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Abstract—~First, based on the notions of I-G-H-KKM mappings and I-G-H-KKM selections, some
nonempty intersection theorems are proved, and then the obtained I-G-H-KKM theorems are applied
to the theory of a new class of generalized minimax inequalities in a G-H-space setting. © 1999
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The KKM theorem and its several generalizations give rise to minimax theorems and saddle
points, which play a pivotal role in the solvability of a wider range of problems, from game the-
ory to mathematical economies and optimization theory. Here we intend to establish a new class
of generalized minimax inequalities along with several other special cases in a G-H-space setting.
This class of generalized minimax inequalities does have significant applications to some general-
ized minimax theorems, saddle point existence theorems, and generalized variational inequalities
[1~6]. For more details on variational inequalities, we refer to [7-12].

Let X be a topological space, P(X) denote the power set of X, and (X) the family of all finite
subsets of X. Let A™ denote a standard (n — 1) simplex {e;,ez,...,ep} of R™.

DEFINITION 1.1. A triple (X, H,{p}) is called a G-H-space if X is a topological space, and
H:{X)— P(X)\ {0} a mapping such that:
(i) for each F,G € (X), there exists an Fy C F such that Fy C G — H(Fy) C H(G);
(ii) for each F = {z1,T2,....2,} € (X}, there exist {z;1,T,..., L} C F and a continuous
mapping p: A™ — H(F) such that for {i1,i2,....ik} C {1,2,...,n}, we have

p({eir, €2, ... eix}) C H {zar, Ti2, ..., Tik}) -

A subset K of X is said to be G-H-convex if for each A € (X), there exists an A’ C A such
that A’ C K implies H(A'Y C K.

A subset K of X is called compactly closed in X if KN L is closed in L for all compact subsets L
of X.
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DEFINITION 1.2. Let (X, H,{p}) be a G-H-space, Y a topological space, and M,,..., M, be
subsets of Y. Let V : X — P(Y) be a multivalued mapping. A subset {x1,...,z,} € {X) is said
to be an I-G-H-KKM selection for My, ..., M, if there exists an {;1,Z:2,...,ZTik} C {Z1,...,Tn}
such that
V(H ({zi1, T2y - - -, Tix})) C U M;;,
j=1

where 11,...,Z, are not necessarily distinct.

DEFINITION 1.3. Let (X, H,{p}) be a G-H-space, Y a topological space, and V : X — P(Y)
any mapping. A subset K of Y is called I-G-H-closed in Y if KNV (H(A)) is closed in V(H(A))
for all A € {X).

DErFINITION 1.4. Let (X, H,{p}) be a G-H-space, Y a topological space, and V : X — P(Y)
any mapping. A mapping T : X — P(Y) is called I-G-H-KKM if for each {z1,...,z,} € (X),
there exists a subset {z;1,...,Zik} C {Z1,...,Zn} such that

k
V(H {zi,. . za}) € U T (i)
j=1

For X =Y and V = T, Definition 1.4 reduces to the following.

DEFINITION 1.5. Let (X, H,{p}) be a G-H-space and T : X — P(X) any mapping. The map-
ping T is I-G-H-KKM if for each subset {z1,...,zn} € (X), there exists a subset {;1,..., 2}
of {z1,...,zn} such that

k
T(H ({xih s 7$ik})) C U T(.’L'zj) .
j=1

Next, we give an example (8] of an I-G-H-KKM mapping in an interval space. A topological
space X is called an interval space if there exists a mapping [, ] : X x X — {connected subsets
of X} such that {z1,z2} C [z1,22] = [x2, 1] for all 21,72 € X. Among the notable special cases
of the interval spaces, we mention Hausdorft topological vector spaces, contractible spaces, and
connected spaces.

EXAMPLE 1.1. (See [8].) Let X be an interval space, ¥ a topological space, and V : X — P(Y)
any mapping. Then a mapping T : X — P(Y') is LKKM if

2
V(lz1,22)) € |JT(@:),  for all 7,2 € X.

i=1
For V =T in Example 1.1, T is called I-KKM in the sense of [2,4].

2. GENERALIZED MINIMAX INEQUALITIES

This section is intended to provide, based on I-G-H-KKM theorems, a new class of generalized
minimax inequality theorems in G-H-spaces.

