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Algebraically compact elements of JBW*-triples

L. L. STACHO" and J. M. ISIDRO

Introduction

Compact operators were originally introduced by F. Riesz in the celebrated
article [14] as linear operators on a Hilbert space s mapping the unit ball into a
precompact set (in modern terminology). From the view point of the theory of
C*-algebras such a definition has the virtual disadvantage of not being formulated
in terms of the operator algebra rather in terms of a representation. As we shall
see there are several ways of formulating the compactness of a€.%(#) in terms
of L(#). E.g. ac L (#) is compact iff the mapping x—xax is weak™ conti-
nous on B, % (##) the closed unit ball of & (#) or equivalently if it is weak™® ~weak
continuous there. These statements, whose coincidence now is only ocassional and
due mainly to the trivial factor structure of & (), have a natural interpretation in
frames of the complex dynamics of B; % (#) and they furnish purely W*-algebraic
definitions of compactness involving the predual. For a long time W*-algebras
were considered as the most appropriate tools in fundating quantum mechanics.
Nowadays, starting from the classical work [9], it seems that their role is taken
by the algebraically more involved structures called JBW*-triples (Jordan—Banach
triple-product star-algebras) which admit, in contrast, a very simple and natural
function theoretic characterization of obviously high physical relevance as being
dual Banach spaces whosé unit ball is a symmetric domain or equivalently if the
reversible complex dynamics on the unit ball is transitive [11], [17], [4]. The men-
tioned W*-algebraic definitions of compactness extend immediately to the setting
of JBW*-triples requiring the weak™* (or weak*—~weak) continuity of the mapping
xe—-{xax} on the unit ball where {abc} denotes the three variable product (for def.
see Section 1). Expectedly, as in the classical case, compact elements of JBW*-
triples may play an especially important role in physical applications. Recently a
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complete Gelfand—Naimark theory is available for JBW*-triples [6], [7]. Our main
purpose in this paper is to characterize various topological-algebraical notions of
compactness in terms of factor splitting. It turns out that factor projections of
compact elements belong to the atomic part of the space. It maybe somewhat
surprising that infinite dimensional spin factors do not admit non-zero compact
elements in the suggested sense. On the other hand, the minimal ideal spanned by
spin free atomic tripotents can be described in terms of algebraic compactness.

In order to be self-contained and readable for non Jordan algebrists we sep-
arate a brief section providing Jordan theoretic background, and we present the
core ideas of our considerations mainly by classical operator theoretical means
through representations even in cases where a little more elegant unified Jordan
theoretic treatment would be available.

1. Jordan—Banach spaces, JBW*-triples, Gelfand—Naimark representation

L1 Definition. We call a Banach space E a Jordan-Banach space (JB-space)
if for every xcB,E( :={yeE:|yll<1}) there exists ¥cAut B,E (:={biholomor-
phisms of B,E}) such that ¥(0)=x.

By a remarkable theorem of W. Kaup [12)], the category of JB-spaces admits
an algebraic characterization: it coincides with the category of Jordan-Banach triple
product star algebras or briefly JB*-triples axiomatized below:

LY. Definition. A Banach space E endowed with a continuous operation
{ }: E®3(x, y, 2)—~{xyz} of 3 variables is a JB*-triple if

(1) {xyz} is symmerric and bilinear in x, z Jor fixed y and conjugate-linear in y
Jor fixed x,z, with the *-norm property

Hoxxx}ll = Ix® - (xeB);

by setting J,: Edx—{aax} and e:=exp ((5,) (= f’({"/nl)éﬁ),
n=0

(J2) for acE, t€R the operations & are triple product isomorphisms i.e.
er{xyz} = {Efx)EENETD} (v, v, 2€E),
J3) e =1 whenever Rel =0 and acE.

1.2. Remark. The continuity of the triple product takes care of the well-
definedness of &. (J2) is equivalent to the algebraic relationship

J2) i,{xyz} = {(i6,x) yz}+{x(id,y)z)} + {xy(i8,2)}
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ie. each 8, is a derivation of the triple product. Hence by polarization we obtain

a2”) {a,a: {xyz}} = {{aa.x} yz}—{x{aa,y} 2+ {xy{a,a:2}})-
Axiom (J3) can be interpreted as follows (cf. [8]).

(J3) for each acE, &,is a positive E-hermitian operator i.e. €xp (itd,) is a surjective
linear isometry of E for all ©€R and Sp(6,)CR..
It can also be shown [12], [3] but it is fairly not immediate that

1840 = lall® 1{x, . B = el - Iyl -lzll (@ %, 3, z€E).

Finally we note that the triple product is uniquely determined by the metric
of E (cf. [12]).

1.3. Example. JB*-triples are natural generalizations of C*-algebras. Indeed,
if E is a C*-algebra then the triple product

LU
{xyz} =Xy z+—2-zy X
makes E a JB*-triple. In the sequel we consider C*-algebras always as JB*-triples
with this triple product.

