*$. According to a well-known result [1] on scattered spaces,

$$\Lambda(\varphi) = \sum_{k=1}^{\infty} \alpha_k \varphi(x_k) \qquad (\varphi \in \mathcal{C}_0(S))$$

for some sequences $x_1, x_2, \ldots \in S$ and $\alpha_1, \alpha_2, \ldots \geq 0$ with $\sum_k \alpha_k < \infty$.

Consider any function $f \in \mathcal{C}_0(S, E)$ with finite range. We can write $f = \sum_{k=1}^n 1_{G_k} v_k$ with a suitable disjoint family $G_1, \ldots, G_n \in \mathcal{G}$ and vectors $v_1, \ldots, v_n \in E$. Hence

$$\begin{aligned} |\langle \Phi, f \rangle| &\leq \sum_{k=1}^{n} |\langle \Phi, 1_{G_k} v_k \rangle| \leq \sum_{k=1}^{n} \mu(G_k) ||v_k|| \\ &= \int ||f(x)|| d\mu(x) = \langle \Lambda_0, [x \mapsto ||f(x)||] \rangle . \end{aligned}$$

By the density of $\{g : \operatorname{ran}(g) \text{ is finite}\}\$ in $\mathcal{C}_0(S,E)$ it follows

$$|\langle \Phi, g \rangle| \leq \langle \Lambda, [x \mapsto ||g(x)||] \rangle = \sum_{k=1}^{\infty} \alpha_k ||g(x_k)|| \qquad (g \in \mathcal{C}_0(S, E)) .$$

In particular

(1)
$$|\langle \Phi, \varphi v \rangle| \leq \sum_{k=1}^{\infty} \alpha_k \varphi(x_k) ||v|| \qquad (\varphi \in \mathcal{C}_0(S, E), \ v \in E) \ .$$

For fixed $v \in E$ we have $[\varphi \mapsto \langle \Phi, \varphi v \rangle] \in \mathcal{C}_0(S)^*$. Thus, by the Riesz-Kakutani representation theorem,

$$\langle \Phi, \varphi v \rangle = \int \varphi \, d\mu_v \qquad (\varphi \in \mathcal{C}_0(S, E), \ v \in E)$$

for suitable (uniquely defined) Radon measures μ_v of bounded variation on S. Taking into account (1), the Radon-Nikodým theorem implies the existence of bounded sequences $\beta_1^v, \beta_2^v, \ldots$ $(v \in E)$ such that

$$\mu_{v} = \sum_{k=1}^{\infty} \beta_{k}^{v} \delta_{x_{k}}, \quad |\beta_{1}^{v}| \leq \alpha_{1} ||v||, \ |\beta_{2}^{v}| \leq \alpha_{2} ||v||, \dots \qquad (v \in E),$$

where δ_x denotes the usual Dirac measure of weight 1 at the point $x \in S$.

For fixed $\varphi \in \mathcal{C}_0(S)$, the functional $v \mapsto \langle \Phi, \varphi v \rangle$ is linear on E. Hence the mapping $v \mapsto \mu_v$ is also linear. It follows

$$\phi_k := [v \mapsto \beta_k^v] \in E^*, \ \|\phi_k\| \le \alpha_k$$
 $(k = 1, 2, ...).$

That is

(2)
$$\langle \Phi, g \rangle = \sum_{k=1}^{\infty} \langle \phi_k, f(x_k) \rangle$$
 $(g \in \mathcal{C}_0(S, E))$

which shows that any bounded linear functional on $C_0(S, E)$ is of the form $f \mapsto \sum_{x \in S} \langle \phi_x, f(x) \rangle$ with $\sum_{x \in S} ||\phi_x|| < \infty$. The converse of this statement is trivial.

Corollary 1.4. If S is a locally compact scattered topological space and E is a Banach space, a bounded net $(f_i : i \in I)$ in $C_0(S, E)$ converges weakly to 0 if and only if for every fixed $x \in S$ the net $(f_i(x) : i \in I)$ converges weakly to 0 in E.

