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Abbreviations

CLQA =corrected local quadratic approximation; DDRP=
dynamically defined reaction path; DRP = dynamic reaction
path; ES = Euler stabilization method; GS = Gonzalez and
Schlegel method; IMK = Ishida-Morokuma-Kormornicki
method; LQA = local quadratic approximation; MB =
Miillar-Brown method; MEP = minimum energy path;
ODE = ordinary differential equations; SDRP = steepest
descent reaction path; VRI = valley-ridge inflection.

1 INTRODUCTION

A reaction path is a pathway across a potential energy sur-
face connecting reactants and products. A potential energy
surface describes the changes in the energy of a molecular sys-
tem as its structure is varied. In constructing a potential energy
surface, one invokes the Born-Oppenheimer approximation to
separate the motion of the atoms or nuclei from motion of
the electrons. For two degrees of freedom, a potential energy
surface can be visualized as a hilly landscape. As illustrated
in Figure 1, the reactants and products are valleys on the sur-
face, and are separated from each other by ridges and mountain
ranges. A reaction is represented by motion across the potential
energy surface from the reactant valley, over a mountain pass
to the product valley, possibly through additional valleys rep-
resenting reactive intermediates. This pathway describes the
mechanism of the reaction, and can also be used to calcu-
late the reaction rate by variational transition state theory (see
Transition State Theory). Reaction paths have been the sub-
ject of some recent reviews.! =4 This article discusses a number
of methods for calculating reaction paths.

Of all the paths across a potential energy surface, consider
the one that requires the least increase in energy to get
from reactants to products. The transition structure is the
highest energy point on this lowest energy reaction path, and
can be found by various geometry optimization techniques
(see Geometry Optimization: 1 and Geometry Optimization:
2). Most methods for calculating reaction paths start from
the transition state and go downhill. It is difficult to define
an appropriate uphill path beginning with the reactants or
products, since all directions are uphill. The shallowest ascent
path can be defined (see gradient extremals,’ discussed below),
but will not necessarily reach the desired transition structure, or
even the lowest energy transition structure. A steepest descent
reaction path (SDRP) from the transition structure to reactants
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Transition Structure A

Second Order
Saddle Point

and to products is unique in a given coordinate system; it is
also termed the minimum energy path (MEP) and is usually
identified as the reaction path for the system. Figure 1 shows a
steepest descent reaction path on model surface. The steepest
descent reaction path can be followed in Cartesian coordinates
or any of a variety of internal coordinates, but each of these
paths is somewhat different since the steepest descent direction
depends upon the coordinate system. One coordinate system
has special significance from a dynamical point of view. In
mass-weighted Cartesian coordinates, the steepest descent step
is in the direction that a stationary molecule (i.e., without
kinetic energy) would be accelerated by classical mechanics.
The steepest descent reaction path in mass-weighted Cartesian
coordinates 1s also known as the intrinsic reaction coordinate
(IRC).% The same IRC can alsc be generated by following the
path in internal coordinates, provided that the appropriate mass
weighting is used.”

Steepest descent reaction paths are not the same as classical
trajectories on potential energy surfaces. Classical trajectories
have nonzero kinetic energy and can deviate quite widely from
the steepest descent path. However, if a trajectory were started
at the transition structure heading along the transition vec-
tor and all the kinetic energy were continuously removed, the
result would be an IRC. A dynamic reaction path (DRP)® is
a trajectory with kinetic energy added to one or more degrees
of freedom of the molecule, and can give some indication of
the dynamic effects in a reaction. The accurate simulation of
reaction rates and molecular dynamics requires the calculation
of many trajectories with appropriate sampling of initial condi-
tions to get statistically significant results (see Scaled Particle
Theory and Trajectory Simulations of Molecular Collisions:
Classical Treatment). Although some trajectory calculations
can be computed directly from quantum mechanical potential
calculations,? most classical trajectory studies are carried out
on analytical functions fitted to energy surfaces. Since global
fits to potential energy surfaces are difficult to obtain, simpler
methods for calculating rates from more limited data about
the surface are desirable. Statistical mechanical approaches
for reaction rates such as variational transition state theory and
reaction path Hamiltonian methods (see Reaction Path Hamil-
tonian and its Use for Investigating Reaction Mechanisms
and Transition State Theory) require only local information