THEOREM 2.1. Let (X, H,{p}) be a G-H-space, Y a topological space, and My, ..., M, be I-G-
H-closed subsets of Y. Let V(H(A)) be compact for all A € (X), V : X — P(Y') any mapping,
and q : H(A) — V(H(A)) a continuous function. Suppose that My, ..., M,, have an I-G-H-KKM
selection. Then we have

i=1
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PROOF. Since the subsets M, ..., M, have an I-G-H-KKM selection, there exist an {z;1,..., Tk}
C {z1,...,zn} = A € (X) and any mapping V : X — P(Y’) such that

k
V(H ({xil" .- axik})) C U A/[U

Since (X, H,{p}) is a G-H-space, there exists a continuous function p : A" — H{A), where
A" = {e1,...,en}. It follows that gop: A™ — V(H(A)) is a continuous function. Let us set

E;=(qgop) Y (M;NV(H(A))), fori=1....,n.

Since each M; is I-G-H-closed in Y, it suffices to show

k
co ({eil, ey E,k}) - U E”

j=1

Assume an element z € co({e,1,-..,€eik}). Then we have
k
(gop)(z) € V(H ({zir,. .., za})) C | Mi;.
1=1

Therefore, there exists an index m (1 < m < k) such that (g o p)(2) € M;n, so (gop)(z) €
(M, " V(H(A))). This implies

z€ (g op)“1 (M, NV(H(A))) = Eim.

Finally, by the classical KKM theorem, we have (\_; E; # 0, and as a result, (;_, M, # 0.

THEOREM 2.2. Let (X, H,{p}) be a G-H-space and T : X — P(X) an I-G-H-KKM mapping.
Let V(H(A)) be a compact subset of X and q: H(A) — V(H(A)) a continuous function for all
A € (X} and for any mapping V : X — P(X). Suppose that:

(i) for each x € X, T(z) is compactly closed in X;

(ii) there exists an A € (X) such that (), , T(x) is a compact subset of X.

Then (e x T(x) # 0.

PRrROOF. Since T is an I-G-H-KKM mapping, it implies, for any {z1,...,z,} € (X), that there is
a subset {zi1,...,Zik} C {Z1,...,2n} such that for {i1,...,ik} C {1,...,n} and for any mapping
V:X — P(X), we have

k
V(H ({zir,....vu}) € | T(=y).
j=1

Since each T'(z) is compactly closed in X (and hence I-G-H-closed), by Theorem 2.1, the family
{T(z) : z € X} has the finite intersection property. On top of that by (ii), {7(x)N((N,.c4 T(z")) :
z € X} is a family of compact subsets of X with the finite intersection property, and as a result,
we have (,cx T(x) # 0.

THEOREM 2.3. Let X, H, {p}) be a G-H-space, V : X — P(X) any mapping such that V(H(A))
is compact for all A € {X), and q : H(A) — V{(H(A)) a continuous function. Suppose that
fig: X xX - Randh:X — R are functions such that:

(1) f(z,y) < g(z,y) for all (x,y) € X x X;

(ii) f is lower semicontinuous in y on compact subsets of X;

(iii) h is lower semicontinuous in y on compact subsets of X;
(iv) for each A € (X}, Nyealy € X : f(z,y) + h{y) — h(z) < 0} is a compact subset of X
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(v) for each {x1,...,zo} € (X), there exist some {x;1,...,24} C {z1,...,2,} and an x €
H({z;,...,Zi}) such that
F@,) + hy) — k(@) > min {f(z,0) +h() - hzy),
<igk
9(xij,y) + h(y) — h(zsj)}, for ally € X.

Then one of the following statements holds.

(1) There exists an element y' € X such that f(z,y') + h(y') — h(z) <0 forallz € X.
(2) There is an element x' € X such that g(z',z') > 0.

PROOF. Let us define mappings V,T : X — P(X), respectively, by
V(z) ={y € X : g(z,y) + h(y) — h(z) < 0} and
T(z)={ye X : f(z,y) + h{y) — h{z) <0}, for all z € X.

Assume that (2) does not hold. That means g(z,z) < 0 for all x € X. Thus, V{z) is nonempty.
By (i), V(z) € T(z). Next, for each {zi,...,zn} € (X), there exists some {x;1,...,xi} C
{z1,...,zn} such that for any x € H({zi1,...,z&}) and for any y € V(z) C T'(z), we have

f(z,y) + h(y) — hiz) <0.

Now, applying (v), there exists some index m (1 < m < k) such that g(z;m.,y) +h{y) —h(Tim) <0
or f(Zim,y) + h{y) — M{(Zim) < 0. This implies

'C?r
T

V(zi;) or y€ T(xim) C | T(xi5),

Jj=1 j=1

y € V(zim) C

1)
k k k
U V(m”-) U U T(fl?ij) C U T(J}U)
j=t1 j=1 j=1
Therefore, we have

| %4 (H ({CEil, cas 7xzk}

.'L'”

HC?:-

that is, T is an I-G-H-KKM mapping. Next, by (ii), each T'(z) is compactly closed in X. As of
now, all the conditions of Theorem 2.2 are met, we have [ oy T'(z) # 0, that is, there exists an
element 3’ € X such that f(z,y') + h{y’) — h(z) < 0 for all x € X. This completes the proof
of (1).

