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Holomorphic invariants for continuous
bounded symmetric Reinhardt domains

Josk M. Isipro* and LAszré L. STAcHO*
Communicated by Arp(id Kurusa

Abstract. We study the analytic classification and the continuity properties
of the holomorphic invariants of bounded continuous symmetric Reinhardt
domains.

0. Introduction

Let  be a locally compact Hausdorff topological space, and denote by E: =
Co(9) the algebra of all continuous complex valued functions that vanish at infinity
on {0, endowed with the norm || - || of the supremum. A continuous Reinhardt
domain is a domain D C F such that

(fED’ gEEv [9[S|f‘)-———>g€D

In particular D is circular and @ € D. Recently one has shown [7] that symmet-
ric continuous Reinhardt domains are continuous mixtures of finite-dimensional
Euclidean balls admitting richer structure in general than continuous product (de-
scribed in [10], [11]) in the following sense. Given a bounded symmetric continuous
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Reinhardt domain D in Cy(f), there exists a partition {Q;: i € I} of the underlying
topological space 2 along with a positive valued function m:Q — R such that

(0.1) D= {f €Co(Q): > mfmP <1 forallie 1}

neQ;

and sup;c; card(Q;) < oo, 0 < infm < supm < oo (where card abbreviates
cardinality).

In this paper we are going to deal with the question (remained open in [7])
which couples ({Q;: 7 € I },m) give rise to symmetric continuous Reinhardt do-
mains in the form (0.1). We answer this question completely by a theorem stating
among other less elementary equivalent formulations that ({Q: ¢ € I}, m) corre-
sponds to a symmetric continuous Reinhardt domain if and only if the set valued
function w — S(w) U {oo} with

(0.2) S(w) := [the unique €; with w € ;]

is continuous in Hausdorff sense where € U {oo} is the one point compactification
of  and the function m has the following continuity property: given any point
w € Q and & > 0, for every closed neighborhood U of w with U n S(w) = {w} there
exists a neighborhood V of w such that m(w) — 2one s@nv m(n)| < & whenever
feV.

On the basis of this result we attack the problem of the linear (and hence even
holomorphic [4]) equivalence of continuous Reinhardt domains. The isomorphism
of the Jordan structures associated with two linearly equivalent domains D,ﬁ
corresponding to the couples ({{: i € T }ym)resp. ({Q: ieT },m) implies easily
that any linear mapping L: Co() & Co(Q) with LD = D has the matrix form

Lf@) =) u@w)f@)  for f € Co(9)

weN

where there exists a bijection 7: I « | such that card(SNZ,r(i)) = card(};) for all
i € [ and 4(W,w) = 0 whenever § € ﬁﬂ(i) but w ¢ ;. We give a precise elementary
description for the continuity properties of the matrix entry functions u: O x Q — €
corresponding to linear isomorphisms of symmetric continuous Reinhardt domains,
Despite this positive result, for the time being we are far from the description of
all complete sets of holomorphic invariants of symmetric continuous Reinhardt
domains. E.g. topologically non-equivalent locally compact spaces may admit
linearly equivalent Symmetric continuous Reinhardt domains in their Cy function
spaces while this is not possible with symmetric continuous products of discs.
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1. Admissibility of partitions and weight functions

Throughout this section Q denotes a locally compact topological Hausdorft
space with the one point compactification QU {co}. As usually, we write Co(€2) for
the algebra. of all complex valued continuous functions Q — € vanishing at co and
we regard co as an isolated point if Q is compact already. We equip the family of
all compact subsets (22U {co}) of QU {oo} with the Hausdorff topology. For K €
K(Q U {o0}), a subfamily U C K(QU {o0}) is a neighborhood of K € K(QQU {o0})
if for some finite open covering {U1, ...,Un} of K in QU {co} we have

N
uc{scaufok sclJte, UinS#0 (k=1,.,N)}.
k=1
It is easy to see that in the case of metrizability of QU{oco} by a metric g, the Haus-
dorff topology of K(QU{oo}) is the same as the one generated by the Hausdorff dis-
tance d(Si, S2) := max{sup,,cs, infu,es. o(w1,wa), SUP,,es, fu es, 0w, wa)}-

Definition 1.1. We say that a mapping S:§ — {subsets of Q} is a partition map-
ping on £ if there is a partition {Q;: i € I} of Q such that 0.2 holds. We say that
the couple (S, m) of a partition mapping S on Q and a positive function m: Q — R
is admissible if the set (0.1) (where {Q: i € I} = S(€)) is a bounded symmetric
continuous Reinhardt domain in Co(Q2).

