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Let H be a complex Hilbert space and let B(H) denote the algebra of all bounded linear
operators on H. For A, B ∈ B(H), the Jordan elementary operator U A,B is defined by
U A,B(X) = A X B + B X A, ∀X ∈ B(H). In this short note, we discuss the norm of U A,B .
We show that if dimH = 2 and ‖U A,B‖ = ‖A‖‖B‖, then either AB∗ or B∗ A is 0. We
give some examples of Jordan elementary operators U A,B such that ‖U A,B‖ = ‖A‖‖B‖ but
AB∗ �= 0 and B∗ A �= 0, which answer negatively a question posed by M. Boumazgour in
[M. Boumazgour, Norm inequalities for sums of two basic elementary operators, J. Math.
Anal. Appl. 342 (2008) 386–393].

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a complex Hilbert space and let B(H) denote the algebra of all bounded linear operators on H. For A, B ∈ B(H),
we define the Jordan elementary operator U A,B on B(H) by

U A,B(X) = A X B + B X A
(∀X ∈ B(H)

)
.

The lower bound of ‖U A,B‖ was studied by many authors, see for instance [1,2,4,7]. In [1], it is shown that ‖U A,B‖ �
‖A‖‖B‖. This lower bound is the best known result to date. In [2] and in [8], M. Boumazgour get this lower bound. He
proved that if AB∗ = B∗ A = 0, then ‖U A,B‖ = ‖A‖‖B‖. Conversely, if ‖U A,B‖ = ‖A‖‖B‖, does it follow that AB∗ = B∗ A = 0?
This question was posed by the author in [2, Question 4.3(1)]. In this note, we prove that the converse does not hold in
general. On the other hand, M. Boumazgour also considered some additional necessary conditions for ‖U A,B‖ to be ‖A‖‖B‖
by use of numerical range in [2] (cf. Proposition 2.8). We recall that for A, B ∈ B(H), the numerical range W B(A∗B) of A∗B
relative to B is defined to be the set W B(A∗B) = {λ ∈ C: there exists {xn} ⊆ H, ‖xn‖ = 1 such that limn→∞〈A∗Bxn, xn〉 = λ

and limn→∞ ‖Bxn‖ = ‖B‖}.
It is known that W B(A∗B) is a closed convex subset of the complex plane C for each pair A, B ∈ B(H). Some exceptional

properties are listed in [3]. In [2], M. Boumazgour proved that 0 ∈ W B(A∗B) ∪ W A(B∗ A) if ‖U A,B‖ = ‖A‖‖B‖ for some
special pairs A, B and he asked whether this holds for any pairs A, B such that ‖U A,B‖ = ‖A‖‖B‖ (Question 4.3(2) in [2]).
We also consider this problem and give some partial results.

2. Main results

Let H be a Hilbert space. We denote by N(H) and B2(H) respectively the algebras of nuclear (trace-class) operators
and Hilbert–Schmidt operators on H. The nuclear (respectively Hilbert–Schmidt) norm of a nuclear (respectively Hilbert–
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Schmidt) operator T will be denoted by ‖T ‖N (respectively s2(T )). Recall that for a nuclear (respectively Hilbert–Schmidt)
operator T , we have ‖T ‖N = ∑

i σi(T ) (respectively s2(T ) = (
∑

i σ
2
i (T ))1/2), where σi(T ) denotes the sequence of singular

values of T . We refer readers to see [1] for details.
We firstly consider two dimensional Hilbert space case, that is H = C

2. We identify B(H) with 2 × 2 complex matri-
ces M2. The idea of the following proof comes from [1].

Theorem 1. Suppose dimH = 2. If ‖U A,B‖ = ‖A‖‖B‖, then either AB∗ = 0 or B∗ A = 0.

Proof. We can assume that ‖A‖ = ‖B‖ = 1. Note that ‖U A,B‖ = ‖U W AV ,W B V ‖ for any unitary matrices W , V ∈ M2. It
is clear that W AV (W B V )∗ = W AB∗W ∗ and (W B V )∗W AV = V ∗B∗ AV . Hence from the proof of Proposition 3.6 in [1,
p. 485], we may chose an orthonormal basis {e1, e2} of H such that A has the representation

( 1 0
0 μ

)
, where μ ∈ C with

|μ| � 1, and B has the representation
( w x

y z

)
, with w , x and z real, non-negative and x � |y|. From Remark 7 in [8], we know

that ‖U A,B‖ � s2(A)s2(B). Since s2(A) � ‖A‖ = 1 and s2(B) � ‖B‖ = 1, s2(A) = s2(B) = 1. From s2
2(A) = 1 +|μ|2 = 1, we get

μ = 0. We similarly have that B is of rank-one. If w = x = 0, then we easily have that B∗ A = 0. Thus we may assume that
y = λw, z = λx for some constants λ ∈ C. That is, B = ( w x

λw λx

)
, where w � 0, x � 0, λx � 0, x � |λw|.

