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ABSTRACT

In this paper, we introduce sufficient conditions for the non-empty inter-
section of two set-valued mappings in topological spaces. As applications,
some topological minimax inequalities for two functions in which one of them
is separately lower (or upper) semicontinuous are given. Finally, by employ-
ing our topological intersection theorems for two set-valued mappings, some
other minimax inequalities have been derived without separately lower (or
upﬁer) semicontinuity under but with another condition. These results are
topological versions of corresponding minimax inequalities for two functions
due to Fan (1964) and Sion (1958) in topological vector spaces.

1. INTRCDUCTION

- It is well-known that many existence problems in mathematics can be
reduced to the following Intersection Problem: Let ¥ be a non-empty set,
X an index set and {F(z) : z € X} a family of non-empty subsets of Y.
Now the question is when does the family have non-empty intersection, i.e.,

NeexF(z) #07

It is convenient to formulate the problem above in terms of correspon-
dences. More precisely, let X and ¥ be two non-empty sets and F : X — 2¥
a correspondence with non-empty values. A single-valued mapping f : X —
Y \ {0} is said to be a selector for F' if f(z) € F(z) for all z € X. Thus the

* The corresponding author.
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intersection question is-when does the correspondence F' possess a constant

selector 7 |

In order to facilitate the presentation, we first recall some notatioms.
" Throughout this paper, N denotes the set of all positive integers and topo- r
logical spaces are assumed to be Hausdorff unless otherwise specified. Let
X and Y be two non-empty sets. Then F(X) and 2% denote the family
of all non-empty finite subsets of X and the family of all subsets of X, re-
spectively. If A is a subset of a topological space X, then clxA denotes the
closure of 4 and A := {z € X : z ¢ A} denotes the complement of 4 in
X. Let F: X — 2Y be a correspondence and 4 a non-empty subset of Y.
Then (1) F*: Y — 2% is defined by F*(y) = {z € X :y¢ F(z)} for each
y € Y is called the dual of F; (2) F is said to have open inverse values if
the set F~1(y) = {z € X : y € F(z)} is open in X for each y € ¥ and (3)
Fy: X — 2% is a mapping defined by Fu(z) = F(z) N A for each z € X.

It is our purpose in this paper to study some sufficient conditions for the

' non-empty intersection of two set-valued mappings acting between topolog-
ical spaces. As applications, we first establish some topological minimax
inequalities for two functions in which one of them is separately lower (or
upper) semicontinuous. Finally, by employing our topological intersection
theorems for two set-valued mappings, we derive some other minimax in-
equalities without separately lower (or upper) semicontinuity (unfortunately,
some other condition is required and we do not know if it is necessary). The
idea behind this paper is quite simple, it is, based on the the following prop-
erty of connectedness (e.g., see Theorem 6.1.1 of Engelking [5, p.352])

Fact A: Let X be a non-empty co.nnected topological space and let both
‘A and B be non-empty open (respectively, closed) subsets of X such that
X DAUB. Then ANB #0. ' ‘

This simple idea was first used by Wu [26] in the study of minimax theory:
Suppose X and Y are non-empty sets and f : X XY — RU{—o0, +oo}. The
key problem of minimax theory is to look for sufficient conditions in ord
that the following equation holds:

yhgg sup flz,y) = sup qul;f, fz,y)-
The importance of Wu’s connectedness approach finally was recognized

than ten years after its publication by Terklesen [24], Tuy [25], Jod [10] o
his Hungarian compatriot Stachd [23] and Komornik [16] (see also Geragh :
and Lin (8], Kindler [12-14], Kindler and Trost [15], Konig [18], H.orygt}}
and Simons [19-20]; to mention only a few names). For the hjstorlca} de
opment of the connectedness approach used in the study of minimax }
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we refer the reader to the excellent survey paper of Simons [21]. Since the
necessary and sufficient conditions for the equality (*) can be reduced to the
equivalent necessary and sufficient conditions for the non-empty intersec-
tion of corresponding set-valued mappings (e.g., see Kindler [12]), it is very
important to study the non-empty intersection of set-valued mappings. In
particular, our arguments in this note are motivated by the connectedness
approach developed in the study of minimax theory and by their applica-
" tions in game theory and mathematical economics due to Wu [26], Tuy [25],
Terkelsen [24], Jo6 (10}, Kindler. and Trost [15], Komornik [16], Stachd [23],
Konig [18], Simons [20], Chang et al [3-4], Sion [22] and Fan [6-7].