Recall [7] that in case (S,m) is admissible and {f € Co(Q):max|f| < e} C
D ¢ {f € Co(Q):max|f| < M} for the domain D in (0.1), we necessarily have
card(S(w)) < M?/e? (w € Q) and M™2 <m < 2.

Theorem 1.2. Assume m:! — R is a function such that 0 < infm < supm < 00
and S is a partition mapping on Q such that sup,eq card(S (w)) < oo. Then the
following statements are equivalent:
(i) the couple (S,m) is admissible;
(i) for all f € Co(Q), the function w - Yones(wy MmIf (M)|?  is continuous;
(iil) with the measures &y(X) = card(X N {n}), the mapping w — p, =
Y nes(w) m(n)6, is weak*-continuous as a function Q — Co()';
(iv) the mapping w — S(w)U{oo} is Hausdorff-continuous and for every (w,U,¢)
where w € Q, € > 0 and U is a closed neighborhood of w in Q such that
U N S(w) = {w} there ezists a neighborhood V' of w in Q2 such that

!m(w)—— 3 m(n)t<6
neUNS(0)

whenever 6 € V.
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Proof. The equivalence (i) « (ii) is shown in [7] Theorem 2. Notice that, in terms
of the operations

QW =3 mlfmP, Afw) = [ =3 maysen

nES(w) n€S(w)

(ii) means Q(Co(Q)) C C(Q) while (jii) means A(Co(Q)) C C(). Hence the
equivalence (i) < (iii) is immediate since A f= Z;ﬁzl *Q(/[Re(i~F Hl+) and
QF = A(If1?) for all £ e Co().

Proof of (iii) = (iv). Assume (iii) and consider any point w € ). Then we
can write S(w) N {oo} = {wy, ... ywN} with N := card S(w) +1 where w; = w and
wn = oo. To establish (iv), it suffices to show
(ivw) for any e > 0 and for any disjoint open sets U,...,Uy C QU {00} with

wr €U (k=1,...,N) there exists a neighborhood V C Q of the point w such

that S(8) C Up~, Uy and |m(wy) — Ynes@nu, )| <e (k=1,...,N—1)

Jor the points 6 ¢ V.

Let Uy,...,Uy be given disjoint open neighborhoods of the points wy. Unless
we have the trivial case () = S(w), we may assume that the compact set K :=
Q\ Uf;V=1 Uk is not empty and there exists a function g € Co(Q) such that 1 =
9K)>g>0= 9(S(w)). By the assumption (iii), the function Ag is continuous.
Since Ag(w) = 0, there is a neighborhood W of w with 0 < Ag(W) < infm. On
the other hand, Ag(§) = ZneS(e) m(n)g(n) > infm if S(0) N K # §. Therefore
S(OINK = 0 that is S(8) C (J_, Uy for the points § € W, Fork=1,...,N—11let
U be a compact neighborhood of the point wy, such that Uy, ¢ Ug. Since the space
{1 is locally compact, such a system ﬁl, ey (71\/_1 exists. Moreover, we can find
functions f; € Co(Q) (k = L,...,N) such that 1 = f(T) > f > 0 = Fre(Q\ Uy).
By the previous argument, there exists a neighborhood W C W of w such that
S(0) cUnU ﬂ,lcvz—ll Uy whenever ¢ € W. Observe that simply

Afe(8) = Z m(n) = Z m(n)  fordeW.

neS@NT, neES(O)NU,

By the continuity of 4 S at the point w guaranteed by assumption (iii), we can
find a neighborhood Vi, ¢ W of w with

> ARO) - Afw =| 3 min) - mw)

neS@NU,

for the points @ € V;. Therefore the choice V := U,ivz_ll Vi suits in the proof of
(iii) = (iv).