Proof. If $(f_i: i \in I)$ converges weakly to 0 in $C_0(S, E)$ then for the functionals $\Phi_{x,\phi}: f \mapsto \langle \phi, f(x) \rangle$ we have $0 = \lim_i \Phi_{x,\phi} = \lim_i \langle \phi, f(x) \rangle$ whenever $x \in S$ and $\phi \in E^*$. Thus $(f_i(x): i \in I)$ converges weakly to 0 for each $x \in S$ in this case.

Suppose $\lim_i \langle \phi, f(x) \rangle = 0$ $(x \in S, \phi \in E^*)$. Let Φ be any bounded linear functional on $\mathcal{C}_0(S, E)$. By Proposition 1.3, we have a representation of the form (2) with suitable $x_1, x_2, \ldots \in S$ and $\phi_1, \phi_2, \ldots \in E^*$ such that $\sum_k ||\phi_k|| < \infty$. Given any $\varepsilon > 0$, we can choose n such that $\sum_{k>n} ||\phi_k|| \sup_i ||f_i|| < \varepsilon/2$. Then we can choose $i_0 \in I$ such that $|\sum_{k=1}^n \langle \phi_k, f_i(x_k)| < \varepsilon/2$ whenever $i \geq i_0$ in I. It follows

$$|\langle \Phi, f \rangle| \le |\sum_{k=1}^{n} \langle \phi_k, f_i(x_k) \rangle| + \sum_{k>n} ||\phi_k|| ||f_i(x_k)|| < \varepsilon \qquad (i > i_0)$$

which completes the proof.

2. Weakly continuous elements in $\mathcal{C}_0(\Omega, E)$

Lemma 2.1. Let E, F be JB^*s , $a \in Cont_w(E)$ and let T be a J^* -homomorphism of E onto F. Then $T(a) \in Cont_w(F)$.

Proof. Consider any weak neighborhood W of 0 in F. Since $T^{-1}(W)$ is a weak neighborhood and since $a \in \operatorname{Cont}_w(E)$, there exists a weak neighborhood U of 0 in E such that

$$\{[U \cap \mathcal{B}(E)]a^*[U \cap \mathcal{B}(E)]\} \subset T^{-1}(W) .$$

By a well-known theorem of Dang-Horn [2], by writing H for the kernel $H:=T^{-1}\{0\}$, the JB* F is isometrically isomorphic to the factor space E/H by the factor mapping T/H. Therefore we have T(B(E))=B(F) and the image V:=T(U) is a weak neighborhood of 0 in F. Hence

$$T\{[U\cap \mathrm{B}(E)]a^*[U\cap \mathrm{B}(E)]\}=\{[V\cap \mathrm{B}(F)]T(a)^*[V\cap \mathrm{B}(F)]\}\subset W$$
 proving $T(a)\in \mathrm{Cont}_w(F)$.

Since J*-homomorphic images of JB*s are JB*s, the above Lemma can be interpreted as follows.

Corollary 2.2. The J*-homomorphic image of a weakly continuous JB* is a weakly continuous JB*.

Lemma 2.3. Assume $a \in \operatorname{Cont}_w \mathcal{C}_0(\Omega, E)$ where Ω is a locally compact topological space and E is some JB*. Then the function $\varphi : \omega \mapsto ||a(\omega)||$ belongs to $\operatorname{Cont}_w \mathcal{C}_0(\Omega)$.

Proof. Given any bounded linear functional Φ on $\mathcal{C}_0(\Omega)$, by the Riesz-Kakutani representation theorem there is a unique Radon measure ν_{Φ} of bounded variation on Ω such that

$$\langle \Phi, \psi a \rangle = \int \psi d\nu_{\Phi} \qquad (\psi \in \mathcal{C}_0(\Omega))$$

where ψa denotes the function $\omega \mapsto \psi(\omega)a(\omega)$.