1.4. Definition. A JB*-triple E is called a JBW *-triple (Jordan— von Neumann
triple) if E=F* i.e. E is isometrically isomorphic to the dual of some Banach space
F which is called a predual in this case. Any JBW*-triple has a unique canonical pre-
dual in the following sense [6]: There is a unique subspace denoted by E, in the dual
E* of E such that for any predual F of E we have F~E_.

Theorem [2]. The triple product { } in a JBW *-triple E is o (E, E, ' )-continuous
in each of its three variables, respectively.

1.5. For our purposes we need only the following piece of structure theory of
IBW *-triples [6], [1].

Let E be a JB*triple. We shall use the concepts subtriple, ideal, /”-direct sum
decomposition of E according to general category theory. Le. a closed subspace
F of E is a subtriple of E (denoted by F<E)if {FFF}CF, Fis an idealin E if
{EEF), {EFE}, {FEE}CF; furthermore E is the [~-directe sum of a family {F;:
icI} of its subspaces (denoted by Ez% F) if there exist linear projections

n;: E—~F; such that the mapping xw—(m;x: i€I) is a surjective isometry of E onto
éFizz{(xi: icI)e X F;: sup|x]l<e} equipped with the norm [(x;: i€D)|:=
icl icl icl

:=sup [lx]l.
iel
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Definition. An element ucE is called a' tripotent if {uuu}=u. A non-zero
tripotent t€E is called an atom in E if {x: d,x=x}=Ct. Two elements a, beE
are said to be orthogonal (denoted by alb) if §,b=b,a=0. We shall write
at E:={atoms of E}.

Example. For a Hilbert space H, the tripotents of ZL(H) are exactly the
partial isometries of #. An operator # is an atom of & (o) iff for some unit vectors
e fe# we have u=e®f*(: H>h—~<(h, fYe). For a, be#(#) we have a b
iff ran () Lran (b) and ran (@*) L.ran (b*) in 2. (Proof: Suppose a 1 b in & (o).
Then 0=2{aab}=aa*b+ba*a ie. aa*b=—ba‘a. It follows  (aa*)*b="b(a*a)*
(k=0,1,..) whence ¢(aa*)b=byp(a*a) for every even continuous function ¢.
In particular aa*h=ba*a=0 with @(-)=|-|. Hence the statement is immediate
by polarization.)

Theorem [6], [1]. Let E be a JBW *-triple, E, the o(E, E,)-closed linear hull of
its atoms and let M denote the Jamily of minimal o (E, E WJ-closed ideals of E. Then E,
is an ideal in E and ; :

E=EQ®E;, E,= @ F
. : . . . Few

Each infinite dimensional Fc.i is isometrically isomorphic to some Cartan Jactor
of type 1,2,3 or 4 (. disqus;ed in Section 4) and Ej Ls isometrically isomorphic to a
weak*-operator closed subtriple of some space & () with a Hilbert space #.

2. Dynamical characterization of algebraic compactness

Throughout the whole work let E denote a JBW*-triple. We shall always write
w* w, n for the topologies o(E, E), o(E, E*) and norm-topology, respectively,
when there is no danger of confusion.

2.1. Definition. For a linear topology © on E which is finer than w* and
coarser than n (ie. w¥=1=n) we say that acE is t-compact if the mapping
a*: x—{xax} is (w*)-t continuous on B.E. We write comp,_ E:={z-compact
elements of E).

-Remark. It follows immediately from axiom (J1) by polarization that we have
accomp, E iff the a-multiplication (x, V)—~{xay} is (W*)2->t continuous on
(BLE)% In particular accomp,. E iff the a-multiplication is continuous at 0 when
restricted to B, E, as a consequence of 1.4. Theorem.

Example. Let 2 be a Hilbert space, s the strong operator topology on .& (o#)
and ¢y(s) the ideal of compact operators (in classical sense) in % (#). We have
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accy(#) iff the mapping # dh—>ah is o(H#, #*)—>norm (#) continuous. This
means that comp, £ (#)=c,(s#). However, the definition of the topology s in-
volves the underlying vector space S, thus it is not a natural subject for our purposes
(in contrast with w*, w, n).

Lemma. Let F be a w*-closed subtriple of E. Then F is also a JBW *-triple and

() o(F, F,) coincides with o(E, E,) on B,F,
(ii) comp, Fo FNcomp, E whenever the topology t is finer than 3 on F.

Proof. In general, if H is a w*-closed subspace of E then the quotient space
E /[{9€E, : ®H=0} is a predual for H. Thus F is a JBW*-triple. Moreover, by [6],

F, = {®cF*: 3 [(®, u)l < for orthogonal tripotent families U}.
uclU .

Applying this also to E, we see that the topology o(F, F,) is finer than o(E, E,) on
F. However, both of them are compact and Hausdorff on B, F which establishes (i).
Hence (ii) is immediate.

2.2. Lemma. For any admissible © (i.e. if w*=t=n), comp_E is a norm-closed
subtriple of E. Moreover {(comp, E)E(comp, E)}ccomp, E.