Continuous bounded symmetric Reinhardt domains 627

Proof of (iv) = (iii). Assume (iv) and fix any point w € € along with a
function f € Co(Q). We have to establish the continuity of Af at w. Let us
write again N := card S(w) + 1 and S(w) U {oo} = {wy,.. wy ) with w = wy
and oo = wy. Then given £ € (0,infm), there exist neighborhoods Uy, . of the
respective points wy, such that

€
2N*(supm 4+ 1)(max|f| + 1)

[f(n) — flw)l <€ for n € Upe (k=1,...,N)

where N* := maxpeq card(S(6)). By the assumption (1v) for each index k < N
there exists a neighborhood Vi C Q of w with S(6) C Ue 1 Us,e and

m(wg) — Z m(n)! <e*

WES(G)ﬂUk‘e

if 8 € V. Consider the difference Af(6) — Af(w) for the points § € V, =
ﬂ,jc\];ll Vi,e. We have then

AF(0) - Af()] =
N - N-1
=S Y marm e+ X mef) = mw)f )
k=1 n€S(O)NUs,« nES(OINUN,e k=1
N-1
sZ[ S mmf) - me)fe|+ Y, mmlfe)]
=1 €SOy . nES(O)NUn
-1
< [ 3w - fenl+| > m(n)—m(wk>[|f(wk)|]+
k=1 7€S(O)nU.c €SOV,
+ Z supme*
neSONUN, e
N-—
< supme* +¢€* max[fl] + Z sup me*

k=1 1€S@O)NUk.e ‘, nES@NUN, e
< card(S(9))e" (sup';}f-!— max|f]) <€.

Corollary 1.3. Let (S,m) be an admissible couple and define
S:={Q;U{oo}: i€ I}U{{oo}}.

Then the following statements hold.
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(i) Given any convergent net S; — Sp # {00} in S wrt. Hausdorff topology, there
exists a convergent net w; — wq in Q such that S; = S(w;) for all indices and
SO = S(wo).
(ii) The set S is compact in the Hausdorff topology.
(ili) The functions A*f(S) = 2wes M(w)| f(w)? (S € 8) are continuous for all
fe C()(Q)

Proof. (i) Consider a convergent net S; — Sp # {oo} in S. Fix any element
wo € Sp. Then Sy = S(wo) U {co} and we may assume also §; = S(w;) U {oo}
with suitable elements wj € . Choose a compact neighborhood U of wy such
that U N Sy = {wo}. Since S; — So in Hausdorff topology, there exists an index
Jo such that S;NU # @ for J > jo. For every J > jo choose any wy € §;nNU.
Since S; = S(w;) (7 > jo) and since the map w — S(w) is Hausdorff continuous,
the limit of any convergent subnet of (Wj)j>j, can only be wy the unique point of
So = S{wo) in the compact U. Thus necessarily w; — wy.

(ii) Recall a topological space is compact iff any net in it admits a convergent
subnet. Let (S;);cs be a net in S. If Sj #» {00} in Hausdorff topology then there
is an open neighborhood U of oo in QU {oo} such that J, := et s ¢ U}
is unlimited in J. In this case, for every index J € Jo, we can choose an element
w; € S5 such that w; ¢ U. By the compactness of Q \ U, there exists a convergent
subnet (w;, )oeca with Wj, = w € Q\ U. By the theorem, this subnet converges,
since S;, = S(w;, ) — S(w) in Hausdorff topology.

(iii) Consider a function F€C(Q) and a convergent net S; — Sy in 8. If Sy =
{oo} then maX,es, [f(w)] — 0. Hence A*f(S;) - 0 = A*f({oo}) = A*(Sp) be-
cause A*f(S;) < M max, s, |f(w)| where M = max;er card($;) sup, e m(w) <
co. If Sy # {co} then, by (i), we may assume that S = S(w,) (G € J)
and Sy = S(wp) with some convergent net w; — wy € Q. Observe that
A*f(S;) = Af(w;) (5 e J). By the theorem, the function Af is continuous.

Therefore A*f(S;) = Af(ws) = Af(wo) = A* f(Sp).
u

Remark 1.4. In terms of nets the above results can be formulated as follows. The
couple (S, m) on the locally compact space 2 is admissible if and only if for every
convergent net w; — w in O and for every point w €  along with a compact
neighborhood U(C Q) of w such that U A [S(wo) \ {w}] = @ we have

ZnEUnS(w,;) m(n) — m(w) and S(w;) NU - {w} in Hausdorff topology
ifwe S(wo),UnNS(w,) = (7 > jo) for some index Jo if w ¢ S(wp).
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2. Isomorphism of continuous Reinhardt domains

Throughout this section { and ) denote two locally compact Hausdorft spaces
and let D C Co(€2), Dc CQ(Q) be two bounded symmetric continuous Reinhardt
domains given in the form

D =D(8,m) = {f € Co(®): sup Q(s,mf < 1}

where

Qsmyf@) =Y mmIfmP

neES(w)

respectively D= D(§ ™ with the (uniquely determined) admissible couples (S, m)
resp. (S, ).