2. TOPOLOGICAL INTERSECTION
THEOREMS FOR TWO MAPPINGS

. Recently, a number of topological intersection theorems for one set-valued
mappings have been given by Chang et al [3-4], Jo6 and Stacho [11], Kindler
[12-14], Kindler and Trost [15), Komornik [16], Staché [23], Konig [18] and
Simons [20]. Unfortunately, all these topological intersection theorems con- '
cern only one set-valued mapping in topological spaces. Being motivated by
minimax inequalities for two or more functions (e.g., see Fan [7], Konig (18],
Simons [21] and references wherein), we shall give some existence results for
topological intersection theorems for two set-valued mappings in this sectiomn.
For convenience, we first state the following lemma which is the Remark 1

of Kindler [12]:

Lemma 1. Let X be a topological space, Y a non-empty set and F :
X — 2Y a correspondence. Then the following are equivalent:
(a) The set NyepF(y) is connected or empty for each B € 2¥.
(b) for each z1,22 € X, there exists a connected. set C D {z1,z2} such
that ' .
F(z) C F(z1) U F(zy) for all z € C.

(c) for each pair (21,22) € X xX,theset {z € X : F(z) C F(z1)UF(z2)}

is connected.

We also need the following simple result; for completeness, we include its
proof:

Lemma 2. Let X and Y be two topological spaces and 4 a non-empty
subset of Y. Suppose the mapping F : X — 2% has open inverse values.
Then FA—1 (y) is open in X for y € Y.

~ Proof. Foreachy €Y, let z € Fi(y) Then y € Fa(z) = F(z)NA.
Let O, = F~}(y). Note that for each z € Oz, We have y € F(z) and y € 4,
so that y € Fiu(z). Hence 2z € Oz C FHy). O j
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Now we have the following sufficient conditions which guarantee the ex-
istence of 2-points intersection for two set-valued mappings in topological
spaces.

Theorem 1. Let X and Y be two topological spaces and F,G : X — oY
be both set-valued mappings with non-empty values. Suppose the following
conditions are satisfied:

(i) for each ¢ € X, F(z) C G(z) and G(z) is closed (respectively, open)
and F(z) is connected;

(ii) the set {z € X : G(z) C G(z1) U G(z3)} is connected for each given
z1,22 € X;

(iil) the set F~*(y) is open for each y € Y.

Then the family {G(z): z € X} has the 2-points intersection property, i.e.,
G(z1) N G(zy) # 0 for each z1,z, € X. '

Proof. If not, suppose there exist 1,2, € X such that G(z1)NG(z2) = 0.
Let C = {z € X : G(z) C G(z1) UG(z2)}. By (ii), C is connected in X.
For i = 1,2, let MF = {z € C : F(z) C G(z:)} and M = {z € C:
G(z) C G(z;)}. Then § # MF C M] ior each i = 1,2. Nexl we show that
C = MF U M]. Note that for each ¢z € C, F(z) C G(z) C G(z1) U G(z2),
F(z) is non-empty connected and G(e1) and G(z;) are both disjoint closed
(respectively, open) in Y, so that F(z) C G(z1) or F(z) C G(z3) by the
Fact A above. Therefore for each z € C, we have F(z) C G(z;) or F(z) C
G(zy). Thus C = Mf UMy = ME U ME. Next we claim that both
MY for i = 1,2 are closed in C. If not, without loss of generality, we may
assume that MY is not closed in C. Then there exist zo € ME\ Mf and
a convergent net {zq}aer in MZF such that ¢, — zo. Note that z¢ € Mf'

and z4 € MF. Take any fixed yo € F(zo), then yo ¢ G(zo) for each a € I'.

Thus 2o € X \ F7'(y). Since the set X \ F~(y,) is closed in X by (iil)
and 2, — o, we have that g € X \ F7*(w), ie., yo ¢ F(zo) which is
impossible by our choice of that yo € F(zo). Therefore we have proved that
MFUM§ =C, where MF and M{ are both non-empty and disjoint closed
in X, and C is non-empty connected, which is impossible by Fact A above.
This contradiction shows that G(z1) N G(z2) # 0. O

As an application of Theorem 1, we have the following topological finite
intersection theorem for two set-valued mappings in topological spaces:

Theorem 2. Let X and Y be two topological spaces and F, G : X -2

“be both set-valued mappings with non-empty values. Suppose the following

conditions are satisfied: . -
(1) for each z € X, F(z) C G(z) and NyeaG(z) is empty or closed

(respectively, open) and the set N4 F(z) is empty or connected for each

Ade (X); - ~

(2) NyepG*(y) is connected or empty for each B € 2Y (or equivalently to
say, the set {z € X : G(z) C G(z1) U G(=2)} is empty or connected for each
z1,z3 € X by Lemma 1); a
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(3) the set F~1(y) is open for each y € Y;

(4) for each A € F(X), if Nze4G(z) # 0 implies that Nye 4 F(z) # 0.
Then the family {G(z) : « € X} has the finite intersection property, i.e.,
NzcaG(z) # 0 for each 4 € F(X).

