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"7 Abstract, This.paper is:concernéd with minimax theorems. in vector- . .
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1. Introduction

Minimax problems for real-valued functions 7+ X, x Yy— R have been

investigated extensively. It is well known that -the equality {

infsup / (x, ») = supinf /'(x, )
Yo Xo Xo Yo

holds under suitable conditions (Refs. 1-2). In recent years, some authors
have studied minimax theorems for vector-valued functions (Refs. 3-8). In
Ref. 3, Nieuwenhuis first proved that
minmax f(x, ) © maxming f(x, y} — K,
Yo Mo Xo Yo

maxmin,,. f(x, ) © minmax f(x, y) + K,
Xo Yo Yo Xo

. where the vector-valued function f(x, y) is limited to be of form - €&
Sx ) =x+p
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Then, in Ref. 4, Tanaka proved the above relationships for general
separated vector-valued functions

-
whrch includes thiat76f" separate ‘
‘establish relationships simiilar to the above Also, some results on, cone

sadd]e points and values are estabhshed wiftiout hypot}ieses of‘ convexrty o

By N L et
O S

‘type therefore 1he results of Ref. 4 are 1mproved

§ 2 : Un'iforrnly' Samefbrdér: AF;un‘ctionsa

. Throughout thi .
denotes the pointed, closed co .cxrcone m Z Wc always assume that K“

(interior of K) # .~ .
Let Z, be a nonempty subset of Z, z EZ(, If

G-nek=t0 0w

then Z is said to be a K-maximal pomt of 7(, The set of all K-maximal
points of Z, is denoted by max Z,. If

G-Z)nK={0} o )

then 2 is said to be a K-minimal point of Zy. The set of all K-minimal
points of Z, is denoted by min Z,. If

(Zo-HnK'=g, | (3)

then 2 is said to be a weak K-maximal po.int of Z,. The set of all weak
K-maximal points of Z, is denoted by maxy, Z,. If

(£ —-2Z,)nK’=(, . (4)
then 2 is said to be a weak K-minimal point of Z,. The set of all weak
K-minimal points of Z, is denoted by miny Z, (Ref. 6).

- Lemma21. If Z,is a nonempty compact set, then max Z, # & and
min.Z, # J.

Proof. The proof can be found in .R‘ef.“é. . 0

‘Lemma 2.2. If Z, is a nonempty compact set, then

Zycmax Z, — K, Zycmin Z,+ K.

;; compact. subset - of 7

~ Moreover, 1f/ rs KK 1oar - -

JOTA

Proof. We only prose °-
be proved similarly. _
Let meZ,. 'If_:_em;a\ /7

It 1s clear that E:

s%emax-Zy..IJndeed. -
;EMOmer

X

umform]y same-order _
At ¥ PR AEERE
for all xe X, when there o

.f(-\‘()‘,1"') —f1a L.

{3y, ¥")eYyx Ty, then f s e o
. The definition thut rvv

Y, i is similar. If fx.:00 ‘r\

then f(x, ») is said to be AW i
It 'is easy to sec :n

S, p) =ulx) + vy must ~w A

. following example illustrates -

vector-valued functions inci-..::

Example 2.1. Let
X=Y=Z=R
Xo={(x;,x2) -
Yo={(».0) -
K={(z.z) =
S p) =(xra

It is easy to show that. the
X, x Y, however, it is an unw




. .uonships for general

1

-ofconvexity:

i R

‘linedr .spaces;, K

(-

o ~et of all K-maximal

(2)

"4 set of all K-minimal

(3)

-/ . The set of all weak

(4)

-/ The set of all'weak
Metob)

o

- then max Z, # & and

... then

ieresults on.cone -

o= YeKN{0Y, and s

‘tion. Now, we.introduce a class .of vect

Assiime that. K" ERRE Y _
o uniformly same-order on X, with respect to-(
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Proof. We only prove the first inclusion relationship; the second can
be proved similarly. |
 Let zeZ,. If zemax Z,, then zemax Z, — K. If z¢max Z,. let : E