It is well-known [7] that D and D are the unit balls of the norms ||f|| :=
[sup Q(s,myf1Y2, lgll~ = bup @5, ]1/2 on Co(£2) and Co(Q), respectively. By
a theorem of Kaup-Upmeier [4] D is holomorphlcally equivalent to D iff there is
a surjective linear isometry L: E « E where E and E denote the Banach spaces

(Co(£2), ] - |I) resp. (CO(Q) Il - ll~). We shall be interested in the fine description of
such linear isomorphisms.

According to [7], by identifying the dual space E' with the set of all complex
Radon measures of bounded total variation on €, the family Ext B(E') of the
extreme points of the unit ball of E' can be written in the form

ExtB(E)= |J @r
PeS(Q)

where

pi= {3 tb Y mw) el = 1}

wEP wEP

in terms of the one point supported measures §,,: X — card(X N{w}), and the sets
®p with P € S(Q)(:= {S(w): w € Q}) are orthogonal to each other in £;-sense. In
particular each ®p is a connected component of Ext B(E').
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Lemma 2.1. 4 linear mapping L: E « E is a surjective linear isometry biztween
E and E iff there exists q bijection T: Y « along with a function u:Q x Q — ¢
supported on | J . S(w) x T(S(w)) such that {S): neq} = {T(SW)): ae}
and

Low)=" > wwm gm) forge B andwe Q,

(2.2) €T (S(w))
. 2 2
2 mw) 3 wne] = 3 mmle|
wepP n€T(P) n€T(P)

Jor&, € € andne T(P) whenever P ¢ 5(Q).

Proof. f [: E — E is a surjective linear isometry then the dual operator L’ maps
Ext B(E') onto Ext B (E’ )- In particular, connected components are mapped onto
connected components. Hence there is bijection m: S(Q) « §(S~2) with 57r( py =
L'®p (P € S(0)) and card P = dim Span ®p = dim Span 57r(p) = card 7(P)
(P € S()). This ensures the existence of a bijection T:Q « Q with T(P) =
m(P) (P € S(Q)). Then the existence of the function u with the stated identities
is a routine consequence of the fact that L’ is an isometry between the spaces

Span ®p = 2-wep C3, and Span 5,,(13) = Zneﬂ(P) Cé,.
The converse is immediate: a linear mapping . £ — E satisfying the given
identities is trivially an isometry between E and F.
| |

Remark 2.3. In terms of matrices, we can state the second condition as follows.
Let us represent the sets P ¢ 5(), T(P) = n(P) € S(£2) in any indexed form
P = {w,ip): k = 1,...,Np} and T(P) = {n,(cp): k =1,...,Np}, respectively.
Then the matrix
P P)  (P)\~/ (P)—1/9]1 NP
Up i= [m(wf”) 2™, )i () vl
is unitary. Hence its inverse is the Hermitian transpose
—_— Np
- P P) (PN~ (P)\~
Us' = [k el (a7

. k=1

Thus if L: E~ < E is a surjective isometry in the form (2.2), there exists a (unique)
function v: Q x Q — ¢ supported on {J,,c, T(S(w)) x S{w) = Upep T(P) x P such

N;
that Uzl = [ﬁz(n(P))g)l/Qv(nép),w,(cp))m(w,(cp))—l/z}ekzl, and
LYty = Z v(nw)f(w) for feE, Pe S(Q2) and n € T(P).
weP
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Here necessarily

v(n,w) = m(n) " 'u(w,n)m(w) for w e P, n € T(P) whenever P € S(Q).

Lemma 2.4. Let L:E — B(Q) = {bounded functions Q — C} be an operation
satisfying (2.2) with a bijection T:Q « Q and a function u: Q x Q — € supported
on Upes) P x T(P). Then in terms of the set-transformation T* between S :=

{S(w) U {o0}: we Q} and S:={S(m)u{c} ne Q} defined by
T*(PU{oo}) :=T(P)U{oc}  for PeS(Q)u{0},

we have the following relations.