Proof. By (J2”), for any fixed g, cccomp, E and b€E we have
{x{abc} y} = {{bax}cy}—{ba{xcy}}+{xc{bay}} (x, y€E).

The mapping z—{baz} is w*-t continuous and hence, by 2.1. Remark, the
symmands on the right hand side are all (w*)2—~1 continuous in (x, ). The norm-
closedness of comp, E follows from the fact that if comp,E>a,—~a then
lim max [l{xa,,x}—{xax}[[=3£r£1° la,—all=0. That is, a*|B E (for def. see 2.1.)

[Ondad xE—B}E
is the norm-uniform and hence (since t=n) also the t-uniform limit of the w*—>1

continuous maps a¥|B; E. This implies the w*—~t continuity of a*|B, E.

Remark. The classical compact operators form an ideal in Z(#) also in
the sense {L(H)L(H)co(H)}, {L(H)co(H) L (H)}Tco(#). Later we shall
see that comp, E is indeed an ideal in E unless the topology t has a rather asym-
metric behaviour (cf. 5.4.).

2.3. The reversible complex dynamics associated with E is, in pure mathematical
terms, the group Aut B, E of all one-one surjective holomorphic mappings B; E—~
—~B, E whose inverse is also holomorphic. It is well known [10] that for every acE,
the initial value problem

) -a‘—j—yx(t) = a~{yx(t)ayx(t)}; y:(0) = x
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admits a solution y, defined on the whole real line whenever x€B,E and the map-
pings ¥':B,E>x—y.(t) form a l-parameter subgroup of AutB,E when res-
tricted to B,E (the open unit ball). To express the dependence of ¥* on a(¢E)
we adopt the Lie theoretical notation exp [r(a—a*)]:=¥".

Lemma. Given acEN\{0}, for ltl<4—ﬁ—” the mapping exp[t(a—a*)] is
a
the norm-uniform limit on B E of the series 2“' *a, of polynomials of the a-multi-
n=0
plication (which is not necessarily associative) defined recursively by

L > a®ar) (=1).

n+1 152,

ay(x):=x, ay(x):=a—{xax}, G,1(x):=—

Proof. For fixed x¢E, the function

co

z():= 3 fa,(x) (/1] <liminf{a,(x)| ")

n=0

satisfies (1). By setting

1
T, 2, mlale (=1,

=1, og:=2[al, 1=
we see by induction that
la,l =, (n=0, [Ix] =1).
But the function

o(f):= S’ o, (It < liminf [a,| =1/
n=0 n>ee
is the solution of the initial value problem

2 () = lal +Hlal e () = 1

whence a(f)=tan (%-{—t[la[l) and i inf | "= /4

24. Theorem. We have accomp, E iff the 1-parameter subgroup of Aut B, E
with infinitesimal generator ByE>x+—~a—{xax} consists of w*~t continuous pertur-
bations of id(: x—>x).

Proof. First let accomp, E. By assumption t=w*. Obviously the constant
mappings and id are w*—w* continuous, and polynomials of the a-multiplication
(briefly a-polynomials) preserve boundedness. Therefore it follows by induction from
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2.3. Lemma and 2.1. Remark that for n=0, a,.,(-) is a w*—~t continuous map
on bounded sets. Since the norm-topology on E is finer than 7, again 2.3. Lemma

shows that explt(a—a*)]—id= > r"a, is the t-uniform limit of w*--t conti-
n=1

nuous mappings ie. exp[t(a—a*)]—id is w*-t continuous on B, E whenever
ltalf <m/4. On the other hand, exp[kt(a—a*)]={exp[t(a—a*)]}* (t€R; k=1,
2,...). Thus if for fixed 7 and suitable w*—7 continuous maps 4; we have
exp [jt(a—a")]=id+4; (j=1,...,k) then also

exp [(k+1)t(a—a*)] = (id+4)(id +4,) = id+ 4, +4,(d + 4,) =
= id+ 4+ 4;0(w* —~ w* cont. map) = id+(w*~ 7 cont. map).

Le. exp[t(a—a*)]=id+(w*—>t cont. map) for all t€R. Conversely, if A':=
i=exp [t(a—a®)]—id is w*—1 continuous for all z€R, then by 2.3. Lemma the
mapping A: By E>x~—~a—{xax} is the norm-uniform and hence also t-uniform
limit of #714* for 1—~0. Le.now Ais w*—7 continuous whence the z-compactness
of a is immediate.

2.5. Lemma. Let acE. Then the following statements are equivalent
(i) accomp, E,

(i) [exp (a—a")](x)€comp, E  (x€comp, E, |x||=1),

(iii) [exp (a—a*)](0)ecomp, E.

Proof. ()=(ii): the mapping y—>a—{yay} takes comp, E into itself whenever
accomp, E (cf. 2.2. Lemma). Thus if a4, xécomp, E then the maximal solution of
the initial value problem 2.2. (1) ranges in comp, E. (ii)=(iii) is trivial. (iii)=(i):
It is well-known (see e.g. [8]) that for all acE,

o3b  where b:=[exp (a—a*)](0).

