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A REMARK ON LORENTZ ALGEBRAS

R. STRASEK (Maribor)

Abstract. We consider the class of Euclidean algebras associated to Min-
kowski light cones and called Lorentz algebras. We prove that in Lorentz algebras

the estimate || P(a, b)|| w2 (vV2-1) ||a|| . |Ibll,, is valid for the spectral norm and
is therefore independent of the dimension of the Lorentz algebra.

1. Introduction

Lorentz algebras are nonassociative structures, which arise from the
Minkowski metric for the Einstein space-time of the general relativity theory.
For z,y € R* the Minkowski form is defined by

[z,y] = T1y1 — T2Y2 — T3Y3 — TaYs.

The set
A={zeR" [z,2] >0and z >0}

is a light cone (see [2] for more details). This definition can be extended in
an obvious way to any R"*! = R x R" where for (¢,2), (s,y) € R x R" we
define

[(t,IL‘), (Say)] =1ts— <IL',’y>

Here (z,y) denotes the classical inner product of R™. We thus obtain a
family of Lorentz cones

Any1 = {(t,2) e R X R"t > \/(z, 1) }.
If we define the binary product o on R**! =R x R" by

(t,x) o (s,y) = ts + (z,y) + ty + s,
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we obtain a unital algebra (the element (1,0) being the unit) which is not
associative, but has a remarkable property. The set of its squares is the
closure of the Lorentz cone. This example can be put in a more general
framework, which is elaborated in [1]. Lorentz cones are symmetric and to
every syminetric cone one can associate a Euclidean Jordan algebra, whose
set of squares forms the closure of the original cone. Using this algebra as
coordinates, it is possible to build analysis on symmetric cones (see [1] for
details).

There are two natural norms in Euclidean Jordan algebras. Since they
are modeled on the Euclidean space, they have the natural inner product
norm ||z|| = \/(z, z). Another norm can be defined with the aid of the spec-
tral theorem [1], p. 43, as

(1) |z o, = max { ||, A € Spectrum (z)} .

We note that for the Euclidean Jordan algebra Sym (m,R) of m x m real
symmetric matrices, this spectral norm is the same as the operator norm.

A starting point for our investigation is [5], where the authors proved an
interesting estimate for the quadratic operator in the algebra Sym (m,R),
which can be rewritten in a form || P(a, b) | = llall o |1bll o, where operator
P(a,b) can be defined in all Jordan algebras as

P(a,b)(z) =ao(boz)+bo(aoz)—(aob)ox

(see [1], p. 32). We show that a similar estimate, independent of dimension,

can be given for Lorentz algebras. It is interesting that the constant v/2 — 1
we obtain is the same as the one given by Staché and Zalar in [4], where they
considered standard operator algebras. For more details on the algebraic
theory of nonassociative algebras and Jordan algebras in particular, we refer
to [3].

2. Preliminaries

Let H be a real Hilbert space and let (a,b) be the inner product defined
on H. Defining on the vector space L = R @& H the product

(A+a)o(p+0b) =+ (a,b) + pa+ Ab,
L is a Euclidean Jordan algebra with the unit element e = 1+ 0. The algebra

L belongs to the class of Euclidean Jordan algebras associated to symmetric
Lorentz cones introduced in the first section and is therefore called Lorentz
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algebra. In the classical case, as in [1], only finite dimensional algebras are
considered. In our work this restriction is not necessary, so we omit it.

Let w = A+ a be an arbitrary element in the Lorentz algebra L. Since
the rank of L is equal to 2 and the only possible nonzero idempotents in £

are e and % + %ﬁ, h € H, the spectral decomposition of u is

-\ A=A |5t tAlsts '
U 1C1 + A2Ca 1<2+2||h1||>+ 2(2—+_2||hz||)

We recall that by spectral decomposition, for each u € £ there exist unique
real numbers Aq,..., A, all distinct, and a unique complete system of or-
thogonal idempotents {cy, ..., ¢k} such that u = Aje; + ... + Ageg. We also
recall that {ci,...,ck} is a complete system of orthogonal idempotents if sz
=c¢j, cioc; =0fori#j and ¢y +c2 + ...+ ¢ = e. Since the idempotents
c1 and ¢z in the above decomposition are orthogonal, we have h; = —hy and
so 2||a|| = |A\1 — A2]. Obviously 2XA = A; + A2. Hence we have Ay = A + ||a]|
and A2 = A — ||a]|. Considering both identities, the norm (1) in the case of
Lorentz algebra £ can be rewritten as |lu||,, = |A| + ||a||, which is also valid
in the case of £ being infinite dimensional.

The purpose of this note is to prove the following
THEOREM. Let L be a Lorentz algebra with dim £ = 3. Then we have

1P(a.b)] , 2 (V2= 1)llall 015l
for all a,b € L.
Note that HP(a, b)H oo TNCANS SUP| 4 <) H P(a,b)(w)H o
3. Proof of the Theorem

In the case of Lorentz algebra L the operator P(a,b) can be represented
as

P(a,b)(z) = Aup + Mv, w) + p{u, w) + p(u,v)
+ Apw + ppu + Apv + (v, w)u + (u, w)v — (u, v)w,

wherea = A+u, b=p+vandx=p+we€ L.