W If LE C E then T* is Hausdorff continuous.

(ii) If T* is Hausdorff continuous then we have LE c C() if and only if
given any wo € Q, Mo € T(S(wo)) along with a compact neighborhood V of 1o such
that V N §(n0)) = {m}, for every € > 0 there is a neighborhood U of wo with

(2.5) u(wo, M) — Z u(w,n)l <e whenever w € U.
nEVeNT (S(w))

(iii) If T* is Hausdorff continuous, we have imy, .00 Lg(w) = 0 for all g € E if
and only if given any no € Q along with a compact neighborhood V' of no such that
V N T(S(no)) = {mo}, for every £ > 0 there is a neighborhood U C QU {00} of oo
with

(2.6) l Z u(w,n)l <&  whenever weU.
n€VoNT(S(w))

Proof. (i) Suppose L maps Co (€2) into Co(Q2). To establish the Hausdorff continuity
of T*:8 « S, observe that by assumption,

ALg(S):== Y. mwlLg@l’= m(m)lg(n)I®
(2.7) weS\{oo} neT*(S)\{oo}
= A*g(T™(5))

forallg € Co(ﬁ) and S € S. Recall also from elementary topology that a mapping
between two compact spaces (cf. 1.3(ii)) is continuous if and only if its graph is
closed. Consider a net (S;)jes in S such that §; — S and T%(S;) — R for some
SoeSand Re S. By the previous observations, we have to show R = T*(So).
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Assume R # T™(Sp). Then we can fix a function g0 € Gy (ﬁ) vanishing on exactly
one of the sets R\ {oco} respectively Sp \ {oo}. That is A*go(R) # A*go(T™*(Ss))
However, by Corollary 1.3(iii) and by (2.7), we have

A"g(R) = lim A*g(T"(S;)) = lim A*Lg(S;)
= A"Lg(So0) = A*9(T*(S0))

for all g € G, (ﬁ) This contradiction proves the continuity of the mapping T* if
LECE.

(ii) Let the transformation T* be Hausdorff continuous. Suppose LE ¢ ¢ Q)
and fix any couple of points w, € Q, no € T(S(wo)). Fix also a compact neigh-
borhood V' of ny such that V n T*(S(wo)) = {m}. We can choose function
h e Co(ﬁ) assuming the value 1 on the set V and vanishing on some neighbor-
hood V; of the set [S(n) U {oo}]\ {mo}. Notice we have Lh(wo) = u(wo, o). The
family V := {Se & Sc vy Vi} is a neighborhood of g(ﬁo)(= T*(S(wo))).
Since, by assumption the function Lh is continuous at the point wy, also the set
Uy = {w e Q |Lh(w) - u(wo,mo)| < £} is a neighborhood of wp in Q. By the
continuity of the maps w — S(w) U {oo} (cf. Theorem 1.2) and T*: S — &, there
exists a neighborhood U C U; of wo such that T(S(U)) ¢ V. Then for the points
w € U we have

Lhw@)=" 3 uwwmhm) = Y uwn)

nET(S (w)) 7ET(S(@)NVe

whence (2.6) is immediate.
Conversely, fix any function ¢ € E and a point wy € Q. Write N =
card(S(wp)) and

S(wo) = {w, ... s WN-1}, Wy =00, 7= T(wg) (k=0,... N — 1).

Assume for every ¢ > 0 there is a neighborhood U of wo satisfying (2.6) and let
the set transformation 7* be Hausdorff continuous. To show the continuity of Lg
at wo, notice that, by Remark 2.3, necessarily sup fu| < supm!/2/inf H1/2 < o,
Also N* := max,cq card(S(w)) < oo. Fix any € > 0 and let

€ = e/[2N*(max |g| + sup |ul)].

