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4. Geometry of Jordan Structures and Quantum Mechanics

The expectations that Jordan theory could provide the algebraic foundations of
quantum mechanics did not fully materialize since the only Jordan structures
totally unrelated to associative structures are finite dimensional. Some physicists
propose a role of #,(0) in elementary particle physics [40] but the major
applications of operator algebras to quantum (statistical) mechanics came from
C*-algebra theory [18, 129]. On the other hand, the recent results [35, 38, 62]
about the geometry of JB-algebras and JB*-triples have interesting interpreta-
tions in terms of quantum mechanical postulates concerning “states” and “filter
projections”. From this point of view, the geometry underlying C *-algebras seems
to be unnecessarily restrictive. In §10, we show that also in analysis there exist
promising applications of J ordan theory to quantum mechanics.

For a deeper understanding of operator algebras, E. Effros [31] proposed a
systematic study of the following three “metric” categories of Banach spaces.

(i) Complex Banach spaces Z, endowed with a fixed norm || - ||. Morphisms are
the contractive linear mappings. '

(ii) Real order-unit Banach spaces (X,9,e), endowed with the open positive
cone © and the order-unit e € . Morphisms are the positive unital linear

" mappings.

(iii) Complex matrix ordered involutive Banach spaces (cf. [31, §2]). Morphisms
are the completely positive linear mappings.

The algebraic models for the categories are (i) JB*-triples Z with the JB*-norm
Il - l, (ii) JB-algebras X with the open positive cone { and the unit element e and
(iii) C*-algebras with the canonical matrix order.

A basic problem is the characterization of the algebraic models in their respec-
tive category,. either directly using the geometry of the underlying Banach space
or “dually” using a suitable state space of linear functionals. We will now
describe the recent progress made on this question in the “Jordan theoretic”
categories (i) and (ii). For (iiD), cf. [2, 100]. .

The main results of §§2 and 3 can be reformulated as follows (for more details,
cf. [59, 61, 19]). '

26

JORDAN STRUCTURES AND QUANTUM MECHANICS ’ 27

41 THEOREM.v
balgl)DA- complex Banach space (Z,|| - ||) is a JB*-triple if and only if its open unit
IDisa (bounded) symmetric domain (i.e., homogeneous under the bihol
phic automorphism group Aut(D)). o
ong,l) i;iitrseal 'o;'zcje;l-u;it lBanach space (X,Q,e) is a JB-algebra with unit e if and
right half-plane Dqo:= Q@ + iX is symmetric, i.e., bihol 1
equivalent to a bounded s ] ] ' Y isa e ooy
e o symmetric domain. In this case, Q is a “symmetric cone”,
- Aut(Q):= {ge GL(X): g(Q) =Q}
acts transitively on Q, and x ~ x~ is a symmetry of Q about e

lerl any o;‘{ the categories described above an idempotent morphism P (satisfying‘
: ~]1 P). will be called a :projection_. Somewhat surprisingly (and with possible
implications to the foundations of quantum mechanics where projections are used

to describe “yes-no” filter experi
e ) periments), the class of algebraic models i
under projections. More precisely, we have * ‘ i swble

4.2 THEOREM. .
(i) The range of a contractive projecti :
projection P on a JB*-tri ; .
under the triple product (u,v,w) — P{uv*w)} triple Z is a JB*-triple
(ii) The range of a positive unital projecti , '
projection P on a JB-al, i _
under the algebra product (x, y) — P(x ° y) algebra X is a JB-algebra

(iii) The range of a completel iti ] iecti
ely positive unital projection P on a C*- j
C*-algebra under the algebra product (a, b) ~ P(ab). ‘ algebra dis a

[321;ar1t) Sr]? Eis)dlz :oﬂ(llilc;l]-jgflféos [Zliﬁvhercleas part (ii) was shown by Effros-Stermer

- ; | y smaller class of JC*-triples

obtained by Friedman-Russo [35]. The proof presented hfre, dgix‘?cfn \I’zfleKla;i) ;2;5

and L. Stacho [103], works for JB*-triples in general and demon.str t ‘ h]

usef_ulness of holomorphic methods in functional analysis. e e
Sl{lce we Wm.use complete holomorphic vector fields and their énal tic fl

we first study the behavior of solutions of ordinary differential equatiofls on 21‘)12

unit sphere S = {a € E: = .
E'm S(ER), { llalf - 1} o'f a real Banach space E with dual space

4.3 LEMMA. For a € S, a vector x € E satisfies

@1 lm 2la+ex]-1)=0
if and only if '
(4.2) AMx)=0 forallx€E' |A]|=1=A(a).