#Q ahd v

:»compact:: subset of ZOLet‘:"emax E
0

emak Z,. Indeed, if:z%¢max.Zy,

=%emax E.. Therefore,:

o Let X,c X, Y, ¥, and.let f: Xy Yo

Dy o

: .;Déﬁ'niiidﬁ 21 A veclqr;-Va,fued I:.fur'),_étllo

VYK T if
fx, 1) =[x xM eK{0} (K
forall xeX, when there exists Xy€ X, such 't'hat..;

. FASTI) "‘/.(-’f()n“'")EK/{U} (X°).

Moreover, if / is K(K°)-uniformly same-order on X, with respect to any
(3, ¥") e ¥, x Y,, then fis said to be K(K")-uniformly same-order on Xj.

The definition that f(x, y) is said to be-K(K°)-uniformly same-order on
Y, is similar. If f{x, y) is both K(K°)-uniformly same-order on X, and Y,
then f(x, v} is said to be K(K")-uniformly same-order on X, x Y.

It is easy to see that the separated vector-valued: function
flx, y) = u(x) + v y) must be K(K")-uniformly same-order on X, x ¥,. The
following example illustrates that the set of K(K®)-uniformly same-order
vector-valued functions includes somé unseparated vector-valued functions.

‘Example 2.1. Let
X=Y=Z=R%
Xo={(x, %) |1 <x,<2 (=12}
Yo={(pi.yn) |12y <2 (=12}
K={(:,,:2)|:,”20.:320},' - o - - ) "

fx,y) = (x1p1, X202)-

It is easy to show that the f(x,y) is K(K"-uniformly same-order on
X, x Y,: however, it is an unseparated vector-valued function.
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Lemma 2.3. Let /@ X, X Y,— Z be a vector-valued function. Then:

(i) iff(x, y)is K-uniformly same-order on Y, f(%, §)emax /(X))

“ Proof.” -

o (i) Let f(% v)emdx/(Xu. ».. lf there exists ye}{(,- _such that -~ ..
L i-f\'v\ ¢maxj X)) . S~ thiz

then by (1) there cxn X

I, )')EKl'()‘

Gl

; Smce /(\ y) is K -umformly same- ordér on.. Y(, we havc
S 5) = (3, P K0},

- which contrzidicts';f'(.i*, Premax f( Xy, M. S
(i) ‘This can be proved similarly. - - : O

3. Minimax Theorems‘

Let X,c X and Y, Y be nonempty sets, and let the vector-valued
function /(x, ) be continuous on X, x Y,. It can be easily proved that
f(Xy,y) and [(x, Y,) are both compact subsets of Z for any
(x, p)eX, x Y,. So, by Lemma 2.1, the sets ‘

W) =maxgf(Xe.3) | . )
g(x):==miny /(x, ¥;) (6)

are both nonempty for any (x,y)eX, x ¥,. Thus, # and g form two
set-valued maps from Y, to Z and from X, to Z, respectively.

~ Now, we introduce a notion concerning set-valued maps and give
several ‘propositions.

Definition 3.1. A set-valued map / is said {0 be séquentially compact
at yeY, if, for any sequence {y,} c ¥, with _v,, - and the sequence {z, }
with z, h( y,), theré exists a subsequence {z;} of {z,} such that = 3= Z and
Zeh( ). For any yeY,, if h is sequentially compact at y, then 4 is said to
be sequentially compact on ¥,.

) _'[.mmf(X(, y)] 1mphes that f(x v) emax; f(Xu,y) [mmf(X(,.y)], o

is a compact set.

g Eeh(P) S AT The

joTAa

_ - Proposition 3.1. The oo
denoted by !