Thus if b€comp, E then, by 2.2. Lemma, also a€comp, E.

Remark. If comp, Eis an ideal in E then a—{EaE}Ccomp, E if accomp, E.
Thus [exp (a—a*)](x)—x€comp, E for all x¢B,E whenever comp, E is an ideal
n E and ag€comp, E.

Proposition. For any WcAutB,E the continuous extension of ¥ to B.E
(which always exists) has fixed point whenever ¥ (0)ccomp, E.

Proof. By Cartan’s uniqueness theorem (see e.g. [8]), for some acE and a
surjective linear isometry A of E we have ¥ =[exp (a—a*)]A|B,E (in particular ¥
extends continuously to ByE). If ¥(O)ccomp, E then, by 2.5. Lemma (iii),

12
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exp (a—a*) is a w*~>w* continuous mapping (for 1=w*). On the other hand, sur-
jective linear isometries of E are w*—w* continuous [6]. Thus the continuous ex-
tension of ¥ to the w*-compact B, E is w*~w* continuous if ¥ (0)¢comp, E. Now
the statement follows from the classical Schauder—Tychonoff fixed point theorem.

3. The commutative case

Throughout this section let T’ denote a commutative von Neumann algebra.
According to well-known tesults [16] we may fix a locally compact topological space
Q and a Radon measure g on € such that T=L*(u) (here =~ meaning isometric
isomorphism) and

L=, = {[f> [ of du]: peL*(w} = L}(w).
We say that a subset SCQ is a p-atom if there is no S,&S such that 0<pu(S))<
<u(S) and we call the countable (!) disjoint unions of p-atoms p-atomic sets.

3.1. Theorem. Let a be a bounded p-measurable function and define S,:=
={w€Q: a(w)0}. Then the following statements are equivalent

() accomp,s L=(y), ?

(i) S;NK is p-atomic for u(K)<e (K p-measurable).

Proof. Suppose first (ii) and consider an arbitrarily fixed @¢ZL(u). Then
by setting S,:={w€Q: p(w)#0} we have S,NS,= G Z, with suitable dis-

n=1

joint p-atoms Z, (n=1,2,...). By 2.1. Remark we can establish (i) by showing
1) [o@xidu~0 whenever |x]=1 (icl)

and

[¥xidu -0 (pelr(w)

since now we have {xax}=ax?® (x€L>(u)).

Let (x;: i€I) be a net in L™(u) satisfying the hypothesis part of (1). Since
Z, is a p-atom, the functions ¢, x;, a are p-almost everywhere constant on Z, i.e.
we may assume that

(p((l)) = ﬁn: X; (CO) x,n (iel)ﬁ
a(w) =0, for weZ, (n=12..).

%) More: precisely we mean by this as usually that

é:={f bounded: f—a =0 u— a.e.}€comp, L= (1).
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Let
Vy = ﬁn&nﬂ(zn) (i’l = 1’ 2, )
Observe that

g [Vl = g Budlu(Z,) = . f;(pal dit <eo
and a
[outdu= 3 pamg.nz) = 3 & GeD.
The assumption
./.l/’xf du -0 (yel ()
means in particular that

l-ié? La=0 (n=1,2,..).
It follows

. > 2 -
Tim sup ln;; E8av,| = lim sup Lgv &,

for any N(<<). However

| 3 &an= 3ol >0 (N—w).
n>N N

n>

()=(i1): Assume that S,NK is not p-atomic for some K(cQ) of finite
p-measure. Then removing a maximal disjoint system of p-atoms with positive
p-measures from S, K we see that there exists ScS,NK such that u(S)=0
and for any p-measurable Pc.S we can fix a partition

P=PUP, PNP =8, uP)=ulP") = —;‘#(P)-

N
Now for any finite yu-measurable partition II={P;, ..., Py} of S (ie. S={J P;;
k=1

P,NP=0 for k! and Py, ..., Py are p-measurable) define the function Xt
Q-{0, £1} by

N
Xpi= g{ gy — 1)

where 1p: Q3w—[1 if weP, 0else] (Pc Q). If Pis any p-measurable set and IT
is finer than {S\ P, SN P} then then [x;1p,du=0. It follows

lim fxppdu =0  (peL'(w)

12%



180 L. L. Staché, J. M. Isidro

with the usual ordering of partitions (ie. ITy=1, if for each Pill, thereis P,cII,
with P, P,). That is
Xg =0 wx

in B, L= (u). However, {xnaxp)=x} a=15a+0 whence af comp,,« L= ()
3.2. Corollary. We have®
comp,,+ I = w*— Span (at T),

moreover any accomp,«T" can be written as

a=w*— 3 a(uu

u€at, T
where at,T:={ucatT: uz=0}, a@u:=d,a (ucat,T).