Since g € CO(SNI), there are disjoint compact neighborhoods Vo,...,Viv_1 of the
respective points 7o,...,75_; and a neighborhood Vy of NN = oo in QU {oo}
such that

l9(ne) — ¢(n)| < &* for n € 1, (k=0,...,N).
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By assumption, there exist wo-neighborhoods Uy, . .., Un such that
T(S(Uk)) CVoU...UVN,
‘u(wo,nk)— Z u(w,n)|<a* forwelU, (k=0,...,N-1).
nEVLNT(S(w))

Define U := Uy N - -- N Uy and consider any point w € U. We have

[g(wo) = Lg@)| = | Y ulwo,m)gtne) - S OY )

k<N k=0 neV)kNT(S(w))
<Y |utwomy - > u@mem|+
k<N n€VLNT(S(w))
+ > lulw,me()
nEVNNT(S(w))
< Y |ulwom) X ulwmatm)+
k<N nEVENT(S(w))
+3° Y Julw,m)llglm) — g+
k<N neVpNT(S(w))
+ 3 lu(w,n) sup lg(n)l
nET(S(w)) neVN
< Z £* max|g| + Z sup |uje* + N* sup |ufe*
k<N k<N

< 2N*e*[max |g| + sup |u]] = €.
The continuity of Lg at wy is established.
(iii) The proof is done by a straightforward modification of the estimates in (ii)
where the point co plays a similar role than wo and formally we write u{00, 1) := 0.
: =

Remark 2.8. In terms of nets the statement in (ii) can be formulated as follows.

The operator Lg(w) := 3, er(s(w)) u{w, n)g(n) Wit£1 Hausdorff continuous T
transforms continuous functions vanishing at infinity on Q into continuous functions
on Q if and only if for every convergent net w; — wo in  and for every point
no € T(S(wo)) along with a compact neighborhood V C Q of 7o such that {no} =
Vn T/‘(S(wo)) (= V N 8(mo)) we have 3, cvnr(sw;)) u(wj, n) — u(wo, N0)-

In the case of compact spaces 2 and SNZ, in the light of Remark 2.3, the results of
this section yield immediately the following description of the linear automorphisms
L:E~ E.
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Theorem 2.9. If Q and ) are compact spaces, (S,m) resp. (S, m) are admis-
sible couples on them, then o linear operator L:C(Q) — C(Q) maps the domain
D = D(Sﬂ%) 0nto~D = D(s;my if and only if Iig(w) = Zneisz(w)) u(w,z)g(n)
weq ge Co()) with a bijection T:Q « 0 such that {S(n): n ¢ Q} =
{T(S(w)): w € Q) and the map S(w) T(S(w)) is Hausdorff (bi)continuous
along with a function u:Q x ) — ¢ supported in |, .q S(w) x T(S(w)) such that
th i n1/2 /’/~ N—1/2 _ GQ, e T(S

e matrices [m(w) u(w’, n)m(n’) ]w’ES(w),n’ES(n) (w n € T(Sw))) are
all unitary and

wwo,m) =lim N yw;,g)
! nevAT(S(w))
m(wo)u(wo, o)) ! = H}“ Z m{w)ulw, ;) (n;) =
weUNT=1(5(n;))
whenever Wi — wo € §) resp. Ty — g € Q are convergent nets such that o €

T(S(wo)) and U resp. v are compact neighborhoods of wy resp. o such that
UnS(wo) = {wo} and V N S(no) = {no}.

Example 2.10. With the aid of the theorem we can check directly the somewhat
surprising fact that linearly equivalent symmetric Reinhardt domains may exist
with topologically non-equivalent underlying spaces. Consider the trivially admis-
sible couples (5, m), (S,m) defined by :
Q:={w" teR}, Sw') = {£w'} ,m(w?) :=1, where wt:.= e’,
Q= (", >~ s R}, S(n*E) := {n**,po=1, m(nt) =1,

where 7%% .= (&%, 11).
Thus D := Ds = {f € C(Q): |f(w)? + F(~w)l* <1 (w| = 1)} and D =
Dz~ ={geC(): |g(n, DI +]g(n, —1))2 < 1 (Inl = 1)} are symmetric continuous
Reinhardt domains in ¢ (Q)andC (SNI), respectively. Notice that Q) is connected while
§1 is the disconnected union of two circles. However, the operator

) ¢ t ~
Lo} i= e Pleos SoP* ) tsin o) (g e e@), —m <t <m

is a bijection satisfying LD = D. Indeed, we can write

Lgw') = 3 " u(wt, n€)g(t*) = D ulwhmg(n)  where
=% nET(S(wt))

T(ws) i 772S,+ , T(ws“"r) = 7728’_ for 0 <s<m 5

. t ; t
u(wh, n?+) = /2 g 7 wW@h7?7) = e/ in 5 for —w<t<n
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and u vanishes elsewhere. Observe that the matrices

It e w(wt, 7?5t uwt,n? ) _ it/ co.s(t/2) sin(t/2) (=1 <t<m)
u(wtT, n2+) u(wt=T, g2 —sin(t/2) cos(t/2)

are unitary and limq, Ut~= limy) ., U®. Hence it readily follows that the operator

L suits the criteria for LD = D in Theorem 2.9.