¢+ Proof.. Let ‘the secuvey
{y,} =¥, such that =<~ _
without loss of general:n, <+ - -
of h on. Y, there oveo

Now, we recon~ider 1m0 <

Lemma 3.1. It 1" - 1 .=
[ Xy x Yy Zis a conun. L

(i) the set-valued mat-
_ (6), are sequent.a. .
(i) MY, and &1t} oo

Proof.
(ij Let felX,: then. o .

x, =X, and let -, =f1v.. .

compact, there exists a.~."o
From the continuity uf ©. «:
shown that Zfegit). I ‘..
Z=f(% Pef (2. Y. there o

SR D) =




.od function. Then:

X, Memax f( Xy, ¥)

et the vector-valued
se eusily proved that

iy oof Z for any

)
(6)
cand g form two

“apectively.
.icd maps and give

d the sequence {z,}
such that z; -2 and
. . then /1 is said to

icE [min:/.(Xo- y)]r._

. wequentially. cbmﬁaét'
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Proposition 3.1. The graph of a set-valued map A on Yy, which is
denoted by

graphy(, hs —{(y, ~) |~Eh(_)’) J’E Yo}

PTODOSltlon 32010 Y, ; Sé-Cdrﬁ_paél' -

is a compact set.

. Proof. Let the sequence {.,,,}&_h( Y,,): then, there exists a sequence
{y.} = Y; such that z,€h(y,). Since Y,.is compact, we may assume,
without loss of generality, that y, —j€7Y,. By the sequential compactness

of h on Y, there exists a subsequence {z;} of {z,} such that
TR eh( y) < h(Y,). That is, h(Y,) is compact. , 0O

“Now, we reconsider the set-valued maps in (5) and (6).. . -
Leinma 3.1. If X, © X and Y, < y are nonempty compact sets, and il
f: X, x Yy— Z is a continuous vector-valued function, then:

- (i)  the set-valued maps h(y) and g(x), which are defined by (5) and
(6), are sequentially compact on ¥, and X, respectively;
“(ii) A(Y,) and g(X,) are compact sets.

Proof.

(1) Let £eX,: then, g(X) # &. Let (x,} X, be any sequence with
x, — %, and let z, =f(x,, ,) €g(x,), with y,€Y, for all n > 1. Since ¥, is

»compact there exists a subsequence.{y;} of {y,} such that y,—JeY,.

From the continuity of f, we have z; =f(x;, y;) =2 =f(%, 7). It can be
shown that Zeg(®). In fact, if Z¢g(£), then, by (6)., (4), and
=f(%, P)ef(%, Yo), there exists o€ ¥y such that

S(&9) — (& y0) =keK®.
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Hence, from

.f'(&,»){;)—f(x V()) —*f(’c y) f(r yo)

By Lemma 3 1 and Lemma 2] we get 1mmed1ately the following
theorem. '

Theorem 3.1. .Let X, and Y bc-.-nonempty"'compact:vsets, and let

" f(x,¥) be a continuous vector-valued function on X, x Y. Then,

minmax ./ (x, §) = nin h( _Y(,) *@.

Yo Xo

maxmin,, /(x, 1)-— max K(Xn) * @

Xo Yo

Lemma 3.2. Let X, and Y, be nonempty compact sets, and let £(x, ¥)

be a continuous vector-valued function on X, x Y,. Then:
(i) if f(x,y) is K -uniformly same-order on Y.

mmwn}dxw/(\' vy cg(X, )nlz(Y(,)
Yo o

(i) if /(x,y) is. K"uniformly same—order on X,

» vm\?an;{inu»'.ll'(x\ ») cgl(Xy) nh(Yy).
0 0

‘Proof.
(i) We first have

n';mwm‘lxw/(’c »# Q.
0 <0

from Theorem 3.1. Let

Zeminmaxy. f{x, y).
Yo Xo

JOTA v .

‘Then, there exists 1. X uon =

f(&, Pyeh(P) by (5). We .-~
Indeed, if (£, 5) ¢g(xn e

i I.;Theorem 32,.,,L' “1, T
f(x, ¥) bea continuous et -

(i) if e is Aear

. ming.max,, il
SR M,

i) i flxyyis K-

maxy-ming “ri.. .
S !