Suppose $\varphi \notin \operatorname{Cont}_w \mathcal{C}_0(\Omega)$. Then there exists a bounded net $(\psi_i : i \in I)$ converging weakly to 0 in $\mathcal{C}_0(\Omega)$ and a Radon measure μ of bounded variation on Ω such that

$$\lim_{i \in I} \int \psi_i^2 \varphi d\mu \neq 0 .$$

Define $\Omega_0 := \{ \omega \in \Omega : \varphi(\omega) \neq 0 \}$ and let $T : \mathcal{C}_0(\Omega_0) \to \mathcal{C}_0(\Omega, E)$ be the isometric embedding

$$T(\psi) := \left[\psi(\omega) \varphi(\omega)^{-1} a(\omega) \text{ if } \omega \in \Omega_0, \quad 0 \text{ if } \omega \in \Omega \setminus \Omega_0 \right].$$

The functional

$$\Psi_0(T(\psi)) := \int \psi d\mu \qquad (\psi \in \mathcal{C}_0(\Omega_0)$$

is a well-defined bounded linear functional on the subspace $T(\mathcal{C}_0(\Omega_0))$ of $\mathcal{C}_0(\Omega, E)$. Let Ψ denote any Hahn-Banach extension of Ψ_0 to $\mathcal{C}_0(\Omega, E)$.

Consider the net $a_i := \psi_i a$ $(i \in I)$ in $\mathcal{C}_0(\Omega, E)$. It is obviously bounded and for every $\Phi \in \mathcal{C}_0(\Omega, E)^*$

$$\langle \Phi, a_i \rangle = \int \psi_i d\nu_\Phi \longrightarrow 0$$

since $\psi_i \to 0$ weakly in $\mathcal{C}_0(\Omega)$. Thus $a_i \to 0$ weakly in $\mathcal{C}_0(\Omega, E)$. However, this contradicts the weak continuity of the element a in $\mathcal{C}_0(\Omega, E)$ because

$$\langle \Psi, \{a_i a^* a_i\} \rangle = \int \psi_i \varphi \psi_i d\mu \not\to 0$$
.

Theorem 2.4. Let Ω be a locally compact topological space and let P be the maximal perfect subset of Ω . Then we have

$$\operatorname{Cont}_w \mathcal{C}_0(\Omega, E) = \{ f \in \mathcal{C}_0(\Omega, E) : f | P = 0 \ and = f(\Omega) \subset \operatorname{Cont}_w(E) \}.$$

Proof. Let us write $U := \{ f \in \mathcal{C}_0(\Omega, E) : f | P = 0, f(\Omega) \subset \operatorname{Cont}_w(E) \}$. With the aid of the homomorphisms $T_{\omega}(f) := f(\omega) \ (\omega \in \Omega, f \in \mathcal{C}_0(\Omega, E))$ it is immediate from Lemma 2.1 that $f(\Omega) \subset \operatorname{Cont}_w(E) = T_{\omega}(\mathcal{C}_0(\Omega, E))$ for every $\omega \in \Omega$. In [3] it is proved that $\operatorname{Cont}_w\mathcal{C}_0(\Omega) = \{ f \in \mathcal{C}_0(\Omega, E) : f | P = 0 \}$. Hence by Lemma 2.3 it follows $\operatorname{Cont}_w\mathcal{C}_0(\Omega, E) \subset U$

To prove the converse inclusion, notice first that U is a closed ideal in $\mathcal{C}_0(\Omega, E)$. Therefore, by [3], it suffices to see that U is a weakly continuous JB^* .

Define $S := \Omega \setminus P$. It is well-known that S is an open scattered subset of the space Ω . It is also immediate that the ideal U is isometrically isomorphic to $C_0(S, \operatorname{Cont}_w(E))$ by the restriction $f \mapsto f|S$.