Second Order Saddle Point

Valley-Ridge
Inflection Point

Figure 1 A model potential energy surface illustrating minima, transition states, reaction paths and a valley -ridge inflection point. Reproduced
with permission from H. B. Schlegel, in ‘Modemn Electronic Structure Theory’, ed. D. R. Yarkony. Copyright (1995) World Scientific Publishing

about the energy surface along the reaction path. Thus, reac-
tion path following methods are important for reaction rate
calculations as well as for determining reaction mechanisms.
If a reaction path must be started from a minimum, then a
unique uphill direction needs to be chosen. A shallowest ascent
path can be defined as a series of uphill steps, such that the
magnitude of the first derivative vector, or gradient, is always
a minimum (an extremum) along a constant energy contour.
This path is also called a gradient extremal.5 At any point
along a gradient extremal, the gradient is an eigenvector of
the second derivative matrix or Hessian (see Hessian Matrix).
Since a gradient extremal path is defined using local properties
of the potential energy surface (gradient and Hessian), one can

y®

Figure 2 Gradient extremal paths on the Miiller-Brown model
potential energy surface. Solid lines: contours; dotted lines: selected
steepest descent lines; bold lines: gradient extremals. Reproduced with
permission from J. Q. Sun and K. Ruedenberg, J. Chem. Phys., 1993,
98, 9707. Copyright (1993) American Institute of Physics
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readily check if a point is on the path. By contrast, the only way
to determine if a point is on a steepest descent reaction path
is to follow the path from the transition structure. The main
drawback of gradient extremal paths is that they tend to wander
about the potential energy surface, as shown in Figure 2,
without necessarily following the same valleys as the steepest
descent reaction paths. Furthermore, gradient extremals branch
or bifurcate more frequently than steepest descent reaction
paths and can have turning points. However, steepest descent
paths and gradient extremals coincide at stationary points and
at points where the curvature of the steepest descent path is
zero. Like steepest descent paths, gradient extremals depend
on the coordinate system. Methods for following gradient
extremal paths are outlined below; detailed discussions of the
features of gradient extremals are available in the literature.’

2 STEEPEST DESCENT REACTION PATHS

To describe the steepest descent reaction path, the coordi-
nates along the path, X(s) are written as a parametric function
of the arc length along the path, s. The path can then be
expanded in a Taylor series:

X(s)=X(so) + (s — sp) + 1/20"(s — sp)> + 1 /684 (s — 50)* -~ (1)

where 10 is the tangent and v! is the curvature. For a steepest
descent path, the tangent is parallel to the gradient or first
derivatives:

dx(s) _ _ 29
ds gt

TJO(S) =

)

where g(s) is the gradient at x(s). At the transition structure,
the gradient is zero, and the tangent is equal to the eigenvector
of the Hessian (or second derivative matrix) with the negative
eigenvalue. In mass-weighted coordinates, this corresponds to
the normal mode of vibration with the imaginary frequency.

The curvature, V', is the rate of change of the tangent, and
can be written in terms of the Hessian, H:

S A 5 (HY — @"HYOR°)
Vse—s—— =—— 3)
ds  ds? izl

The curvature vector indicates how sharply the reaction path
bends, and points toward the inside of the bend. The magnitude
of the curvature, «, is equal to the inverse of the radius of
curvature, ¥ = [V'| = 1/R, i.e., large curvature corresponds to
a tight bend with a small radius. At the transition structure
(TS), both the numerator and the denominator of equation (3)
are zero, however, the curvature can be found by applying
I’Hospital’s rule:

Pl = —(H - 26"H)D ' F'° — G*F'T°)0°), at the TS (4)

where F); = 3, Fiyi{ and Fij is the matrix of third
derivatives. F'v can be calculated via numerical second
differentiation of the gradient by displacing along the tangent.

Reaction path following methods yield a discrete set of
points X; along the path rather than a continuous function.
These points can be found by starting at the transition struc-
ture and using numerical methods to solve equation (2), the
differential equation that defines the steepest descent reaction
path. A variety of numerical methods are available for solving

ordinary differential equations (ODE) of one variable.1 Meth-
ods for solving differential equations are usually classified by
order, i.e., a second-order method gives the correct first and
second-order terms of the Taylor expansion of the exact solu-
tion. Most techniques for integrating differential equations are
explicit methods, in that the expression for the step does not
involve the gradient at the end-point of the step. However,
equation (2) is a stiff differential equation, and special care
must be taken in solving it.!! Implicit methods, i.e., ones that
require the gradient at the end-point of the step, are stable for
stiff differential equations whereas explicit methods may be
less stable and require much smaller step sizes.