LEMMA 1. Let L be a Lorentz algebra and let a =A+u, b=p+ve L
be co-norm one elements. Then we have

| P(a,b)| ., 2 max {|2l|ull — 1|, ] 2llv]| — 1] }.
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PROOF. From the definitions of norm and P(a,b) we can easily calculate
that

| P(a,b)(x)| = | Ao + Mo, w) + pu, w) + p(u, v)|
+ || Apw + ppu + Apv + (v, whu + (u, wyv — (u, v)wl|.

Choose z = p+w € L such that p = —\ and w = u and compute the expres-
sion H P(a,b)(w)H. We have

| P(a,b)]| . 2 || Pla,b)(@)|| = | = Xp + Mu,0) + plu,u) — Mu, v)|
+ || Apu = A — X0 + (u, v)u + (u, u)v — (u, v)ul|
= | = Au+ ullPu] + || = Ao+ ulPo] 2| = X+ Jull*] (Il + (o).
Since || + |Jul| = |u| + ||v]| = 1 we have
| P(a,b)|| o = | 2llwll — 1.
If we replace p by —p and w by v in the same way as above, we get
| P(a,b)]| . = |2llv]l — 1]

Considering both estimates, we conclude the proof. O

LEMMA 2. Let L be a Lorentz algebra and let a =A+u, b=p+ve L
be co-norm one elements. Then we have

| P(a,b)]| o 2 (1= 1lull) (1= llvll) + lullllv].

PROOF. We may, upon replacing b by —b, assume that A has the same sign
llvllwt[|ullv

as pu. If u # —v we choose z = p+w € Lsuch that p=0and w = Mielfatlaliol”

Then ||jw|| =1 and so

1P(ab)]| o 2 [| Pla,)(=)]| o,

Jolle + llullo lolle + flullv
>\ ) —"_ 7
@WMﬂu+me> “Q‘Mwu+mwuﬂ

ol + [l +< ol + [lull >
v U

1\

_.l_

[ ollu + [lu]o]] ol + flullv]
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+<u lollu + lluf >U_WW>nﬂu+wmmH

ol + flullv]] [ o]l + [lul

N 1
= [l + o]

A (llolle + lullo) + [ollv, w)u

2 2
+ l[ullloll*u + ollllul®o + llul (v, wyo = [[v]l (e, v)u — [full(u, v)o||

3 1
[[ollu + [lufv]]

A (llolle + ullo) + lulllo) e+ folllul® |

B 1
[ ]l + [lu]v]]

[ O+ lullllol) (olle+ luflo) |

= [Au+ [ullllvll] = (1= llall) (1= 1lvll) +llulllv].
If u = —v, we must proceed in a different way. Since
A+ ulloe = (A + llull = 1 = [ul + | = ull = [lp —ull
we have A = pu, so we must show that
[P+ u, A —w)|| =22+ |lul®.

As dim £ = 3, there exist w € H such that ||w|]| =1 and w L u. If we take
z =0+ w, then ||z||, =1 while

PO+ u A —u)(e) = (2 + [lul?) w
which clearly implies
[ PO+ u, A =w)]| o Z [N+ [ull?] - [lwll = A + Jul®. D

PrOOF OF THEOREM. Without loss of generality we may assume that
lalloo =16l = 1. Let @ = A+ w and b = p + v. Denote

k= max {|lufl, o]} and w = min { Jull, o]}

Ifk 2> %\/ﬁ orw<1-— %\/ﬁ, by Lemma 1, we have HP(a,b)HOO >V2—-1.If
— %\/i < w,k < 1v/2, then the second lemma yields

HP(a,b)Hoo >V2 1.
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Considering both cases, we have

| P(a,0)] o 2 (V2=1)]lal o [Ib]l. O

References

[1] J. Faraut and A. Koranyi, Analysis on Symetric Cones, Clarendon Press (Oxford,
1994).

[2] G. L. Naber, The Geometry of Minkowski Spacetime, Springer Verlag (1992).

[3] R. D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc.
(New York, 1994).

[4] L. L. Staché and B. Zalar, On the norm of Jordan elementary operators in standard
operator algebras, Publ. Math. Debrecen, 49 (1996), 127-134.

[5] L. L. Stach6 and B. Zalar, Uniform primeness of the Jordan algebra of symmetric
operators, Proc Amer. Math. Soc., 126 (1998), 2241-2247.

[6] R. Strasek, Uniform primeness of the Jordan algebra of Hermitian quaternion matri-
ces, Linear Algebra Appl., 367 (2003), 235-242.

(Received March 19, 2002; revised November 18, 2002)

UNIVERSITY OF MARIBOR
FACULTY OF CIVIL ENGINEERING
DEPARTMENT OF BASIC SCIENCES
SMETANOVA 17

2000 MARIBOR

SLOVENIJA

E-MAIL: ROK.STRASEKQUNI-MB.SI

Acta Mathematica Hungarica 101, 2003