For V = T in Theorem 2.3, we have the following.

THEOREM 2.4. Let (X, H,{p}) bea G-H-spaceand T : X — P(X) a mapping such that T (H(A))
is compact for all A € (X). Let q : H(A) —» T(H{A)) be a continuous function. Suppose that
f,9: X xX — Randh: X — R are functions such that:
(i) flz,y) < g(z,y) for all (z,y) € X x X;
(ii) f is lower semicontinuous in the second variable y on compact subsets of X ;
(iii) h is lower semicontinuous in y on compact subsets of X ;
(iv) for each A € (X), Nyealy € X = f(z,y) + h(y) — h(x) < 0} is a compact subset of X;
(v) for each {z1,...,2,} € (X), there exist a {z;1,...,Z4} C {z1,-..,2n} and an z €
H({za,...,zux}) such that f(z,y) + h(y) — h(x) > mini<j<i{f(zi,y) + h(y) — h(zi;),
9(zij,y) + My) — h(zy;)} for ally € X.
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Then one of the following statements holds.

(a) There exists an element yo € X such that f(z,y0) + h(yo) — h(z) <0 for all z € X.
(b) There is an element xq € X such that g(zg,x¢) > 0.

PROOF. Define mappings S,T : X — P(X), respectively, by
S(z) ={y € X :g(z,y) + h(y) — A{z) <0} and T(z)={y<€ X : f(z,y) + h(y) — h(z) < 0}.

Then by (i), S(z) ¢ T(z) for all z € X. Assume that (b) is false. Then there exists an element
zo € X such that g(xze,z0) < 0. This implies that S(z) is nonempty. Before we can apply
Theorem 2.2, we need to show that T is an I-G-H-KKM mapping. For each {z;,....z,} € (X),
there exists a subset {x;1,...,zu&} C {Z1,...,2,} such that for any z € H({z;1,...,2.}) and
for any y € T'(z), we have f(z,y) + h(y) — h(z) < 0. By (v), there exists an index m (1 < j < k)
such that either g(im,y) + h(y) — h(zim) < 0 or f(zim,y) + A(y) — h{zsm) < 0, that is, y €
S(z,m) C Ule S(xi;) or y € T{wym) C U?zl T(x;,). Therefore, we have

k k
(S U Iz] U T(Iu)) U xzj) .
Jj=1 Jj=1
Hence, we have
k
T(H ({Zo,--,Zik})) U (xi5),

that is, T is I-G-H-KKM. Now the proof follows from an application of Theorem 2.2.
For X compact in Theorem 2.3, we arrive at the following theorem.
THEOREM 2.5. Let (X, H,{p}) be a compact G-H-space, V : X — P(X) any mapping such

that V(H(A)) is compact for all A € (X), and q : H(A) — V(H(A)) be a continuous function.
Suppose that f,g: X x X — R and h: X — R are functions such that:

(1) flz,y) < glx,y) for all (x,y) € X x X:
(i) f is lower semicontinuous in its second variable y;
(iii) h is lower semicontinuous in y;
(iv) for each {zi1,...,zn,} € (X), there exist an {z;1....,2%} C {z1,...,7,} and an = €
H({zi,-.. ik }) such that

flz,y) > 1r<rlji§k {f(mojyy) + h(y) = h(zij), g(zej,y) + h(y) — R(ziy)}, for ally € X.

Then there is an element yo € X such that f(z,yo) + h(yo) — h(z) <O forallz € X.
For f = ¢ in Theorem 2.5, we have the following.
THEOREM 2.6. Let (X, H{p}) be a compact G-H-space, V : X — P(X) any mapping such that

V(H(A)) is compact for all A € (X), and g : H(A) — V(H(A)) be a continuous function. Let
f: X xX —> Randh: X — R be functions such that:

(i) y — f(z,y) is lower semicontinuous;
(ii) h is lower semicontinuous in y;

(iii) for each {x1,...,z,} € {X), there exists some {x;1,.... ZTik} € {z1,...,2,} such that for
any ¢ € H({z;1,...,Zi}), we have
flz,y) 2 min [f(z9) + h(y) — hzy)],  forally € X.

Then there is an element yo € X such that f{z,yo) + h{yo) — h(x) <0 forallz € X.
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