2.1 First-order Methods

The method of Ishida, Morokuma, and Komornicki'? (IMK)
is shown in Figure 3(a). It is a modification of the explicit
Euler method that adds a stabilization step; hence it is also
known as the Euler stabilization method (ES). An explicit
Euler step of length o is taken from X; along the tangent
Vi to a point X/, = X; + af)? = X; — 0g;/|g:|. The energy and
gradient are calculated at X ;. The stabilization step consists of
minimizing the energy along the bisector of the angle between
—gl,y and X; — X/, ;. The minimum along the bisector is taken

(c)

2
X=X+ 112 O’V?_H

/ -
P

-'Il/, =0
P Ta=%+1RoV,
1

Figure 3 Reaction path following algorithms: (a) first-order method
of Ishida, Morokuma, and Komomicki (IMK), (b) first-order method
of Miiller and Brown (MB), and (c) second-order method of Gonzalez
and Schlegel (GS). Reproduced with permission from H. B. Schlegel,
in ‘Modem Electronic Structure Theory’, ed. D. R. Yarkony. Copy-
right (1995) World Scientific Publishing
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as the next point on the path, X;4;. For very small step sizes
or angles close to 180°, the stabilization step must be omitted.
In difficult regions of the potential energy surface, very small
steps may be needed to prevent oscillations about the true
ath.

P The Miiller-Brown method (MB) (Figure 3b)!? is an impli-
cit Euler method. A step of length o is taken from X; and
the energy is minimized under the constraint of constant step
length, |Xi+1 — Xil = 0. At the minimum, the residual gradient
is parallel to the step. Thus the implicit Euler step can also be
wrilten as Xi4) = Xi — 0841/ |gi+1l = Xi + 017,

2.2 Second-order Methods

Standard numerical methods such as second-order Runge-
Kutta could be used, but a more effective approach is to expand
the potential energy surface in equation (2) to second order and
integrate the resulting expression from x; to X;;;. This yields
the local quadratic approximation (LQA) of Page and McIver!*
which is an explicit second-order method.

dx gi+Hi(x —X)

ds B+ HGE =% ©)
Sun and Ruedenberg obtained improved performance by using
x, as the midpoint of the integration range rather than the
start.'® Page and Mclver also developed the CLQA method,
a correction to the LQA method involving a component of the
third derivatives.163

%i+1.0LQA = Xis110a + 1/6AT AsY;
AV = —(F'T° - G"F'1%)10), /13| (6)

Gonzalez and Schlegel'® (GS) dzvised the second-order
implicit method shown in Figure 3(c). A step of length 1/2
o is taken from X; to a pivot point, X}, (no calculation of E
or g at X’ ;). A step of length 1/2 ¢ is taken from the pivot
point and the energy is minimized subject to |Xi+1 — X[},| =
112 0. yielding the next point on the path, X;,;. The points
X.%?,,, and X4y form an isosceles triangle that is tangent to
the path at x; and x;4; by construction. Since two tangents to
a circle form an isosceles triangle, the reaction path between
% and X4+ can be represented by an arc of a circle. The total
step can be written as

X168 = % + 1/2070 + 1/2070, M

This approach is similar to the implicit trapezoid method for
integrating stiff differential equations,!! but uses an optimiza-
tion to obtain the final point.

The LQA, CLQA, and GS methods yield the exact tangent
and curvature vectors along the path in the limit of infinitesimal
step size, whereas the first-order methods reproduce only the
tangent. The GS and CLQA methods also give the correct
curvature vector at the transition structure, but the LQA
method does not.

2.3 Higher-order Methods

Fourth-order Runge-Kutta and various predictor~corrector
methods have been used successfully for reaction path
following, espezially on analytical potential energy surfaces.!$
Page and Mclver have extended the LQA and CLQA methods

to a family of higher-order methods that employ first, second
and higher derivatives of the potential energy surface.!
Gonzalez and Schlegel developed a series of higher-order
implicit methods for path following.?” One of these employs
the tangent and curvature at the beginning and end points of
the step to obtain a fourth-order implicit method:

Risrcse = X+ 1/200) + 1/207), .
+1/126%0) — 1712670, ®8)

2.4 Relaxation Methods

An alternate approach to finding a reaction path starts with
a set of points on an approximate path and then refines or
relaxes them until the appropriate conditions are met. Jasien
and Shepard describe a method for fitting the potential energy
surface around the reaction path.!® They calculate energies
and first and second derivatives at a number of points along
a reference path and fit a polynomial spline surface to the
data. The fitted surface is then used to improve the reference
path, and the process is repeated until it converges to the
steepest descent path. Elber and Karplus!? refined the path
by minimizing the integral of the energy along the path:
i EG)+EGi-1)

3 X —xil 9

s—ljiNE(‘( s ~
=i ), ey

i=]

This approach does not require the transition structure to be
optimized first and will also find any intermediates along
the reaction path if they exist. However, self-avoidance and
equal spacing constraints are needed so that the path does not
collapse into the minima, and these constraints cause the relax-
ation process to converge slowly. Stacho and Ban?® describe
a ‘dynamically defined reaction path’ (DDRP) procedure, in
which an initial path is improved by taking a steepest descent
step for each point and then redistributing the points to main-
tain equal spacing. After numerous iterations, this approach
converges to the steepest descent path and will correctly handle
multiple stationary points along the path. Ayala and Schlegel?!
refined the approximate path by optimizing the highest point
to the transition structure and requiring the remaining points to
satisfy the steepest descent reaction path equation. The number
of steps is comparable to conventional methods for transition
structure optimization and reaction path following.