In general, let F be a weakly continuous JB^* . We prove that $C_0(S, F)$ is a weakly continuous JB^* as follows. Let $(f_i : i \in I)$ be a bounded net in $C_0(S)$ converging weakly to 0. By Corollary 1.4 this means that

$$\langle \phi, f_i(x) \rangle \longrightarrow 0$$
 $(x \in S, \ \phi \in F^*)$.

Since F is a weakly continuous JB^* , for every fixed $f \in C_0(S, F)$ we have hence

$$\langle \phi, \{f_i(x)f(x)^*f_i(x)\} \rangle \longrightarrow 0 \qquad (x \in S, \ \phi \in F^*).$$

Again by Corollary 1.4, this latter relation means that the net $(\{f_i f^* f_i\} : i \in I)$ converges weakly to 0 in $\mathcal{C}_0(S, F)$. That is, any element of $\mathcal{C}_0(S, F)$ is weakly continuous.

3. Weak*-continuous elements of JBW*s

Throughout this section let E be a JBW* with the decomposition

$$E = E_a \oplus E_a^{\perp}$$

into atomic and completely non-atomic parts (see [4],[8]) and with the Cartan factor decomposition

$$E_{\mathbf{a}} = \bigoplus_{m \in \mathcal{M}} F_m$$
.

According to this decomposition we write every $x \in E$ in the form

$$x = x_a^{\perp} \oplus x_a = x_a^{\perp} \oplus_{m \in \mathcal{M}} x_m$$
.

Remark 3.1. For the Cartan factors F_m the ideals $Cont_{w^*}F_m$ are completely described in [8]. Namely, infinite dimensional spin factors admit no non-trivial weak*-continuous elements and the weak*-continuous elements of factors of type I,II,III correspond to compact operators in the canonical operator representation. The exceptional factors of type V,VI are finite dimensional and hence obviously weak*-continuous.

Concerning the weakly continuous part of Cartan factors, it is shown in [6] that $\operatorname{Cont}_w F_m = \operatorname{Cont}_{w^*} F_m$ for every $m \in \mathcal{M}$.

lemma 3.2. A bounded net $(x_i : i \in I)$ in E converges weakly* to 0 if and only if

(3)
$$w* - \lim_{i} x_{ia}^{\perp} = 0, \quad w* - \lim_{i} x_{im} = 0 \quad (m \in \mathcal{M}).$$

Proof. The necessity of these relations is clear.

Suppose (3) holds and let $\Phi \in E^*$ be a linear functional which is continuous also with respect to the weak* topology in E. Remark (cf. [4]) that the family of all w*-continuous linear functionals of E can be identified with the predual of E, and by setting

$$\phi_{\mathbf{a}}^{\perp} := \Phi | E_{\mathbf{a}}^{\perp} \qquad \phi_m := \Phi | F_m \quad (m \in \mathcal{M})$$

we have

$$||\Phi|| = ||\phi_{\mathbf{a}}^{\perp}|| + \sum_{m \in \mathcal{M}} ||\phi_m||$$
.

We may assume without loss of generality that $||x_{ia}||, ||x_{im}|| \leq 1$ $(i \in I)$. Given $\varepsilon > 0$ arbitrarily, we can find a finite subset \mathcal{N} of \mathcal{M} such that

$$\sum_{m \in \mathcal{M} \setminus \mathcal{N}} \|\phi_m\| < \varepsilon/2$$

and then we can find $i_0 \in I$ with

$$|\langle \phi_{ia}^{\perp} \rangle| + \sum_{m \in \mathcal{N}} |\langle \phi_m, x_{im} \rangle| < \varepsilon/2$$
.

Hence

$$|\langle \Phi, x_i \rangle| < \varepsilon \qquad \qquad (i \ge i_0)$$

which proves $w*-\lim_i x_i = 0$ by the arbitrariness of $\Phi \in E_*$ and $\varepsilon > 0$.