Proof. This is nothing but an abstract reformulation of 3.1. Theorem. Namely,
let @ be an isometric C*-isomorphism between L”(p) and T. Then &{ls: Sis a
y-atom}=at,. T and & comp,,: L™ (u)=comp,.T. Furthermore property (ii) can
be reformulated as: acL™ (@) is the w*-limit of the net (1xa: K is a finite union of
p-atoms) and here the function 1xa differs only on a set of y-measure 0 from

Z’S“_ammcxoz’(S)ls where a'(S)::fadu-u(S)“l.
Y

3.3. Corollary. If T is a commutative von Neumann subalgebra of £ (#) for
a Hilbert space # and accomp, T' then S is spanned by the eigenvectors of the
operator a.

Proof. Let again @ be an isometric C*-isomorphism between L) and T
and suppose accomp,T. Then @ laccomp,« L= (u) and so for fi=0"1g
we have f=w*— 2 7-1, where SO :=f"y} (er) and I:={ycC\

y€T

\A{0}: u(S(#)=0}. The operators Py=®(lg,)) (y€l) are pairwise orthogo-

nal projections and we have the spectral descomposition a=w*-— 2 7-p, be-
er

Y
cause the w*- and weak operator topologies coincide on bounded subsets of 7.

4. w*-compactness in Cartan factors
On the basis of 3.3. we can easily describe the w*-compact elements of Cartan

factors of type 1, 2, 3, 4 which is a fundamental task for us in view of 1.5. Theorem:
First we recall their definition (cf. [8]).

®) The symbol w*~ X stands for the w*-limit of finite partial sums.



Compact elements of JBW*-triples 181

4.1. Definition. The Cartan factors of type 1 are the spaces
L(#, #) with Hilbert spaces #; < #

considered as subtriples of Z(o#) (see 1.3.).
The Cartan factors of zype 2 resp. type 3 are the spaces
L () = {x€L(KH): (xe, [) = (xf. &) (& [€B)}
Ly (H) = {x€ L(H): (xe, [) =—xf, &) (¢, f€B)}
with a Hilbert space s and orthonormed basis & in # (considered as subtriples of
Z(H)).
The Cartan factors of fype 4 (or spin factors in other terminology) are the JB*-

triples #,; whose carrier space is a Hilbert space 5 endowed with a triple product
{ } defined by the aid of an orthonormed basis # of # as follows.

where Z@:zeez;y (e, yye (yeir).

Remark. (i) Type 1 factors are defined in most works as £ (3, #,) spaces
with arbitrary Hilbert spaces #,, #;. However, by setting x;:=dim #; (j=1,2)
we have (H,, #y) =L (Hy, H)~L (P(max {xy, %)), P(min{K;, Ks})),

(i) The operation —% is a conjugate linear involution. It is called the %-con-
jugation. The norm in 5, is defined as

x| =[x, 2D+ (s X)2—Cx, R (x€ ).

(iii) The w*-topology in a factor of type =3 coincides with the weak operator
topology (abbreviated by wop) [6].

4.2. Throughout this subsection let Fy:=%(#, #,), Fo:=%F(H#), Fy=
=%, (#) be Cartan factors of type 1, 2, 3 in Z (o), respectively.

Lemma. Given acF, and two nets B,#>h;, fi~0 o(#, #*) we can find
a bounded net
E>x;,~0 w*

and a unit vector e€H such that
({xiax}e, €)— (b afy ~0 (k=1,2,3).

Proof. For xc€F,, ecs# we have {{xax}e, e)={xe, a(x*e)).
(0 k=1. Let p denote the orthogonal projection of # onto #;. Then
(h;, af;y={(ph;, af;y for all indices. Fix any e€s#; with [le]=1. Now the net

x; = (ph)®@e*+e® f*
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satisfies
lx:e—phill = |I<e, fidell ~ O,

Ix¥e—£ll = e, phsyel -0,

2B, K, x>0 w*
(cf. Remark (iii)).
(i) k=2. We write simply ~ instead of =% and choose ec X such that

lef =1, (&, e)=0
(this is possible if dim s#>1). Now the net

- X = Qe+ ek +e® fF + foet
satisfies
4B, Fdx; 0 w*

and
Ix:e—hil = |[{e, fiye+{e, hYell -0,

Ix¥e—fll = e, hiye+e, fiyel 0.

(iii) k=3. The same construction applies as in (ii) with
X = h@e* —EQhf +e® fif — fi®e*.

Proposition. We have comp,.F,=F,Nc,(#) (k=1,2, 3)9.

Proof. By 2.1. Remark and 4.1. Remark (iii), we have

comp,x B, = {a€F.: ({x,ax;}e, e) >0 (ec#) whenever BF5x; -0 W,
Now applying 4.2. Lemma twice we see
comp, F, = {a€kF,: (h;, afy -0 if §17f9_hi,fi >0 o(H, A"} =

= F.Ncomp,« L(#) (k=1,2,3).