2.5 Projected Frequencies and Coupling Matrix
Elements

In order to use variational transition state theory or reaction
path Hamiltonian methods (see Transition State Theory) to
calculate rate constants, one needs vibrational frequencies
perpendicular to the reaction path. These are obtained by
projecting out motion along the tangent, 1°. The projector,
P, and the projected Hessian, H, are given by

P=1-7%"H = PHP (10
The projected frequencies can then be calculated from the
projected Hessian in the usual fashion.2? If mass-weighted
Cartesian coordinates are used, rigid body translation and
rotation are also projected out. In addition to the projected
frequencies, one also needs the coupling matrix elements, B,
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between motion along the path and the normal modes of
vibration perpendicular to the path, I:,-.

R _-O(dLl' - [T

B,=v E_—v L; an
The second equality can be obtained by differentiating v L; =
0 by s, and recalling ' = dv°/ds. To obtain accurate projected
frequencies and coupling matrix elements, the reaction path
must be followed with a high degree of precision,? especially
near the transition state where the gradient is small, and also in
steep-sided valleys where small deviations from the true path
can cause large errors in the tangent and curvature vectors.

2.6 Bifurcation and Valley-Ridge Inflection Points

A reaction path in a simple valley will have projected fre-
quencies that are all real; equivalently all of the eigenvalues of
the Hessian for motion perpendicular to the path are positive.
If some of the frequencies are imaginary (or eigenvalues neg-
ative), the potential energy surface perpendicular to the path
has a maximum. This indicates that the path is on a ridge
rather than in a valley. The onset of the ridge is marked by
a valley-ridge inflection (VRI) point, where a projected fre-
quency is zero.* Algorithms have been developed for locating
VRI points.2

The presence of a VRI point indicates that a simple valley
branches or bifurcates into two valleys. A bifurcation can occur
as a valley descends from a transition structure and splits into
two valleys. It can also occur as a valley rises and branches
to two transition structures. In potential energy surfaces with
bifurcations, reaction paths computed in different coordinate
systems may follow different valleys, depending on which side
of the ridge they fall. Note, however, that a steepest descent
reaction path passing through a VRI point will stay on the
ridge until it reaches a stationary point, rather than bifurcating
at the VRI point. As shown in Figure 1, even if the path is
displaced sideways from the ridge, it will follow the ridge for
quite a distance before descending into one of the valleys.

3 GRADIENT EXTREMALS

When a point is on a gradient extremal path, the gradient
is an eigenvector of the Hessian.®

H(G)g() = A8(x) 12)

If this relation is substituted into equations (2) and (3), it
can be seen that the steepest descent path through any point
on a gradient extremal has zero curvature. For a quadratic
expansion of the energy about an arbitrary point on the
potential surface, a step of AX can be taken toward the gradient
extremal path,

Ai=oau—-PH 2P =1 - i) (13)
where u is the eigenvector of H that corresponds to the
eigenvalue A. The step consists of a displacement along the
eigenvector and a Newton-Raphson minimization step in the
space perpendicular to the path.26 In practice, the total step
length is adjusted so that it does not exceed a trust radius. It is
possible to avoid calculating the Hessian at each step by using
a suitable updating scheme.?’

The condition for being on the gradient extremal path,
equation (13), can also be written as:
PHg = O;P=1-37%" = —g/|gl (14)

Equation (14) can be used to search for the gradient extremal
path directly by stepping along the path and solving for P H
g= 0 or minimizing (P H g)2 numerical differentiation can
be used to compute H g = (g(x + hg) — g(x))/h, thus avoiding

the calculation of the full Hessian.2’8
Equation (14) can be expanded in the neighborhood of Xo:

PHg + V(PHg)R —Xp)+--- =0 (15)
V(PHg) = P(F + H? — ™Hi")H)
— 5" H? - G™HTY)H) (16)

where F;j =3, Fijxg and F;j; is the matrix of third deriva-
tives. If the gradient extremal path is also expanded about
a point on the path, X = Xy + V(s — sp) + - - - and substituted
into equation (15), then v, the 1angent to the gradlent extremal
path, can be obtained by solving:