PROQF. For A € E* with ||A|] = 1= A(a), we have
A(x) = Aa+ txt) —Aa) < lla + x| — 1
. - z
whenever- t: > 0. Hence A(x) < 0 if x satisfies (4.1). Since —x satisfies (4.1) as
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well, A(x) = 0. Conversely, suppose (4.1) does not hold. Then there exists ¢ > 0
such that

tln‘ la+ t,x| - 1|>s

for some sequence ¢, > 0 converging to 0. If (1/7,)(|la + 2, x|l — 1 —efora
subsequence (¢,), we have

l(lla —x|-1)>e

n

since2 = 2|la|| < |la + ¢ x|1 + |la — t,x|. Hence we may assume
-—-(Ha +oxll-1)>e
tn

for all n. By the Hahn-Banach Theorem, choose A, € E" with [|A,]|=1 and
N (a+t,x)=|la+1,x|. Then A (a+t,x)>1+et, and therefore

1>A,(a)=1+1,(e—Ax).

This implies A,(x)> ¢ and lim,A,(a)=1. A cluster point A€ E! qf the
sequence (\,) satisfies |[A| = 1 =A(a) and A(x) > &, showing that (4.2) is not
satisfied. Q.E.D.

The closed linear subspace

T,(S):=N{Ker(A): [[A|=1= X(a)}
will be called the tangent space of S at a.
4.4 LEMMA. Suppose f: E — E is locally Lipschitz and satisfies
(4.3) f(b) € T,(S) forallb €S.

Let u: I — E be a solution of the initial value problem u'(t) = f(u(2)), u(0)=a €
S. Here I is an interval about 0 € R. Then u(I) C S.

PrOOE. The mapping E\ {0} 3 x = &= x/||x| € S is locally Lipschitz and
we may assume that there exists a solution v: [ — EN\ {0} of the initial value
problem v'(z) = f(8(1)), v(0) = a € S. By the uniqueness of solutions it suffices
to show v(I)  S. To this end, put n(z) = |lv(?)||. Since

o(t)=a+ [ f(6(k))dn,
we have
n(e+ 5) = (1) =lo(s + 5) |~ [o(0)]
= ot + [ so(n) ar] = o)

<lo(0) + - £ 1+ [ () = 1) | = oD
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Now (4.3) and Lemma 4.3 imply
o) +s-fR) | =Te()]
=1 [o60)+ s 66| - 1) = o06)
as s = 0. On the other hand,
[ (o) = 1(66))) | < comst - [ (h = 1) = o)

since fed is locally Lipschitz. This shows that ¢ = n(z) is differentiable with
derivative n’(¢) = 0. Hence n(¢) = n(0) = ||a|| = 1. Q.E.D.

PrOOF OF THEOREM 4.2(i). Suppose Z is a JB*-triple with open unit ball D
and let P be a contractive projection on Z with range U. Put S:= 9D. For any
¢ € U, the polynomial vector field

9 0
Xo= (o= {ze2)) g2 = f(2) 55
is complete on D. Hence, fora € S N U, webh’ave
exp(tX (a)=a+ tf(a) +o(t) e S

showing that f(a) € T,(S). Since P(T,(S)) < T,(S N U) by Lemma 4.3, ap-
plied to the real Banach spaces underlying Z and U, Lemma 4.4 shows that the
polynomial vector field

Vi (o= Pluctu}) g = P(f(0)) o

is complete on D N U, having integral curves respecting S N U. By the inverse
mapping theorem [124, Theorem 1.23], the real-analytic mapping U 3 ¢ —
exp(Y,)(0) € D N U covers a neighborhood of 0 € D N U. Hence Lemma 2.17
implies that D N U is homogeneous hence symmetric. Now apply Theorem 2.18.
Q.E.D.