We establish that comp,«.% (#)=c,(#) as follows:
For any e, f, h¢ # we have

((xi(e®ex}f, by = (@ (xFe)*f, b) = (vie, B){f, xFe) - 0
if B, Z(#)>x,~0 w*. Thus by 2.2. Lemma,
Co(#) = Span {e®e*: e€ #} < comp,« L(H#).

Conversely, let accomp,.% (#). Since {xa*x}= {x*ax*}*  (x€2(#)) and
B, Z(#)>x,~0w* iff BLL(#)3xF~0w*, we have also a*ecomp, . & ().

%) Here we write c¢o(#):= {compact operators H# ~H}.
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Again by 2.2. Lemma, for b:=1/2aa*+1/2a*a we have b={ala*}ccomp «&L (#).
Consider the w*-closed linear hull T of {b": n=0,1,...}. T is a commutative von
Neumann subalgebra and hence a JBW*-subtriple of #(o#). By 2.1. Lemma
becomp,«T" and so by 3.3. Corollary we can find an orthonormed basis # in #
and A: #-R, such that

be = L(e)e (ec%).
Assume now that b¢cy(s#). Then there is A==0 and an infinite sequence ¢, e,, ...
..€# with A(e,)—~A. But then
. t, = €1®-;f+§n®_ef -0 w*
in B, Z(#) while
{tbt,} = Ae)e, @& +A(e)e®ef ~ Aey®@ef # 0w,
contradicting bé&comp,+Z(#). Hence bécy(#) and therefore also accy(H#).

4.3. Proposition. In infinite dimensional spin factors F, we have comp, . F=0.

Proof. According to 4.1. Definition, we may consider F as the Hilbert space
# endowed with the triple product

2{xyz} = (%, p)z+{2, y)x—{x, 2)y

where we write simply ~ for the %-conjugation ~%, Since the conjugation ~ is a
surjective real-linear isometry of F, it is necessarily w*-—-w* continuous. Hence
accomp, F iff accomp,«F. Le.

comp,,« F = Span {g€comp,+F: a = a}.

Suppose ga=gccomp,«F. Then # c(Ca)=[# &(Ca)]- and so we can choose
an orthonormed sequence {x;, X, ...} such that x,=Xx,1la (r=1,2,..). Since the
norm of F is equivalent to the norm of # (cf. 4.1. Remark (ii)), we have x,—~0 w*
because the topologies w* and ¢(o#, #*) coincide so in B;#. On the other hand
—1/2a={x,ax,}~0 whence a=0.

5. Main results

In accordance with 1.5. Theorem, we shall consider the decomposition

EL® @ F of E into the [”-direct sums of its continuous part and minimal w*-
Fet
closed ideals, respectively, and we shall write 7., n; (FE#) for the corresponding

factor projections. Note that
) x = (W'— 3 mpx)+m.x  (x€E).
Feut
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5.1. Theorem. If O=accomp,E then

a=w'— 3t
ie1

Jor some orthogonal Jamily {t;: icI} of T-compact atoms of E and constants <
=, =|al] Gel).

Proof. Let a€comp, E. Remark that if we have a=w*-—2’ o7, for an
orthogonal family of atoms and suitable positive constants then, by lle.f’z., necessarily
% = llotll = | {t:;a}ll = |6)2]lal| = |a],

and from 2.2. Lemma it follows also
;= o *{at; ajecomp, E (ic]).
Observe furthermore that accomp,«E and hence
r.accomp,« Ef, mpaccomp,. F (Fe ).

Thus taking into account the factorization (1) and that at E=).atE (4=1),
we may complete the proof by showing that g=w*— 2, «;t; for some orthogonal
icd

family {#]:i€J}cat F and constants a;€C (icI) whenever accomp,,« F where
F=FE} or Fe.#. (In particular a=0 if F =EL). If Fen is isometrically iso-
morphic to some finite dimensional Cartan factor then the existence of such an atomic
decomposition is well known [13]. In any other case we may assume without loss of
generality that Fis a weak operator closed subtriple of % (+#) for some Hilbert space
S (cf. 1.5. Theorem, 4.3. Proposition, 4.1. Definition). Thus let F be a wop-closed
subtriple of ¥ (#) and ac comp,,« F. Applying polar decomposition, we can write

a = uyla|
where |a|:=(a*a)'* and uc.Z(#) is a suitable partial isometry of s such that
ranu =Tana, rany* =Tana* = @i |a).
Observe that
ula|**! = §'ac F (n=0,1,2,..).

Hence by choosing a sequence of odd polynomials
P1=¢y... 1 on (0,lal]

= wop — lim ¢, (d,)acF.

we see that

Consider now the wop-closed subtriple

Ui={xcF: ranx < 2, ranx* c Ho)s
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where
Hy=ranu, H:=ranu*.