Proof. We shall prove the conclusion by induction. By Theorem 1,
without loss of generality, we may assume that N2 ,G(z;) # @ for each
1,22, ,Tn € X, where n > 2. Now we shall prove that N2 G(z;) # 0
for any n 4 1 elements 23,23, ,Zp41 of X. We define F',G': X — 2¥ by

F'(z) = N2 F(e:) N F(a)

and

G'(z) = Ni5 G(z:) N G(z)
for each z € X. Then for each @ € X, we have

(i) F'(z) is non-empty by (4) and our induction hypothesis above and
F'(z) C G'(2);

(i) G'(=z) is closed (respectively, open) by (1);

(i) the set {z € X : G'(z) C G'(z1) U G’( 2)} is connected by (2) and
Lemma 1; and ,

(iv) (F') 1(y) is open in X for each y € Y by (3) and Lemma 2.

Thus F' and G' satisfy all hypotheses of Theorem 1. By Theorem 1, G'(2')N
G'(z") 5% 0 for each &',2" & X. Let 2’ = 2, and 2" = zpq1. Then
GMmn ) G'(@ni1) # 0, 1e., NG (2;) # 0. Thusthefamﬂy {G(z):z € X}

has the finite intersection property d
We also have the following:

Theorem 2'. Let X and Y be two topological spaces and F,G : X — 2¥
beé both set-valued mappings with non-empty values. Suppose the following
conditions are satisfied: :

(i) for each z € X, F(z) C G(z) and N,e4G(z) is empty or closed (re-
spectively, open) for each 4 € F(X);

(ii) the set NzeaF(z) is empty or connected for each 4 € }—(X)

(ii) the set {¢ € X : F(z) C F(z1) U F(z2)} is connected for each
z1,22 € X (equivalently to say, set NyepF*(y) is connected or empty for
each B € 2¥ by Lemma 1); "

(iv) the set F~1(y) is open for each y € Y

(v) NyeaF(z) # 0 when NyeaG(z) # 0 for each 4 € F(X).

Then the family {G(z) : ¢ € X} has the finite intersection property, i.e.,
NzeaG(z) # 0 for each A € F(X). A

Proof. We shall-first prove that G(z1) N G(z;) # 0 for each z1,z, € X.

If not, suppose there exist z1,25 € X such that G(z1) N G(z2) = 0.  Then
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-we shall derive a contradiction. Let C = {z e X: F(z) C F(z1) U F(z3)
By (iii), C is connected in X. or¢=1,2, let M; ={z € C:F(z) C F(z:)
Then both M; and M, are non-empty. Note that for each z € C, F(z)

}.
.

is connected and F(z) C F(z1) U F(zs) C G(z1) U G(z3), and G(z) and

@(z,) are non-empty closed (respectively, open) and therefore F(z) C G(z1)
- or F(z) C G(=2). Without loss of generality, we may assume that F(z) C
G(z;). Now we claim that F(z) C F(z1). If not, note that F(z) C F(z1) U
F(z3). Then there exists yo € F(z) suchthat yo € F(z3) C G(z2). Therefore
9o € F(z) N G(z2) C G(z1) N G(z2), which contradicts our assumption that
G(z1) N G(zz) = 0. Thus F(z) C F(z1). Therefore we have proved that
F(z) C F(z1) or F(z) C F(z3), so that C = M; U M,. Next we claim
that both M; and My are closed in C. If not, we may assume that M, 1s
not closed in C. Then there exist zo € M; \ M and a net {za}aer in M
such that zo — @o. Note that since zo € M; and zo € M,. Take any fixed

yo € F(zo), then yo ¢ F(zy) for each @ € I'. Thus zo € X\ F~Y(y)

Note that the set X \ F(yo) is closed in X by (iv) and 2o — 2o, We have
that zo € X \ f (%), Le., %o ¢ F(z,) which is impossible. Thus both
M, and M, must be closed in C. Therefore we have that My U My = C,
where M; and M, are both non-empty and closed in C and C is non-empty
connected, which is a contradiction, by Fact A. This contradiction shows
G(:Bl) n G(:Dz) # @

Secondly, we shall prove by the induction that the family {G(z):z € X'}
has the finite intersection property. We may assume that N2, G(z:) # 0 for
each 2,23, ,on € X, where n 2 9. Now we prove that NIt G(z;) # 0

1=

for any n + 1 elements 1,3, ,Zn+1 of X. We define F',G' : X — 2¥ by
F'(s) := M35 F(e:) N (o)

“and

G'(z) := NI} G(=zs) N G(z)
for each ¢ € X. Then for each z € X, we have

(1) F'(z) C G'(z) and F'(z) is non-empty by (v) and our assumption;
(2) G'(z) is closed (respectively, open) by (i);" :
(3) the set {z € X : G'(z) C G"(z1) U G'(2)} is connected by (iil) and
Lemma 1; and

(4) (F")"(y) is open in X for each y € Y by (iv) and Lemma 2.