The categories (i), (ii), and (iii) allow biduals in a natural way. It turns out that
in each case, the class of algebraic models is closed under taking biduals. For
C*-algebras this is classical, the case of JB-algebras was settled in [99, 4] and the
result for JB*-triples is due to S. Dineen [26]: As a consequence of the “principle
of local reflexivity” [10], it follows that any class & of (complex) Banach spaces
which is closed under taking ultrapowers (z € = Z!* &) and ranges of
contractive projections is also closed under taking biduals. Here
Zhe:= L*(1,Z)/N,, where

L N= ,{(z,.) € L2(1,2): lim|z,| = o}

and w is an ultrafilter on the index set J. Now if Z is a JB*-triple, N, is a closed
Jordan triple ideal and, by [61, p. 523], Z"“ is again a JB*-triple. Together with
the projection theorem 4.2(i), the assertion follows.
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4.5 DEFINITION. A C*-algebra E = A, a JB-algebra E = X or a JB*-triple
E = Z are called a W *-algebra, a JBW-algebra or a JBW *-triple, respectively, if
E has a unique Banach space predual E, such that the algebraic operations on E
are o(E, E,)-continuous in each variable separately.

The results of [99, 47, 10] show that, in each class, the biduals are of the type
described above. :

We will now discuss the “dual” characterization of the respective algebraic
models in terms of “state spaces”. The state space =, of a complex Banach space
(Z, || | is its dual unit ball, consisting of all morphisms (Z, |[- [) = (C, |- ).
For a real order-unit Banach space (X, £, e), the state space X 5 consists of all
morphisms (X, Q, e) = (R,R*,1). (For matrix ordered Banach spaces it is more
natural to consider “operator states”, cf. [31].) o

4.6 ExaMpLE. Let E be an infinite-dimensional Hilbert space over K €
{R, C,H} and consider the JC-algebra

X:={a-idg+ x: « € R, x € #(E) compact}.
Then
Sy={ues#(E): u> 0of trace class, trace(u) < 1}
consists of all “density matrices”, with the pairing
(4, -id; + x) = a + trace(ux).

The pure states are the “vector states” x — (£|x§), for £ € S(E) of norm 1, and
the functional e & - idz + x = a. It follows that

02 x\{2s} = S(E)/U(K) =: P(E)
is the projective space of all “rays” in E, the concept used in traditional quantum
theory. '

4.7 ExaMPLE. Let M be a locally compact noncompact space and consider the
abelian JC-algebra

X={a-1,+f a €R, f€ %,(M,R) vanishing at o0 }.
Then _
3y = {positive Radon measures p on M, p(M) < 1}

under the pairing
(boaly +f) = atp(f)=a+ [ f(m)du(m).
M

The pure states are the “Dirac measures” f — f(m) for m € M and the Dirac
functional a - 1,, + f = « at co. Hence 9.2 x is the 1-point compactification of
M.

4.8 ExaMPLE. Let X = R ® Y be the algebra spin factor (cf. Example 1.3).
Then

Sy={uc€Y:(ulu) <1}
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is the unit ball of ¥ (“algebra spin ball”) under the pairing (u,a + y) = a +
(u] y). The pure states form the sphere of Y: 8,2y = S(Y).

4.9 EXAMPLE. Let Z be the triple spin factor, with conjugation z-— z (cf.
Example 1.9). Then the dual unit ball 2, is called the “triple spin ball”.

Suppose that E is a Banach dual space in category (i) or (ﬂ), with “normal”
state space Np:= 2 N E,. Any (non-unital) weak* continuous projection P on E
induces a mapping '

(4.4) P: Ny > K- Ny
(K = C or R) defined by P,¢:= ¢ o P. In this situation, there are two natural
problems: '

(A) Define a class of “filter projections” P'on ‘E using (i) geometric or (ii)
order-theoretic properties.
(B) Characterize the (normal) state spaces of the algebraic models in each
category by means of axioms for filter projections, possibly with physical
interpretation.
For the algebraic models, there exist natural candidates for “filter projections”:
If Z is a JBW *-triple, we consider the Peirce projections
(4.5) P,=P(c): Z— Z(c)
onto the Peirce spaces Z;(¢):= {z € Z: {cc*z} = jz} associated with a tripotent
¢ € Z (cf. (3.12) and (3.13)). As shown in [38], the P; can be recovered via the
norm structure from the isometric “Peirce reflection” [81, Theorem 5.6]
Sei=P — P, + P, :

If X is a JBW-algebra with unit e, we consider the “quadratic representations”
(cf. Definition 6.2) . ’
(4.6) P,:= P(c)=2M(c)* — M(c?)
and P,:= P(e — c), associated with a projection ¢ € X. The corresponding
reflection S, = 2(P; + P,) — id is positive and unital. In the special case where X
is the self-adjoint part of a W *-algebra we have A

Px=cxc, Pix=(e—c)x{e—c) and S.x=(2c—e)x(2c—e).