Proposition 3.3. We have

$$\operatorname{Cont}_{w^*}(E) = \bigoplus_{m \in \mathcal{M}} \operatorname{Cont}_{w^*}(F_m).$$

Proof. According to the main theorem of [8], by writing $\{F_m : \mathcal{M}_0\}$ for the family of all infinite dimensional spin factors of E, we have

$$\operatorname{Cont}_{w^*}(E) = \operatorname{comp}_{w^*}(E) \subset \bigoplus_{m \in \mathcal{M} \setminus \mathcal{M}_0} \operatorname{comp}_{w^*}(F_m) = \bigoplus_{m \in \mathcal{M}} \operatorname{Cont}_{w^*}(F_m) .$$

To prove the converse inclusion, fix $a = \bigoplus_{m \in \mathcal{M}} a_m \in \bigoplus_{m \in \mathcal{M}} \operatorname{Cont}_{w^*}(F_m)$ arbitrarily. Furthermore let

$$x_i = x_{ai}^{\perp} \oplus x_{ai} = x_{ai}^{\perp} \oplus_{m \in \mathcal{M}} x_{im} \qquad (i \in I)$$

be a bounded net in E converging to 0 with respect to the weak* topology. Since the net $(x_i:i\in I)$ is bounded, the net $(\{x_ia^*x_i\}:i\in I)$ is also bounded in E. By assumption $a_m=0$ for $m\in\mathcal{M}_0$ and $a_a^\perp=0$. Hence, for every index $i\in I$, $\{x_{im}a_m^*x_{im}\}=0$ $(m\in\mathcal{M}_0)$ and $\{x_{ia}^\perp a_a^{\perp *}x_{ia}^\perp\}=0$. On the other hand, we know [8] that, in the usual Hilbert space operator representation, $\mathrm{Cont}_{w^*}(F_m)$ consists of compact operators for all infinite dimensional factors F_m with $m\in\mathcal{M}\setminus\mathcal{M}_0$. Therefore

$$\mathbf{w} * - \lim_{i} \left\{ x_{i\mathbf{a}}^{\perp} (a_{\mathbf{a}}^{\perp})^{*} x_{i\mathbf{a}}^{\perp} \right\} = 0, \qquad \mathbf{w} * - \lim_{i} \left\{ x_{im} a_{m}^{*} x_{im} \right\} = 0 \quad (m \in \mathcal{M}).$$

Hence Lemma 3.2 establishes w*- $\lim_{i} \{x_i a^* x_i\} = 0$ which completes the proof.

4. Weakly continuous elements of JBW*s

Lemma 4.1. Let J be an arbitrary non-empty set. Then

$$\operatorname{Cont}_w(\ell^{\infty}(J)) = c_0(J).$$

Proof. Regarding J as a discrete topological space, we have $C_0(J) = c_0(J)$. Since J is obviously scattered, hence $c_0(J)$ is a weakly continuous JB^* . Since $c_0(J)$ is an ideal in $\ell^{\infty}(J)$, by [3] it follows $c_0(J) \subset \mathrm{Cont}_w(\ell^{\infty}(J))$.

If $a \in \ell^{\infty}(J) \setminus c_0(J)$ then for some infinite sequence j_1, j_2, \ldots we have $\inf_{n=1}^{\infty} |a_{j_n}| > 0$. Let q_1, q_2, \ldots be an enumeration of the rational numbers lying in the interval [0,1]. Given any continuous function $f \in \mathcal{C}([0,1])$, define

 $x_{j_n}^f := f(q_n)/\overline{a_{j_n}}$ and $z_{j_n}^f := f(q_n)$ for $(n=1,2,\ldots)$ and let $z_{j_n}^f := x_{j_n}^f := 0$ for $j \in J \setminus \{j_1,j_2,\ldots\}$. Then for the sequences $x^f := (x_{j_n}^f : j \in J)$ and $z^f := (z_{j_n}^f : j \in J)$ we have $x^f, z^f \in \ell^\infty(J)$ and $z^f = \{x^f a^* 1_J\}$. Thus for any $f \in \mathcal{C}([0,1])$ the sequence z^f belongs to the ideal U_a of $\ell^\infty(J)$ generated by the singleton a. It is proved in [3] that $a \in \mathrm{Cont}_w(\ell^\infty(J))$ if and only if U_a is a weakly continuous JB*. However, U_a cannot be weakly continuous because $\{z^f : f \in \mathcal{C}([0,1])\}$ is a subtriple of U_a which is isometrically isomorphic to $\mathcal{C}([0,1])$ by the mapping $f \mapsto z^f$ and (also by [3]) the JB* $\mathcal{C}([0,1])$ is not weakly continuous.