Thus F' and @' satisfy all hypotheses of Theorem 2'. By the proof above
again, G'(z') N G'(z") # 0 for each z' 2" € X. Let ¢’ =z, and 2" = Tpn41-
Then G'(zn) N G'(zns1) # 0, L6, NF1G(e;) # 0. Thus the family {G(=) :
z € X} has the finite intersection property. U

"L'.: g
o
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Remark 1. (a): Recently, Kindler in [12-14] has established a number
of topological intersection theorems which involve only one set-valued map-
ping (see also Konig (18] and reference wherein), hence their results are not.
comparable with our Theorems 2 and 2. 4

(b): Let X and Y be topological spaces and F' : X — 2 a set-valued
mapping. Chang et al first introduced the following property (P) for the
mapping F in [4, p.756]: ’

(P): For any o € Y and any net {za}aer of X ‘with zo — Zo, if Yo ¢
F(zg) for all ¢ € T, then yo ¢ F(zo). '

We wish to point out that the property (P) of F is, in fact, equivalent to
saying that the mapping F has open inverse values (i.e., the set F~y) is
open in X for each y € Y). Hence our Theorems 2 and 2' include Theorem
1 of Chang et al [3-4] as an special case.

The following example shows that the conclusion of Theorems 2 (respec-
tively, Theorem 2') is not true if we withdraw the condition (4) (respectively,

(v)):

One Counterexample: Let X = [0,27) and ¥ = {e® : 0 < 8 < 27}
Define F,G : X — 2Y by : '

F(e)={16i¢;9—1<¢<9+1}

for each 8 € X and

v —1<p<Tany ioel, T

o 2T 47 2w 4w

G(8) = W, 1<y < £ e (=—,—;
(9) {e¥: 3 _1/{_3+1} i 6_(3,3],
{7 %75—1§¢§1} ifﬁe(%r—,%r)

for each § € X. Then it is easy to verify that ,
(1) F(8) C G(6) and NeecaG(0) is closed and connected or empty for each
A e F(X);
(2) Fle?)={6:9-1<8<  + 1}, which is open in X for each
eveY;, . .
(3) the set {# € X : G(8) C G(61) U G(62)} is connected.

Note that for each 61,8 € X, G(61) N G(6;) # 0, but F(8;)n F(8;) =0
for each 6; € [0,%] and 0; € (3&,% ) or 0; € (3r,2), i.e., the condition (4)

(respectively, (v)) of Theorem 2 (respectively, Theorem 2') does not holds.
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Thus the family {G(6) : § € X'} does not have the finite intersection property,
e.g, G(§ ) NGEF+FNNGE +75)=0.

Letting F' = G in Theorem 2, we have the followmg corollary which in-
cludes Theorem 1 of Chang et al [3-4]:

"Corollary 3. Let X and Y be two topological spaces and G : X —
2¥ be a set-valued mapping with non-empty values. Suppose the following
conditions are satisfied:

(i) the set Nzc4G(z) is closed (respectively, open) connected or empty for
each 4 € F(X);

(ii) the set {z € X : G(z) C G(z1) U G(z3)} is empty or connected for
each z1,2; € X (or equivalently to say, NyesG*(y) is connected or empty
for each B € 2¥); :

(iil) the set G!(y) is open in X for each y € Y.

Then the family {G(z) : z € X} has the finite intersection property.

3. TOPOLOGICAL MINIMAX
INEQUALITIES FOR TWO FUNCTIONS

Let X and Y be topological spaces and a: X x ¥ — RU {~o0, 400} be
a function. We set

a* = inf sup a(z,y), a, = sup inf a(:c,y)
YEY zeXx 3 z€X VEY

and
A~

a” = sup inf supa(z,y).
AE.’F(z)yEYmEA

Then it is clear that a, < a* < a*. We say that a fulfills

(1) the minimax relation (in short, MM) if a, = a*; =

(2) the preminimax relation (in short, PMM) if &* = a,; and

(3) the minimum minimax relation (m short, MMM) if sup, ¢ x a(z,§) =
- ay for some § € Y.

In this section, as applications of the topological intersection theorems above,
we-shall study topological minimax inequalities for “two-function versions”
of minimax theorems which are generalizations of Slon s minimax theorem

[22] (see also Fan [T7]).

Theorem 4. Let X and ¥ be topological spaces. Let a,b: X xY —
R U{~00,+00} be two functions such that for each A > b,,
(1) a(z,y) < b(= ,y)forea,ch( Yy EX XY,
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(2) for each fixedy €Y, z — b(m,yj is upper semicontinuous and for each
fixed ¢ € X, y — b(z,y) is upper semicontinuous;
(3) for each fixed © € X, y +— a(z,y) is lower semicontinuous;

(4) the set OzGA{y €Y : b(z,y) < A} is empty or connected for each
A€ F(X),

(5) the set Nyep{z € X : b(z,y) = A} is empty or connected for each
B e 2Y; :

(6). there exist Ag > bs and Ao € F(X) such that the set Nzca,{y €Y :
a(z,y) < Ao} is empty or compact. Then we have

inf sup a(z < sup inf b(z,y).
Jof sup (2,9) < sup faf (z,9)

Proof. For each )\ > b, we shall prove that the family {y € ¥ : a(z,y) <
A}zex has the finite intersection property. We define Fy, Gy : X — 2¥ by