Proof.
. (i) - By Lemma 3.2, %o -

M MmaX g ..
Yo AV

Since g(X,) is a compuct & ™

S oming.maxy. i
Ya Ay

by Lemma 2.2.
(ii) This can be prowel -

The following exampie
formly same-order is imp.--:n
Example 3.1. Let
X=Y=R" 7
Xo={x|0< - :
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Then, there exists 7, £ such that femax,, f(X,,$) and 2=/ (%, ). Thus,
(£, P)eh($) by (5). We further claim that f(£, P)eminy f(X, ¥y) = g(%).
Indeed if f(£, 9)-¢8(2), there. ex1sts S(x, yo) such ‘that

f(* ,V) f(-x V())EKO

;_Smce f(\, v)emdxwf(me), f(x‘ ,Vo) 1
Thls 1mp11es that T R

f(\., v)¢mmwmaxwf(x,

~-:.:yvhi<?:h: jeads to a contradlctlon
(i), Thls can ‘be’ proqu sir

- Theorem 3:2. Let X(, and Y(. be nonempty compact sets and let, o )
f(x ¥) be a continuous vector-valued function on X, X Yo. Then: ' o 1

fiely. the following -

s - () if /(x' ») is K-uniformly same-order on. Y.
compact sets, and let oo e e o
Y.. Thed, - 7~ . R min maxy f(x, ¥) Cmdxwmmwf(\'-."‘),.-—' K;- o
Yo Xo Xo Ya . o

(i) if f(x,y) is K’-uniformly, same-order on X,

maxwmm,,,f(\ v)cmmwmdxwf(x y Y+ K.

X Yo Yo
.ot sets. and let f(x, y)- Proof.
I'hen: . , (i) By Lemma 3.2, we have
minymax, f(x.y) <gX). 7
Yo . A
Since g(X,) is a compact set by Lemma 3.1(ii), we have
mm,,,max” S(x, ) cmaxwmmwf(x ¥y -

Yo Xo

by Lemma 2.2. o .
(ii) This can be proved similarly. : : , X

The following example shows that the assumption of f(x.y) as uni-
_ formly same-order is important in Theorem 3.2

‘Example 3.1. Let
X=Y=R', Z = R?,
X,={x|0<x <2}, Y()={)’l'-15y51}s
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= (21- z5) | ‘le SZZ/Z},
f(x y) = (3, 5°x).

It s easy o, show that I (,\ y) is K"-umformly same-order on Y(,, but lt 1s

“Hence, . . .o oovno 2L

mln,,,mdefA y)cmaxwmmw/(x )
Ya Xa

, max ming f(x, v) ¢mmwmdx,4,/(\ y) +K

Xo Yo

4. Cone Saddle Points

In this section, we establish the existence theorem for cone saddle
points. The following definition of cone saddle point is equivalent to that
in Ref. 9.

Definition 4.1. A pdint (xXq, Vo)EX X Yy is said {o be a K-saddle
point of the vector-valued function f(x, y) with respect to X, x Y, if
J (X0, Yo) Gmaxf(xm Yo) nmin f(xq. Yo).
The set of all K-saddle points of f(x, y) with respect to X, x ¥, is denoted
by S.
.. The. following definition of weak K-saddle point is from_Ref. 4.
Definition 4.2.. A point (x,. yo)€X, X Y, is said to be a weak K-
saddle point of the vector-valued function f(x, y) with respect to X, x ¥, if

J(xq, yo)emax,, f(Xy, ¥o) N miny, f(Xo, Yo)-

JOTA

The set of all weak A-sacdlc
denoted by S*.