Clearly the mapping
¥: Usx — u*x| 3,
is an isometry from U into % (#,) such that

¥ {xyz} = {(¥X) (Y)Y} (x, p, z€U).
Hence its range U(:=YU) is a wop-closed subtriple of Z(s#,). Moreover
1(:=idy)=YucU and therefore
= {1x1}¢U, p+5% =2{F1H}cU (&, ye ).
Let T be a maximal commutative subfamily of normal operators in U such that
la] = WaceT.

The existence of T is immediate from the Zorn lemma. It also easily follows from the
previous remarks that 7 is a wop-closed commutative C*-subalgebra (i.e. von Neu-
mann subalgebra) of 2 (2#;). Since accomp,. F, by 2.1. Lemma also accomp, U
whence |a|=Yaccomp,.0 and so

0 # |al€comp,« T.
Now it follows from 3.2. Corollary that
a=¥1a =w—~ 3 a()¥11.

. tcat, T
Let
tcat, T and v:=¥"1z ie. v =uilp,
where p, denotes the orthogonal projection of # onto H#,. To complete the proof
we show that v€at F. Suppose indirectly that there exists gcF such that 8,g=
=g¢Cv. Necessarily

rang Cranv C #4, rang* C ranv* ¢ %,

ie. gcU. Thus we may define f:=W¥g. Since t=%v and ¥ is an isomorphism,
o f =f¢Ct.

However, tcatT and so f¢T. Since ¢ is a positive minimal partial isometry, ¢ is
a projection and we have §h=hiff ran b, ran h*Cran ¢ or equivalently iff A=th=
=ht (h€ & (). It follows that also &, f *=f* and therefore one of the self-adjoint
operators 2Re f(:=/+f"), 2Imf(:=i(f*—f )) does not belong to T. Le. there
exists

heON\T, h=h*=34,h.
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However, if z€T then for some {eC,
LS
—z—tt Z-I—E-Zt =1z =zt
whence
hz = (h)z = h(tz) = (ht = Ch = (th = (z0)h = z(th) = zh.
This contradicts the maximality of T, ‘

Corollary. If accomp, E then m,a=0 and nra=0 for infinite dimensional
spin factors FEM.

Corollary. If accomp, E and a=w*— 2 %;t; with some orthogonal Jamily
i€T
{t;: ieI}cat E then we have
w*— > B;t;€comp, E
fe1

whenever sup [B)|<co and for every ¢>0 there exists 5=0 with
icl

el 1Bl = ¢} < el o) = 8}
Proof. Let &:={JcI: ?glail =>0}. Then

e 145K — 3 -2
Zy=wt=t,  byi=wt— 3 o2
icy ies

are well-defined elements of E for J€& (since the coefficients are bounded; cf.
[6]). By 2.2. Lemma,

zy = {ab;a}ccomp, E (JES)
and
comp, E > Span {z;: Je&#} = {w*~ 3 1,: irelg'lﬁ,-l =0 (Je&)}
i€l t

since in general we have (for w*—Span {#;: icI} ~w*—Span at T~I"(I )
2 ”W*— s ti” = sup [y,].
icr eI

5.2. The above spectral theorem yields the following improvement of 4.2.
Proposition.

Theorem. Let F be a Cartan factor of type =3. Then accomp,F iff for
some sequence &40 and an orthogonal family of atoms {t1, 8, ...}Ccomp, F we

have a = 3 a,t, (the sum coverging in norm). In particular
n=1

comp, F'= Span [(at F) comp, F].
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Proof. Since comp, F is norm-closed and at Fccy,(s#), the sufficiency is
clear (namely, dimran =2 if rcat F; [8]).
Necessity: Let a€comp, F, a=w*— > o, as in 5.1. Theorem. From
i€l

4.2. Proposition we know that a€cy(s#) on the underlying Hilbert space #. But

by 1.5. Example, if for some infinite subsequence {i,, i,, ...} of indices we have

inf {o, : n=1,2,...}=>0 then w*— > «;#; cannot be a compact operator since
" i€l

the #;-s are pairwise orthogonal partial isometries. Now the relation w*— > o;¢,=

i1
= > a,t; follows from 5.1. (2).

i€l
5.3. Classical compact operators can be characterized structurally as norm
limits of orthogonal sequences of finite rank operators tending to O (in subtriples
of & (##)). An analogous class with atoms in the abstract setting instead of finite
rank operators admit a description in terms of w-compactness.

Theorem. We have accomp,, E iff a= j’o o, t, for some orthogonal sequence
n=1
of atoms in E and constants a,)0.
Proof. Necessity: Let a€comp,, E. By 5.1. Theorem we have

a = w'— > o;t;
iex

with a suitable orthogonal family of atoms and positive constants, respectively.

Consider any infinite index sequence {i;,%,...}<I such that o; —o for some
0=0. We have only to prove that a=0. Set

U= {S'ﬁ,, t;.: (Bys Pas ...) converges in C}.