Fi(z) := {y.E Y :b(z,y) < A} and Gia(z) i={y €Y : a(z,y) < A} |
for each z € X. Then we have that

(i) Fi(e) # 0 end Fi(s) C Ga(e) by (1)
(i) Fi(z) is open for each z € X and the set F *(y) is open in X for each
y €Y by (2).
(iii) the set NzeaFa(z) is empty or connected for each 4 € F(X) by (4).
(iv) the set {z € X : Fa(z) C Fa(z1)U Fy(z2)} is empty or connected for
each z1,z; € X by (5) and Lemma 1. ‘

Thus F5 satisfies all hypotheses of Corollary 3. By Corollary 3, the family
{Fs\(z) : = € X} has the finite intersection property, hence so does the
family {Ga(z) : = € X}. Therefore for each A > by, {y € Y : a(z,y) <
A}sex has the finite intersection property. Note that for each A € (bs, Ao),
{yeY:az,y) <A} C{yeY: a(z,y) < Ao} for each z € X and the
set Neeao{y €Y : a(z,y) < Ao} is non-empty and compact by (6), so that
MNeex{y €Y : a(z,y) < A} # 0. For each A € (bx,Xo), taking any yo €
Neex{y €Y : a(z,y) < A}, then infyey sup,ex a(z,y) < supyex o(%;y0) <
). Hence for each A € (b, Ao), infyey sup,ex a(z,y) < A. Therefore we
must have the following inequality,

inf < b, = sup inf b O
inf sup a(s,y) < b, = sup inf H(z,y)

As an immediate consequence of Theorem 4, we have the following corol-

lary which includes and improves the corresponding results of Bardaro and
Ceppitelli [1], Chang et al [3-4], Fan [6] and Geraghty and Lin 8]

P e S
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Corollary 5. Let X be a topological space and ¥ a compact topological
space. Let a,b: X x¥Y — RU {—c0,+00} be two functions such that for
each A > by,

(1) a(z,y) < b(z,y) for each (z,y) e X XY

(2) for each fixedy €Y, z — b(z,y) is upper semicontinuous and for each
fixed z € X, y — b(z,y) is upper semicontinuous;

(3) for each fixedy €Y, z — a(z,y) is lower semicontinuous;

(4) the set Nzea{y € Y : b(z,y) < A} is empty or connected for each
Ae F(X);

(5) the set Nyep{z € X : b(z,y) 2 A} is empty or connected for each
Be2*. '

Then .

inf sup a(z < sup inf b(z
yEYze§ (=) —::EE"-‘/EY (2,9)

Proof. Since Y is compact, the condition (5) of Theorem 4 is automati-
cally satizGed. Hence the conclusion follows from Theorem 4. O.

Let a(z,y) = b(z,y) for each (z,y) € X XY in Corollary 5. Then
Corollary 5 implies the MMM result, i.e., there exists 5o € Y such that

SUP,ex a(z,yo) = SUP,ex infyey a(:c,y).

j3y a similar proof to that of Theorem 4, we also have the following mini-
max inequality: -

Theorem 6. Let X and Y be topological spaces. Let a,b: X XY —
R U {—o0, 400} be two functions such that for each A< a¥,
(1) a(z,y) < b(z,y) for each (z,y) e X xXY;

(2) for each fixed y € Y, @ = a(z,y) is lower semicontinuous and for each
fixed ¢ € X, y — a(z,y) is lower semicontinuous;

(3) for each fixed y € ¥, ¢ — b(z,y) is upper semicontinuous;

(4) the set Nyea{e € X : a(z,y) > A} is empty or connected for each
Ae F(Y); - |

(5) the set Nyep{y € ¥ : a(z,y) < A} is empty or connected for each
B € 2%, :

(6) there exist Ao < a* and 4o € F(Y) such that the set MNye4, {zeX:
b(z,y) > Ao} is empty or compact. :
Then we have

inf sup a(z < sup inf b .
yeyzeg’( ( ’y)—zeﬁyey (z,v)

Proof. The idea is similar to that in Theorem 4. For each A < a®,we W:‘.‘sh
to show that the family {¢ € X : b(z,y) > A}yey has the finite intersection -
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property. Now define Fj,Gx : Y - 2% by ‘
F(y) := {z € X : a(z,y) > A} and Ga(y) := {z € X :b(z,y) > A}

for each y € Y. Then it is easy to verify that

(i) Fay) # 0 and Fa(y) C Galy) by (1);

(ii) F(y) is open for each y € ¥ and the set F'(z)is open in Y for each
z € X by (2). o

(iii) the set NyeaFr(y) is empty or connected for each A € F(Y') by (4).

(iv) the set {y € Y : Fa(y) C Fa(y1) U Fy\(y2)} is empty or connected by
(5) and Lemma 1 for each y1,%2 € Y.