If λ = 0, then B = ( w x
0 0

)
. In this case we have s2

2(B) = w2 + x2 = 1. From Lemma 3.2(iii) and Proposition 2.1 in [1], we
get

‖U A,B‖2 �
∥∥∥∥U A,B

((
1 0
0 0

))∥∥∥∥
2

N
= 4w2 + x2 = 3w2 + 1.

It follows that w = 0, which implies that AB∗ = ( w 0
0 0

) = 0.

We now assume that λ �= 0. If x = 0, then B = ( w 0
λw 0

)
and s2

2(B) = (1 + |λ|2)w2 = 1. From Lemma 3.2(iii) in [1] again, we

have ‖U A,B‖2 � ‖U A,B
(( 1 0

0 0

))‖2
N = 4w2 + |λ|2 w2 = 3w2 + 1, so w = 0. This is a contradiction since ‖B‖ = 1. Hence x > 0.

Note that w � 0, λx > 0, λw � 0 and x � λw . It is known that

s2
2(B) = w2 + x2 + λ2 w2 + λ2x2 = 1. (1)

From Lemma 3.2(iii) in [1], we get ‖U A,B
(( 1 0

0 0

))‖2
N = 4w2 + (x + λw)2. Thus

4w2 + (x + λw)2 � 1. (2)

By (1) and (2), we obtain

w2 � 1

3
λ2x2. (3)

From the proof of Proposition 3.6 in [1, p. 486], we have
∥∥∥∥U A,B

(
1

2

(
1 1
1 1

))∥∥∥∥
2

N
� 1 + (λx + w)(x + λw) − 1

2
(x − λw)2.

It now follows that (λx + w)(x + λw) − 1
2 (x − λw)2 � 0, which implies that

0 < λx + w � 1

2

(x − λw)2

x + λw
. (4)

Similarly, we can get
∥∥∥∥U A,B

(
1

2

(
1 1

−1 −1

))∥∥∥∥
2

N
� 1 + (λx − w)(x − λw) − 1

2
(x + λw)2

and thus

λx − w � 1

2

(x + λw)2

x − λw
. (5)

Multiplying together (4) and (5), we obtain

λ2x2 − w2 � 1

4

(
x2 − λ2 w2). (6)

Combined (2) with (6), we get

λ2x2 � 1 (
x2 − λ2 w2) + 1 [

1 − (x + λw)2] = 1 − 1
λwx − 1

λ2 w2 � 1
. (7)
4 4 4 2 2 4



X. Zhang, G. Ji / J. Math. Anal. Appl. 346 (2008) 251–254 253
From (2), we know that

x + λw � 1. (8)

Since x � λw , it follows from (8) that

λw � 1

2
. (9)

By (3) and (7), we get

w2 + λ2x2 � 4

3
λ2x2 � 1

3
. (10)

Taking into account (1), we conclude from the last inequality that

x2 + λ2 w2 � 2

3
. (11)

By (9) and (11), we get

x2 � 5

12
. (12)

Combining (7) with (12), we get 5
12 λ2 � λ2x2 � 1

4 , so λ2 � 3
5 < 1.

Since 0 < λ < 1, we know that w2 � λ2 w2 and λx2 � λ2x2. By the proof of Proposition 3.6 in [1, p. 488], we have
∥∥∥∥U A,B

(
1√
2

(
1 0
1 0

))∥∥∥∥
2

N
� 1

2

[
(2w + x)2 + x2 + 2x(λw + λx)

] = 1

2

(
4w2 + 4wx + 2x2 + 2λwx + 2λx2)

= 2w2 + 2wx + x2 + λwx + λx2 = w2 + w2 + x2 + λx2 + 2wx + λwx

� w2 + λ2 w2 + x2 + λ2x2 + 2wx + λwx = 1 + 2wx + λwx.

Since λ > 0, x > 0 and ‖U A,B‖ = 1, we get w = 0. Hence AB∗ = ( w λw
0 0

) = 0.
We have thus shown that either AB∗ = 0 or B∗ A = 0. The proof is complete. �

Corollary 2. Assume that dimH = 2. If ‖U A,B‖ = ‖A‖‖B‖, then AB∗ = B∗ A = 0 if one of the following conditions is satisfied:

(1) B = A∗ ,
(2) both A and B are self-adjoint.