It is obvious that 5,

_and is- concave m & To

_"pomt oh Xo % Yo o,

‘We prove that the' & e S
the existence of ‘the. A-acue o

' followmg symbols:

Theorem 4.1. 1o ¥
S(x, ¥) be a continuous vect -

(i) if fis K-uniform!. ' .
A#Q. B =
(i) if f is-K;”-unn'wr:t'..;

A% and B" ure ~ -

Proof,

(i) For any r.z) .
max f(Xy, yy). By Lemma 2

j(x()s_ YemaX'si R

Therefore, x,€A: that s, 1 = -
Now, we turn to the pr.

fxg.yp)€Emax 11} .
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The set of all weak K-saddle points of f(x, y) with resepct to Xp x Y is
denoted by S¥.

It i,s.lobvious that*’ScS”’.‘ e o )

srder:on: ¥y, buteit is: o

: 1. Note that an’ ex1stenc eorem: for - :
pomt has actually been glven m the proof of- Lemma 32

We further estdbhsh the exxstence theorem for K saddle pomts In Ref
- 3,:Nieuwenhuis proved that, if X, and: dre,nonempty convex compact. . .. :
. sets and if f(x v ntinuous on' X(, x: Vg Is convex in x for every ye Y(,, C R
dnd 1s concave in for'every xeX(,, then /(x 1) has at. ]east one Addle ; o
point-on X, x Y. L
. We prove that the condmons in Theorem 3 2 are suﬁ‘lment 10 ensure |
the ‘existence:’ of - the - K-saddle pomts To this end, we mtroduce thc .

- following symbols: ' : T ,
A={xeX,|f(x,y)emax f(X,, »). for all ye Yo}, ‘

Sk ORTS

o B:= {ve¥, |/(\ ¥)emin f(x, Yy); for all xe X}, S ."f
AYi={xe Xy | fx, y)emaxy [ (Xo. ). for all ye Yy},
BY:={yeV¥,|/(x.y)emin, f(x. Yy), for all xeX,l

Theorem 4.1. Let X, and Y, be nonempty compact sets, and let

vrem for cone saddle f(x,y) be a continuous vector-_valued function on Xo >< Yy. Then:

* is equivalent to that ' (i) if fis K-uniformly same-order on X, x ¥y,
. A# D, B # @, S=A4XxB;
and to be a K-saddle” - (ii) if f'is K -uniformly same-order on X, x Yy,

et to Xy x Yy if i _ o ' _
A% and B" are both nonempty compact sets, S = A" x BY.

_ Proof.

(i) For any y,e?,, there exists xp€X, such that f(xy, )€
max f( Xy, ¥o). By Lemma 2.3(i), we have

< Y, x Y, is denoted

sonfrom Ref. 4. . L
S, y) Einaxf (X, p), for all pe¥igr = =

“idd to be'a weak K-, “Therefore, x,eA; that is, A4 # &J. The proof of B # (J is analogous.
“ respect to Xy x Yo if Now. we turn to the proof of § =4 x B. Let (X, yo) €S. Then,

f(xq, o) emax f(Xg, o) N min f(xg, Yo),
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from Definition 4.1. It follows that

S(x, yyemax f(X,, 1), for all ye¥,,

. by Lemma 2.3(i). This, xye 4. Similarly, yo€ B. Therefore, ScA x B. The
converse iriclusiof g,

) relalionship clear. Hence, wehave .§
V(Y TWe banprove’ that -4 @;'B.f“";é‘ . :
remams to, show ;that.4.% and -B ¥ are! compact;: <+ 5, %, S
. Let l\,,, < A" with x; X, We- take an arbltrary sequence e Y(,
wxlh v, = p e ¥;.. From;the- definitiori: of A and: the Continuity 0 f{x;
.. we'haye

Smce the sel valued mdp lr is sequentldlly Lompdct at r by Lemmd 3. l(l)
T ))Eh(\) That is.

/(\"f)emdxu/(/\’(. l)
Thus, for any yeY,, one has
[, 1)emdxu [ (X, 1)

’ by Lemma 2.3(ii):; hence, \'eA" Thus, A” is a closed subsel of the
compact set X,, and hence A'" is compact. ‘ , _
Similarly. we can prove that B" is compact. , (]

Remark 4.2. Note that Theorem 4.1 also depicts the structures of the
sets S and Y.