Thus Fy satisfies all hypotheses of Corollary 3 (by exchanging X andY). By

Corollary 3, the family {Fi(y) : y € Y'} has the finite intersection property,

hence so does the family {Gx(y) : y € Y}. Hence for each A < a*, {z €
X : a(z,y) > A}yey has the finite intersection property. Note that for each
A€ (Mo,a*), {&¢ € X : a(z,y) > A} C {z € X : b(z,y) > Ao} for each.
y € Y and the set Nyes,{z € X : b(z,y) > Ao} is non-empty and compact
by (6), so that Nyey{z € X : b(z,y) 2 A} # 0. For each A € (Xo,a™),
taking any zo € Nyey{z € X : b(z,y) = A}. Then sup,ex infyey b(z,y) >
infyey b(zo,y) > A. Hence for each X € (Ag,a*), sup,ex infyey b(z,y) > A
Therefore we must have the following inequality,

sup inf bz > g¢* = inf sup a(z O
sup inf (z,y) > inf sup (z,v)

By Lemma 1 and Theorem 6, it is not difficult to derive the following
corollary which includes Theorem 3 of Chang [2] as a special case:

Corollary 7. Let X and Y be topological spaces. Let a,b: X XY —
R U {—o00, 400} be two functions such that

(1) a(z,y) < b(=z,y) for each (z,y) € X XY

(2) for each fixedy €Y, z = a(z,y) is lower semicontinuous and for each
fixed z € X, y — a(z,y) is lower semicontinuous;

(3) for each fixedy €Y,z — b(z,y) is upper semicontinuous;
 (4) for each A < @, the set Nyea{z € X : a(z,y) > A} is empty or
connected for each 4 € F(Y); '

(5) for each y1,y2 € Y, there exists a connected subset Cy, 4, of ¥ with
{y1,92} C Clys 42} such that : _

a(z,y) < a(@,31) V a(z,92) for all (2,y) € X X Oty 353

where “V” stands for “maximum”;
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(6) there exist Ao < a* and Ao € F(Y) such that the set Nyes {z € X :
b(z,y) > Ao} is empty or compact. ‘
Then

inf sup a(z < sup inf b(z,v).
yEYzeg (=:9) —megyél’ (2,9)

" By Lemma 5 of Geraghty and Lin [8, p.379], it is clear that Corollary
7 also includes Corollary 2 of Chang et al [2] as a special case. We would
like to point out that the proof of Theorems 4 and 6, actually produce the
following PMM theorems: -

Theorem 8. Let X and Y be topological spaces. Let a,b: X XY —
R U {—00, 400} be two functions such that for each A > by,

(1) a(z,y) < b(z,y) for each (z,y) € X xY; .

(2) for each fixedy € Y, z = b(z,y) is upper semicontinuous and for each
fixed z € X, y — b(z,y) is upper semicontinuous;

(3) the set Nyep{z € X : b(z,y) > A} is empty or connected for each
Be2Y; _

(4) the set Nzea{y € Y : b(z,y) < A} is empty or connected for each
A e F(X).

Then we have

sup inf sup a(z,y) < sup inf b(z,y) < sup inf sup b(z,y).
AcF(X)VEY z€4 zeX YEY AEF(X)YEY zc4 -

Proof. By the proof of Theorem 4, for each A > by, the family {y € Y :

b(z,y) < A}zex has the finite intersection property, and hence so does the

family {y € Y : a(z,y) < Atzex. Thus for each A € F(X), taking any
fixed yo € Nzea{y €Y : a(z,y) < A}, we have infyey supzes a(z,y) <
sup 4 a(2,%0) < A Therefore sup 4¢r(x)infyey SUPzea a(z,y) < A for
each A > bs, so that

sup inf sup a(z,y) < by = sup inf b(z,y).
AEF(X)VEY zc4 zeX ¥EY

Note that sup,ex infyey b(z,y) < sup 4er(x)infyey SUPse4 b(z,y). Then
the conclusion follows. [J '

Theorem 9. Let X and Y be topological spaces. Let a,b :' X XY —
R U {—00, +00} be two functions such that for each A < a,

(1) a(z,y) < b(z,y) for each (z,y) € X xY;

(2) foreach fixedy €Y, z — a(z,y) is lower semicontinuous and for each
fixed ¢ € X, y — a(z,y) is lower semicontinuous; ‘

(S)J;Lhe set Nzep{y € ¥ : a(z,y) < A} is empty or connected for each
B e 24

(4) the set Nyea{z € X : a(z,y) > A} is empty or connected for each
Ae F(Y).
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Then we have

sup inf sup a(z,y) < inf sup ao(z,y) < inf- sup inf b(z,y).
AE.’F%)X)yEY»zEE ( ' ) y€Y zeX ( ! ) AGF(Y)Q:EJP};UEA ( ’y)