Now U is a closed subspace of E (cf. 5.1. (2)). The linear functional
Ayt S’ Bt — Hm §,
n=1 oo

is well-defined on U and it has norm 1. Thus 4, admits a continuous Hahn—Banach
extension A to E. Observe that

Uy =w*— 't ~0 w* (n-—>).
k=n

Hence it follows that oczlgim w=Ayw* = > o, 1, )=A{u,au,} (n=1,2,..)
- 00 k=n k
and so, since accomp, E, indeed

o= lim A{u,au,} =0.

H~oo
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Sufficiency: Since comp,, E is norm-closed (2.2. Lemma), by 5.1. (2) it suffices
to see that at ECcomp, E. Let tcatE be arbitrarily chosen. Since E=

E;® @ F, it follows that tcat F for some minimal w*-closed ideal Fe#.
FeM
Since atoms in Cartan factors are finite rank operators and since the w*-topology

on the unit ball of a Cartan factor coincides with the weak operator topology, it
suffices to prove that
(1 A{x(e®f)x} -0
whenever
B, Z(H)>x; >0 wop; ACL(H)*; e, feH

with a Hilbert space #. Since {x,(eQf *)x;}€ce(#) in any case, we may write
A€co(#)* in (1) instead of the relation A€L(#)* without loss of generality.
However, as it is well-known, c,(#) is a predual for & (s#) and therefore (1) is
equivalent to saying that {x,(e®f*)x;}~0 w* whenever B, Z(#)>x,~0 w*
(e, fe#). This latter statement is already established in 4.2, Proposition.

Corollary. We have comp,, L(H)=co(H#), or more generally comp,, F, =
=comp,« Fy=co(#)NF, for Cartan factors of type k=1,2,3 in L(H).
Corollary. We have comp, E=Span (] at F where & denotes the Jamily

FedNy
of infinite dimensional spin factors of E.

Example. Let %zé W, E:= é L (#) < L () with a Hilbert space #.
k=1 k=1
Then
comp, .+ E = é co(5,),
k=1

comp,, £ = {aék@l Co(#3): lim Jlals#| = O}

It is easy to see that if l:=e®f*£0 then t¢comp, L (#). Therefore, by 5.1.
Theorem,
comp, E = {a€E: a|l#, =0 whenever dim Jf, =<o}.
In particular
(i) comp, I~ = I, comp,, I* = comp, [~ = ¢,;
(i) comp,+ Z(I?) = comp,, L(I?) = c,(2), comp, Z({?) = 0.
5.4. Finally we proceed to the problem: When is comp, E an ideal in E? The

definitive answer seems to require intensive use of the structure theory of the two
finite dimensional exceptional Cartan factors. On the nther hand, it is not hard to
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thow with operator theoretical technique that if the topology 7 has a highly “sym-
netric” behaviour then comp, E is an ideal in E.

Lemma. The surjective linear isometries of a Cartan factor F, of type k=3
it transitively on at F.

Proof. Let us use the notations of 4.1. Definition along with the description of
& F, in [8, Cor. 8.40].
k=1. We have F,=%(¥,H,),

atF, = {f®e*: ecH, fe,, |e| = |f] = 1}

Given any unit vectors e, e'€H#, f, f'€#; there exist unitary operators u€.%(#),
3¢ () such that ue=¢’, uf=f. Now, with the surjective linear isometry
¥: Fidxe—u;xu®, we have Ye®f*=¢ ®f™.

k=2,3. We have F,={xcZ(#: x=X"}, Fy={xcZ(#): x=—x"},

ath, = {e®¢e*: ecH, |e| = 1},
atFy = {f®& —e®f*: e, fcH, e Lf, el = |f] = 1}.

Given any unit vectors e, ¢, f, f'€# such that e L f, ¢ Lf there exists a unitary
operator € (H) with ue=¢’, uf=f. Now the mapping

¥ L(H)5x — uxi*
i$ a surjective linear isometry of % () and
VE=F (k=23),
VYee" =e'®&*, P(fRF—e®f) =fQ8*—¢Qf*

Proposition. If any surjective linear isometry of E is t—t continuous then
comp, E is an ideal in E.

Proof. We know that surjective linear isometries of E are triple product auto-
morphisms [8] and they are w*~w* continous [6]. Thus if ¥ is a surjective linear
isometry of E, accomp,E and B Edx;~xw* then {x;(Pa)x}=¥{(¥ x)-
a(P1x )}~ PP x)a(Px)={x(Pa)x} v, ie. ¥ comp,E=comp,E when-

ever ¥ is 7t continous. Since E=E-® @ F, from the previous lemma it
Feu

follows by 5.1., 5.2. Theorems that
comp, £ = Span ¢ SpanatF
NEM FEn

where
M= {{FE%: |npal = 1}: aEcomp,E},
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if the surjective linear isometries of E are t—t continuous. The right hand side
here is obviously an ideal in E.

Corollary. If any surjective linear isometry of E is t—1 continuous then there
is a family M, of subsets of M such that we have accomp, E iff mpaccomp, F
(FeM), n.a=0 and for all ¢=>0, there exists N €M, such that {FEM: |npal=
=glc A
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