Proof. This is obvious from Theorem 1. �
However, in general we cannot get both AB∗ and B∗ A are 0 even for two dimensional Hilbert spaces.

Example 3. Let A = ( 1 0
0 0

)
, B = ( 0 1

0 0

)
, then ‖U A,B‖ = ‖A‖‖B‖, but B∗ A �= 0.

If we let B = A∗ , then U A,A∗ is a positive linear map on B(H). By the Russo–Dye theorem (cf. Corollary 2.9 in [5]), we
knew that ‖U A,A∗‖ = ‖A A∗ + A∗ A‖. By Corollary 2, we know that for the positive Jordan elementary operator U A,A∗ , the
condition that ‖U A,A∗‖ = ‖A‖‖A∗‖ does imply that AB∗ = B∗ A = A2 = 0 if dimH = 2. However if dimH � 3, this does not
hold in general.

Example 4. Let dimH = 3 and A =
(

0 0 1
0 α 0
0 0 0

)
∈ M3, where 0 < α � 1√

2
. Then ‖A‖ = 1 and ‖A A∗ + A∗ A‖ = 1, but A2 �= 0.

We next consider Question 4.3(2) of [2]. We first note that the answer is positive if dimH = 2 by Theorem 1.

Corollary 5. Suppose dimH = 2. Then either W B(A∗B) or W A(B∗ A) is {0} if ‖U A,B‖ = ‖A‖‖B‖.

To show Proposition 7, we need the following lemma proved in [6].

Lemma 6. (See Theorem 5 in [6].) If A, B ∈ B(H) are not zero, then we have

‖U A,B‖ � sup

{∣∣∣∣‖A‖‖B‖ + λμ

‖A‖‖B‖
∣∣∣∣, λ ∈ W B

(
A∗B

)
, μ ∈ W A

(
B∗ A

)}
.



254 X. Zhang, G. Ji / J. Math. Anal. Appl. 346 (2008) 251–254
Proposition 7. Let A, B ∈ B(H) such that ‖U A,B‖ = ‖A‖‖B‖.

(1) If B = A∗ , then W B(A∗B) = W A(B∗ A) = {0}.
(2) If ‖A‖2 B∗B � ‖B‖2 A∗ A (respectively ‖B‖2 A∗ A � ‖A‖2 B∗B), then W B(A∗B) = {0} (respectively W A(B∗ A) = {0}).

Proof. (1) If B = A∗ , then U A,A∗ is a positive map on B(H) and thus ‖U A,A∗‖ = ‖A A∗ + A∗ A‖ = ‖A‖2 by the Russo–
Dye theorem (cf. Corollary 2.9 in [5]). Let {xn} ⊆ H be a sequence of unit vectors such that limn→∞ ‖Axn‖ = ‖A‖ and
limn→∞〈A2xn, xn〉 = λ. Then 〈(A A∗ + A∗ A)xn, xn〉 � ‖A A∗ + A∗ A‖ = ‖A‖2, which implies that limn→∞ ‖A∗xn‖ = 0. Note that
limn→∞〈A2xn, xn〉 = limn→∞〈Axn, A∗xn〉 = 0. Then λ = 0 and thus W A(A2) = {0}. We similarly get W A∗ ((A∗)2) = {0}.

(2) We can assume that ‖A‖ = ‖B‖ = 1. If x is a unit vector in H, then ‖U A,B‖ � ‖U A,B(x ⊗ Bx)(x)‖ � |‖Ax‖2‖Bx‖2 +
〈B∗ Ax, x〉〈A∗Bx, x〉| = ‖Ax‖2‖Bx‖2 + |〈B∗ Ax, x〉|2. If B∗B � A∗ A, we have ‖Ax‖ � ‖Bx‖. For any λ ∈ W B(A∗B), there
exists a sequence of unit vectors {xn} ⊆ H such that limn→∞ ‖Bxn‖ = ‖B‖ = 1 and limn→∞〈A∗Bxn, xn〉 = λ. Then
limn→∞〈B∗ Axn, xn〉 = λ. Since ‖Axn‖ � ‖Bxn‖, we have limn→∞ ‖Axn‖ = ‖A‖ = 1. It now follows that λ ∈ W A(B∗ A). We
deduce from Lemma 6 that 1 = ‖U A,B‖ � 1 + |λ|2, which implies that λ = 0. Therefore W B(A∗B) = {0}. The proof is com-
plete. �

We note that if either A or B is an isometry, then the condition (2) of Proposition 7 is satisfied.
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