Proof. From the proof of Theorem 6, for each A < a*, the family {z €
X : b(z,y) = Atyey has the finite intersection property. For each 4 € F),
there exists o € Nyea{z € X : b(z,y) 2 A} such that sup,e x infyea b(z,y) >

infyey b(zo,y) = A- Therefore inf 47 (v) sup e x infyea b(z,y) > A for each

A > a*. Hence
inf sup inf b(z > a*. -
AE}-(Y)I:EE%TJEA ( v) 2
Note that
sup inf supa(z,y) < inf sup a(z,y).
AeF(X)YEY zc4 V€Y zeX

The conclusion follows. [

Before we conclude this section, we recall the following result Which is the
Consequence 2.4 of Konig [18] (compare also Lemma 5 of Geraghty and Lin
8, p.379]): ~

Lemma 3. Let X be anon-empty set, Y a topological space, f : X XY —
R a function and I a non-empty open interval of R. Consider the following
properties: _

(a) for each A € I, the set Nea{y € ¥ ¢ f(z,y) < A} is empty or
connected for each 4 € F(X). o

(b) for each A € I, the set Nyea{y € ¥ : f(z,y) < A} is empty or
connected for each 4 € F(X).
Then we have : _

(1): The property (2) implies property (b) is always true and

(2): If Y is a compact Hausdorff topological space and for each fixed
¢ € X,y +— flz,y) is lower semicontinuous, then property (b) implies
property (a) (i.e., the property (a) is equivalent to (b) in this case).

Remark 2. By Lemma 3, it is clear all conclusions from Theorems and
Corollaries 4 to 9 still hold if the “ <” (respectively, © >") is replaced by
« <7 (or “ >") in each condition 4. :

»4.TOPOLOGICAL MINIMAX INEQUALITIES
WITHOUT SEPARATELY SEMICONTINUITY

In the section 3, as applications of a topological intersection theorem for
one set-valued mapping, we have given some minimax inequalities of two
functions in which one of them is separately upper or lower semicontinuous.

T T T S ST T e e T R IR
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In this section, as applications of our topological intersection theorems for
two set-valued mappings, we shall give some minimax inequalities for two
functions without separately semicontinuous conditions but we need some
other assumption (i.e., the condition (5) in both Theorems 10 and 11).

As an application of Theorem 2, we have:

Theorem 10. Let X and Y be topological spaces. Let a,b : X XY —
R U {—00, 400} be two functions such that for each A > by,

(1) a(z,y) < b(z,y) for each (z,y) € X X Y;

(2) for each fixed y € Y, z + b(z,y) is upper semicontinuous and for each
fixed z € X, y — a(z,y) is lower semicontinuous;

(3) the set Nzea{y € ¥ : b(z,y) < A} is empty or connected for each
Ae F(X);

(4) the set Nyep{z € X : a(z,y) > A} is empty or connected for each
B e2Y,; '

(5) for each 4 € F(X),f Nzea{y €Y : a(z,y) < A} # 0, then Neealy €
Y :b(z,y) < A} # 0.

(6) there exist Ag > by and A¢ € F(X) such that the set Nzedofly €Y :
a(z,y) < Ao} is empty or compact. Then we have

inf sup a(z < sup inf b(z,y).
inf sup (2,9) < sup inf (z,9)

Proof. Using the same idea as in the proof of Theorem 4, for each A > by,
we shall first prove that the family {y € Y : a(z,y) € A}zex has the finite
intersection property. We define F,Gx : X — 2¥ by

Fy(z) :={y € Y : b(z,y) < A} and Ga(z) :={y €Y : a(z,y) <A}

for each z € X. Then it is easy to check that both mapping Fy and Gy, satisfy
all hypotheses of Theorem 2. By Theorem 2, the family {Gx(z) : =z € X}
has the finite intersection property. Hence each A > by, {yeY :a(z,y) <
A}zex has the finite intersection property. Note that for each A € (b, Ao),
{yeY :a(z,y) <A C{yve¥: a(z,y) < Xo} for each z € X and the
set Noeao{y €Y : a(z,y) < Ao} is non-empty and compact by (6), so that
Neex{y € Y : a(z,y) < A} # 0. For each X € (bs,Xo), taking any yo €
' Neex{y €Y : a(z,y) < A}, then infyey supzex a(z,y) < supgex a(2,y0) <
). Hence for each X € (bs, o), infyey sup,ex a(z,y) < A Therefore we
must have the following inequality,

inf < b, = inf b O
inf sup a(=,y) < b. = sup faf He,y)

- Asan application of Theorem 9" instead of Theorem 2, and by the same
proof as in Theorem 10, we have the following: '

Theorem 11. Let X and Y be topological spaces. Let a,b: X XY —
R U {—o00,+0co} be two functions such that for each A > b, :
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(1) a(=,y) < b(z,y) for each (z,y) € X x ¥;

(2) for each fixed y € Y, ¢ — b(z,y) is upper semicontinuous and for each
fixed z € X, y — a(z,y) is lower semicontinuous; '

(3) the set Nyea{y € Y : b(z,y) < A} is empty or connected for each
Ae F(X)

(4) the set Nyep{z € X : b(z,y) > A} is empty or connected for each
B € 2¥; ' ‘,

(5) for each A € F(X), if Ngea{y € Y : a(z,y) < A} #0, then ﬂzeA{y €
Y :b(z,y) < A} #0.