Proposition 4.2. Suppose $E = \bigoplus_{i \in I} E_i$ where \bigoplus means ℓ^{∞} -direct sum of pairwise orthogonal ideals. Then $\operatorname{Cont}_w(E)$ coincides with the c_0 -direct sum $\bigoplus_{i \in I}^{c_0} \operatorname{Cont}_w(E_i)$.

Proof. By [3], $\operatorname{Cont}_w(E)$ is the largest weakly continuous closed ideal of E. Since each $\operatorname{Cont}_w(E_i)$ is a weakly continuous ideal of E, hence $\bigoplus_{i\in I}^{c_0}\operatorname{Cont}_w(E_i)\subset \operatorname{Cont}_w(E)$.

To see the converse inclusion, assume $a = \bigoplus_{i \in I} a_i$ (with $a_i \in E_i$ $(i \in I)$) belongs to $\mathrm{Cont}_w(E)$. One verifies directly that $a_i \in \mathrm{Cont}_w(E_i)$ for every $i \in I$. Suppose additionally that $a \notin \bigoplus_{i \in I}^{c_0} \mathrm{Cont}_w(E_i)$. Then we can find $\varepsilon > 0$ and a sequence i_1, i_2, \ldots in I such that $||a_{i_n}|| \geq \varepsilon$ for $n = 1, 2, \ldots$ It is established in [3] that finite linear orthogonal combinations of weakly continuous tripotents are dense in $\mathrm{Cont}_w(E)$. Therefore there exists a finite orthogonal family u^1, u^2, \ldots, u^N of tripotents in $\mathrm{Cont}_w(E)$ and constants $\alpha_1, \ldots, \alpha_N$ with $||a - \sum_{k=1}^N \alpha_k u^k|| < \varepsilon/2$. Using the canonical decompositions $u^k = \bigoplus_{i \in I} u_i^k$ $(k = 1, \ldots, N)$, it follows

$$\max\{|\alpha_k|: u_{i_n}^k \neq 0\} = \|\sum_{k=1}^N \alpha_k u_{i_n}^k\| \geq \varepsilon/2$$
 $(n = 1, 2, ...)$.

In particular, for some index k_0 , $I_0 := \{i \in I : u_i^{k_0} \neq 0\}$ is infinite. Since $u^{k_0} \in \operatorname{Cont}_w(E)$ and since $\operatorname{Cont}_w(E)$ is an ideal in E, the subtriple

$$U := \bigoplus_{i \in I_0} \mathbb{C} u_i^{k_0} = \{ \bigoplus_{i \in I_0} \lambda_i u_i^{k_0} : \sup_{i \in I_0} |\lambda_i| < \infty \}$$

is contained in $\mathrm{Cont}_w(E)$. Consequently U is a weakly continuous JB^* . However, U is isometrically isomorphic to $\ell^\infty(I_0)$ whence, by 4.1 and the infiniteness os I_0 , we cannot have $U = \mathrm{Cont}_w(U)$, a contradiction.