Let us first describe the solution of problems (A) and (B) in the setting of
ordered Banach spaces, due to Alfsen-Shultz [3, 4, 5]. For a real order-unit
Banach dual space (X, 2, ¢) with X, := @, the “filter projections” (called P-pro-
jections in [3]) come in pairs P,, P; of weak* continuous positive contractive
projections on X which are quasicomplementary (ie., X,N KerP, = X,.N
Ran P, _;) and smooth:

KerP, = T(X,.N KerP)).
Here the affine tangent space WT_(F ) of a face F of X, is the intersection of all

. weakly closed affine hyperplanes supporting X, and containing F [3, Proposi-

_ "tion 1.1]. By [3, Lemma 1.7], a filter projection P; determines its “quasicomple-

- 'ment” P;_; uniquely. For a JBW-algebra X, the filter projections have the form
(4.6) [4, Proposition 3.1].
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A filter projection P on X is called minimal if the associated “projective unit”
u:= Pe is “atomic”, i.e., the corresponding face contains only one (normal) state,
denoted by u,:

(4.7) (€ Ny: gu=1} = {u,}.
Using this notation, the pure state properties of K:= Ny are the following

~ postulates:
(4.8) For every pure state p € 9, K (“beam of particles in state p”)

there exists a filter projection P which “prepares” p (trans-
forms every incoming beam into a multiple of p of possibly
smaller intensity) via the mapping (4.4):
) "PKCR-p.
(4.9 Filter projections preserve extreme rays:
P(3,K) CR-3,K.
(4.10)  For any two atoms u,v € X with corresponding states u,, v,
(cf. (4.7)) we have “symmetry of transition probabilities”
U, =v,u.
Using these properties, the “dual characterization theorem” [5, Corollary 7.3] is
as follows.

410 THEOREM. A compact convex set K (wiik order-unit space X = (K)
consisting of all continuous affine functions on K') is the state space of a JB-algebra
if and only if the following conditions hold:

(4.8)—(4.10) Pure state properties.

(4.11) Every norm-exposed face F = K N H of K (H norm-closed sup-
porting hyperplane) is projective, i.e., of the form:
F={¢€K: ¢(Pe)=1}
for some filter projection P on X.

(4.12)  Each x € X has a unique “Riesz decomposition” x = x . — x_,
where x € X, are orthogonal, i.e., Fox,=0 and Fix_= 0
for a pair (P,, P,) of filter projections with corresponding faces
(F 0> F, 1)- o '

As a consequence of these properties, any two pure states (facially) generate an
(algebra) spin ball (cf. Example 4.8) {5, Theorem 3.11]. The characterization of
C*-algebra state spaces (in category (ii)) involves the notion of “orientability”
and can be found in [2].

Y. Friedman and B. Russo have started to study problems (A) and (B) in the
category (i) of complex Banach spaces without order [36, 37, 38]. Let (Z, || - [|) be
a Banach dual space with predual Z, and normal state space K = 2, N Z,. Given
an element ¢ € Z of norm 1, the convex set

(4.13) F:={¢cK: ¢pc=1},
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if not empty, is called a norm-exposed face of K. The basic assumption, corre-
sponding to (4.11), is now :

(4.14) Every norm-exposed face F, is symmertric, i.e., there exists a
unique weak* continuous linear isometry S, of order 2 on Z
having fixed point space C(F,) @ F,* (when acting on Z).
Here

Fr={vez:|vtol=lv|+lolvecF)}

is the “orthogonal complement” of F,.

Using the symmetry S, and the norm structure, one can construct contractive
weak ™ continuous projections P, P, 2> Py on Z satisfying

Se=P —P,+P

[38]. These are the “filter projections”; they correspond to the Peirce projections
(4.5)if Z is a JBW *-triple. We put P, := P,. (In the “ordered” category (i), each
pair (P, Py) of filter projections on a JBW-algebra with corresponding faces
(Fo, Fy) gives rise to a positive symmetry S = 2(P, + P;) — id fixing co(F, U F))
[S, Proposition 3.14].) ‘

Every norm-exposed face is of the form F,, where ¢ is a “generalized tripotent”
in Z satisfying ||c|| = 1, S,c = ¢, and F,* ¢ = 0. Assuming (4.14), this relationship
gives a 1-1 correspondence between the norm-exposed faces and the generalized
tripotents [38, Proposition 1.4]. In this case, the “pure state properties” for
nonordered Banach spaces are the following.