(6) there exist Ag > by and Ay € F(X) such that the set Nzeao{y €Y :

a(z,y) < Ao} is empty or compact. Then we have

inf sup a(z,y) < sup mf b(z,y).
V€Y zeXx zeX V€

Proof. For each A > b,, we define FA;G’A : X — 2Y by
\(z):={yeY :b(z,y) <A} and Gi(z) :={y € Y : a(z,y) < A}

for each z € X. By employing Theorem 2' instead of Theorem 2 and the
same proof as in Theorem 10, the conclusion follows. O

Remark 3. We do not know if the conclusions of Theorems 10 and 11
are still valid without the condition (5). Moreover we note that Theorem 10
is a topological version of corresponding minimax inequalities in topological
vector spaces given by Fan [7] and Sion [22] except the condition (5). For
some other generalizations of minimax inequalities for more than two func-
tions in topological vector spaces, we refer the reader to Ben-El-Mechaiekh
et al [2] and references in [21]. :

Finally, for other work on topological intersection theorems and their ap-
plications to minimax inequalities, we refer the reader to Horvath [7], Jod
and Staché [11], Kindler [12-14], Komornik [16], Komiya [17], Kénig [18],
Simons [19-21], Staché [23] and references therein.

REFERENCES

1. C. Bardaro and R. Ceppitelli, Some further generalization of Knaster - Kuratowski
- Mazurkiewicz theorem and minimaz inequalities, J. Math. Anal. Appl. 132 (1988),
484-490.

2. H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Points fizes et comadeces pour les
fonctions multivoques II (Applications de type ¢ and ¢*), C. R. Acad. Sci. Paris 205
(1982), 381-384.

3. 8. S. Chang, Y. J. Cho, X. Wu and Y. Zhang, The topological versions of KKM theo-
rems and Fan’s matching theorem with applications, Topological Methods in Nonlinear
Analysis 1 (1993), 231-245. ’

4. 8. S. Chang, X. Wu and S. W. Xiang, A topological KKM theorem and minimaz
theorem, J. Math. Anal. Appl. 182 (1994), 756-767.




5.

6.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

THOMPSON AND YUAN

R. Engelking, General Topology: revised and completed edition, Heldermann Verlag
Berlin, 1989.
K. Fan, Fized-point and minimaz theorems in locally conver topological linear spaces,

Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.

. K. Fan, Sur un théorme mimimaz, C. R. Acad. Sci. Paris 259 (1964), 3925-3928.
. M. A. Geraghty and B. L. Lin, Topological minimaz theorems, Proc. Amer. Math. Soc.

91 (1984), 377-380.

. C. Horvath, Quelgues théorémes en théorie des mimi—mam, C. R. Acad. Sci. Paris 310

(1990), 269-272.

I. Joé, A simple proof of von Neumann’s minimaz theorem, Acta. Sci. Math 42 (1980),
91-94.

1. Joé and L. L. Staché, A note on Ky Fan’s minimaz theorem, Acta. Math. Hung.
39 (1982), 401-407.

J. Kindler, Topological intersection theorem, Proc. Amer. Math. Soc. 117 (1993),
1003-1011.

J. Kindler, Intersection theorerns and minimaz theorems based on connectedness, J.
Math. Anal. Appl. 178 (1993), 529-546.

J. Kindler, Intersecting sets in midset spaces I and II, Axch. Math. 62 (1994), 49- 57
and 168-176.

J. Kindler and R. Trost, Minimaz theorems for interval spaces, Acta. Math. Hung. 54
(1989), 39-49.

V. Komornik, Minimaz theorems for upper semicontinuous functions, Acta. Math.
Acad. Sci. 40 (1982), 159-163.

H. Komiya, On minimaz theorems without linear siructure, Hiyoshi Review of Natural
Science 8 (1990), 74-78.

H. Konig, A general minimaz theorems based on connectedness, Arch Math. 59
(1992), 55-64.

S. Simons, Minimaz theorems with staircases, Arch. Math. 57 (1991), 169-179.

S. Simons, A flezible minimaz theorem, Acta. Math. Hung. 68 (1994), 119-132.

S. Simons, Minimaz theorems and their proofs, Reprint (1994).

M. Sion, On general minimaz theorems, Pacific. J. Math. 8 (1958), 171-176.

L. L. Staché, Minimaz theorems beyond topological vector spaces, Acta. Sci. Math. 42
(1980) 157-164

F. Terkelsen, Some minimaz theoreins, Math. Scand. 31 (1981), 177-194.

H. Tuy, On a general minimaz theorem, Soviet. Math. Dokl. 15 (1974), 1689-1693.
Wen-Tstin Wu, A remark on the fundamental theorem in the theory of games, Science
Record (new series) 3 (1959), 229-233.