Theorem 4.3. Let E be a JBW* with the factor decomposition

$$E = E_a \oplus E_a^{\perp} = \bigoplus_{m \in \mathcal{M}} F_m \oplus E_a^{\perp}$$

described at the beginning of Section 3. Then

$$\operatorname{Cont}_w(E) = \bigoplus_{m \in \mathcal{M}}^{c_0} \operatorname{Cont}_w(F_m) = \bigoplus_{m \in \mathcal{M}}^{c_0} \operatorname{Cont}_{w^*}(F_m)$$

Proof. In view of Remark 3.1 and Proposition 4.2 it suffices to see that

$$\operatorname{Cont}_{w}(E_{\mathbf{a}}^{\perp}) = \{0\} .$$

Since the weakly continuous tripotents in $\operatorname{Cont}_w(E_a^{\perp})$ span a dense linear submanifold (see [3]), it suffices to prove only that non-trivial tripotents in $\operatorname{Cont}_w(E_a^{\perp})$ are not weakly continuous.

Let $u \neq 0$ be any tripotent in $E_{\mathbf{a}}^{\perp}$. Since $E_{\mathbf{a}}^{\perp}$ is an atom free JBW*, by [4] there exist an orthogonal couple u_1, u_1' of non-zero tripotents in $E_{\mathbf{a}}^{\perp}$ such that

$$u = u_1 + u'_1$$
 $\{uu^*u_1\} = u_1, \{uu^*u'_1\} = u'_1.$

Similarly we can split u'_1 into a non-trivial orthogonal tripotent sum $u_2 + u'_2$ with the property $\{u'_1u'_1^*u_2\} = u_2$, $\{u'_1u'_1^*u'_2\} = u'_2$. Thus, continuing in this manner, we can construct an orthogonal sequence u_1, u_2, u_3, \ldots of non-zero tripotents such that

$$u \diamond u^*(u_k) = u_k \qquad (k = 1, 2, \ldots) .$$

Since E_a^{\perp} has a predual, for any bounded sequence of constants $\lambda = (\lambda_1, \lambda_2, \ldots)$ the element

$$x^{\lambda} := w*-\lim_{n\to\infty} \sum_{k=1}^{n} \lambda_k u_k$$

is well defined (see [4]). The mapping $\lambda \mapsto x^{\lambda}$ is an isometric isomorphism between the space ℓ^{∞} and the subtriple $X := \{x^{\lambda} : \lambda \in \ell^{\infty}\}$. Observe that X is a closed subtriple of the ideal U_u of E_a^{\perp} generated by the singleton u. By Lemma 4.1 the JB* X is not weakly continuous. Therefore U_u is no weakly continuous JB* and hence the tripotent u cannot belong to $\operatorname{Cont}_w(E_a^{\perp})$.

Corollary 4.4. If E is a JBW* then any weakly continuous element of E is the c_0 -direct sum of an orthogonal family of scalar multiples of weakly continuous atoms.

References

- [1] A. A. Pelcziński and Z. Semadeni, Spaces of continuous functions. III. Spaces $\mathcal{C}(\Omega)$ for Ω without perfect subsets, *Studia Math.*, 18 (1959), 211-222.
- [2] T. Barton, T. B. Dang and G. Horn, Normal representations of Banach Jordan triple systems, *Proc. Amer. Math. Soc.*, 102 (1988), 551-555.
- [3] W. KAUP and L. L. STACHÓ, Weakly continuous JB*s, preprint.
- [4] G. Horn, Characterization of the predual and ideal structure of a JBW*, Math. Scand., 61 (1987), 117-133.
- [5] J. M. ISIDRO, A glimpse at the theory of Jordan-Banach triple systems, Rev. Mat. Univ. Complutense de Madrid, 2 (1989), 145-156.
- [6] J. M. ISIDRO and W. KAUP, Weak continuity of holomorphic automorphisms in JB*s, *Math. Z*, to appear.
- [7] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, *Math. Z.*, 183 (1983), 503-529.
- [8] L. L. Stachó and J. M. Isidro, Algebraically compact elements in JBW* systems, Acta Sci. Math. (Szeged), 54 (1990), 171-190.
- J. M. ISIDRO, Departamento de Teoria de Funciones, Universidad de Santiago, Santiago de Compostela, España
- L. L. Stachó, Bolyai Institute, Szeged, Hungary