The value f(x,. V). for which (x,, yy) is a (weak) K-saddle point of
f(x, vyon X, x Y,. is called the (weak) K-saddle value of f(x, ») at (x,, ¥o)-

We denote by " the set of all weak K-saddle values of /(x, y) with
respect to X, x Y. That is,

VW= {./‘(-\'m Yo) | (X0, yo) €S W}'
By Theorem 4.1, we have
Vi =1(4%, B"),
and V% is compact under the conditions in Theorem 4.1.

Theorem 4.2. Lel X, and Y, be nonemply compact sets, and let
Jf{x, ¥) be a continuous vector-valued function on X, x Y. Then:

BT RECNETIE

JOTA VeV

(). if f(x,y)is-K -uniomr

mmwmax,, fix, v =
Yo, Xo . .

(i) We. b‘nl'y'pfové‘-”

'_ f(f f’)Gh(Yo) RARNERS o :
”f(x y )eh(Yu) such that

"};f( ) ICISWENN

Fx', y'yemin, max.,
/ S ST T

" by Lemma 2.2. That is.

fO )y =fix v -

where

S (x4, Yo} err)xin W M.

" Thus, we have

f(.f, )‘;) "',f(-\'un “.' 1= /\
from (8) and (9)., and
Slxo, yo)e V™.

by Lemma 3.2(i). This contras <

min,, V% c min, ma.
w

‘Next, we show the converw

f(X, y)emin,, mas , -
Yo \




L by Lemma 1(1) '

_ closed subset of the

1.

"1~ the structures of the

Jiih) K-saddle point of
ol v, y) at (xg. yo).
walues of f(x, p) with

AR

.ompact sets, and let
i« Y,. Then:
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(i) if f(x,y) is K°uniformly same-order on ¥,

min g max, f(x, y) minw V¥,
Yy Xo

'V'ﬁmmmaxwf(x y) mm V

xafwmmwf(x, v) maxw V”f,f" o
P N

.-maxmmwf (i y).=thax V¥,

(1) We only prove the ﬁrst equatlon Lct (X, y)emmw 48

f(& ) —f(x', ) ek o (8)
Since A(Y,) is compact by Lemma z"3.1(ii), we have .- N
BEVACE D en;,i“nwrr;e})xwf (x, ») + K,
by Lemma 2.2. That is,'
Y =S pe) K . ©
where |

S (xo, o) eminy maxy f (x, p), k'ek.
Yo Xo

“Thus, we have

S (&, ) = f(x0, y0) €K°,
from (8) and (9), and

flxo, po) eV,

) _by Lemma 3‘2(i). This contradicts f(X, §)emin, VY. Therefore,

min, V¥ < min,maxy f(x, y).
Yo Xo

Next, we show the converse inclusion relationship. Let

f(%, 9) emin, maxy, f(x, y).
Yo Xo

- thén.
‘_f(f :ﬁ)Eh(Yo) SIS, 7) ¢minymaxiy /(x,y), -~ then’ there '; exists -
F(x', y')eh(Y,) such that ’ .
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From Lemma 3.2, we have f(£, P)e V™. If (%, ) ¢min,, V¥, there exists
fx0, o) € V™ such that

S, y) f(xg,,y(,)ék"'. '

A However, e

| '(-ii)

Since V” is compact, the fol]owmg corollary 1sa d1rect consequence of
Lemma 2.2 and Theorem 4.2.:

Corollary 4.1. If the agsumptibnis-iﬁ “Theorem 4.2 hold, then

V¥ < max,-miny, f(x, v)
© Xg Yo

V¥ < miny, max, f(x, y) + K.
. } g

‘o Xy

That 1s, -

v (mmwmdxwf(\ V)+K> (maxw'min,,,f(x,_,.')_K>_
X d

Yo Xq 0 Yo
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