(4.15) Every extreme point ¢ € 3, K is norm-exposed.

-~

It follows that {¢} = F, for a unique generalized tripotent
¢ € Z. We write ¢ = ¢,. The tripotents obtained this way are
called minimal or atomic. The corresponding filter projection
P, = P,(c) satisfies P(Z) = C - ¢ and hence

(P c) tK - C(}’),
ie., ¢ is “prepared” by ‘Pc.
(4.16) For each generalized tripotent ¢, the filter projection P, pre-.
serves extreme rays, i.e.,

(Po) (3K) € C+(8,.K).

(4.17) For every pair ¢, e of minimal tripotents we have the “symmetry
of transition probabilities™

Cx€ = exC .

- .
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By [36, Propositions 4, 6, and 7], the normal state space of a JBW*-triple z
satisfies (4.14) and has the pure state properties (4.15)—(4.17).'The Riesz decom-
position property (4.12) makes no sense in the nonordered setting, but one knows

several other physico-geometrical properties of N (€.g., any two extreme points -

generate a triple spin ball (Example 4.9); the splitting i1j1to atgmic‘ and nopgtorn'ic
part [37]). The complete solution of problem (B) in this setting, however, is still

open.

3. Derivations and Dynamical Systems

If the states and observables of a quantum mechanical system are described in
terms of a C*-algebra A (this is common, e.g., in quantum statistical mechanics
[18]) the time evolution of the system is given by a l-parameter group of
C*-automorphisms, subject to certain continuity conditions. Similarly, other
symmetries of the system correspond to C*-algebra automorphisms. Already in
the classical case of the full operator algebra 4 = .% (E) over a complex Hilbert
space E, Jordan algebra automorphisms also play a certain role: According to
Wigner’s Theorem, every bijection ¢ of the projective space P(E) preserving
transition probabilities has the form C - 4 — C - uh (h € E\ {0}), where u is a
unitary or antiunitary operator on E unique up to a scalar of modulus 1. If u is
unitary, then gz:= uzu~! defines a C*-algebra automorphism of A, but if u is
antiunitary, then the complex linear transformation gz= uz*u~'is an antiauto-
morphism. Therefore, in general, ¢ corresponds to a Jordan algebra automor-
phism of 4.

For a (real or complex) Banach space E, consider the Banach Lie group GL(E)
of all invertible bounded linear operators and its Lie algebra g¢(E) consisting of
all bounded linear operators on E, endowed with the commutator product. The

- exponential mapping exp: 4/(E) - GL(E) is given by the usual exponential

series.
5.1 DEFINITION. For a C*-algebra A4, a' JB-algebra X and a JB*-triple Z,
define the automorphism groups :

Aut(4):= {g & GL(4): g(ab) = (ga)(gb), g(a*) = (ga)*},
Aut(X):= {g € GL(X): g(x°y) = (gx)o(g)},
Au(Z):= {g & GL(2): g{uww} = {(su)(g0)*(gw)}}
and the derivation (Lie) algebras
aut(4):= {8 € p£(A4): 8(ab) = (8a)b + a(8b), 8(a*) = (8a)*},
aut(X)i= {8 € g2(X): 8(x e y) = (8x)o y + xo(8)},

aut(Z):= {8 €g¢(2): {uwrw} = {(8u)v*w) +{u(80)*w} +{uv*(8w)}}.

35
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i 80 QUANTIZATION OF CURVED PHASE SPACES

; Via the symplectic structure (10.19), each X € # gives rise to a function

i fx € €°(D). Viewing the operators d}, for admissible values 7, as “quantiza-

| tions” of fy it is an interesting problem to give a rigorous meaning to the
v “correspondence principle”, e.g. in the form

lim a,[d}, d3] = il fx. fy].

B Here the left-hand side involves the Berezin symbol (10.15) and the commutator
of operators, whereas the right-hand side is the Poisson bracket (10.20). For
results in this direction, cf. [98, 123].
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