Remark 2.11. In terms of nets, Lemma 2.4(iii) can be formulated as follows.

The operator Lg(w) := 3_, cr(s(wy) W, 1)g(n) with Hausdorff continuous T™
transforms continuous functions vanishing at infinity on Q) into functions vanishing
at oo on £ if and only if for every convergent net w; — oo in £ and for every point
no € § along with a compact neighborhood V' of 7o such that {no} =V n S(n0) we

have EnEVﬂT(S(wj)) u(wj, ) — 0.

In the light of Remarks 2.8 and 2.11 we can describe the structure of linear
isomorphisms of symmetric continuous Reinhardt domains as follows.

Theorem 2.12. Let (S,m) and (S, ) be admissible couples on the locally compact
spaces £ and Q, respectively. Then the linear operator L : CO(Q) — Co(§2) maps
injectively the domain Dg ~(= {g € Co(€2) b Y eeEm) 19(0)12 <1 (€ Q)}) onto
Dsm(= {f € Co(Q) : Ese sew) FEIP <1 (w € Q)}) if and only if there exists
a bijection T : §) « Q along with a function u : Q % Q— C vanishing outside
Nuen SW) x T(S(w)) such that

(1) 8(T(w)) = T(S(w)) (w € Q) and the mapping T* : PU{co} — T(P)U{oo}
is a Hausdorff continuous bijection between the families S := {S(w)U {oo}: we
Q}U{oo}} and S := {S(n) U{oo}: n e Q}U {oo}};

. , o

(ii) the matrices [m(w')1/2u(w',n’)m(n ) 1/2] e weQ ne
T(S(w))) are all unitary;

(i)

h;n Z u(wja 7’) = U(u)g, 770)
nEVAT(S{w;))
and
lim Y. mw)ulw,n)m) "t = mwo)u(wo, mo) (o) !
weUNT-1(5(n;))

whenever w; — wo € {1 resp. N; — o € Q are convergent nets such that ng €
T(S(wo)) and U resp. V are compact neighborhoods of wo resp. mo such that
UnS(w) = {wo} and VN .S(m) = {m}.
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(iv)

0 = lim Z u(w;,n) = lijm Z m(w)u(w,nj)ﬁz(nj)_l =0
PEVNT(S(w;)) wEUNT-1(3(n;))

whemiyer wj — 00 resp. n; — 00 are nets in Q resp. S~2, Jurthermore wy € Q,
N € Qand U c resp. V C Q are compact neighborhoods of wy resp. 1y such
that U 0 S(wo) = {we} and V N S(no) = {mo}.

Remark 2.13. We close this work by showing that the compactness of the under-
lying topological spaces is no holomorphic (and hence even no linear) invariant of
symmetric continuous Reinhardt domains. Let

:={(=0),(z,1): 0<z<1}\ {0, 0)},
5(z,y) = {(z,0), (&, 1)} N G, m(z,y) =1,
Q= {(z,0),(z,2): 0< 2 <1},
§@9) ={(z,0),(2,2)}, m(z,y) = 2/ card(5(a, )).
We regard  and Q with the topology inherited from R2. Then Q is non-compact

while Q is compact and we can identify the ideal point co for  with (0,0). So we
have

1
Dsm={f€C@: Y If@wl <1, £(0,0) = o},
y=0

1
D§,11~1 = {g €C(Q): ‘Z:lg(ar:,:l:y)]2 < 1} .

y=0

The mapping
Ly(z,y) == 271 2g(z, z) — (=1)727Y%(2,0)  ((z,y) € Q)

is a linear isomorphism with LD§n~1 = Dg,m. Namely, with the notations of The-
orem 2.12, we have Lg(w) = ZnET(S(w)) u(w,n)g(n) where

T(z,y) = (z,2y), w((z,y), (z, z))
== (12 (z,y) € Q, (z,2) € ),

T(0,0) = (0,0), u((0,1), (0, 0)) := 232 and v vanishes elsewhere.
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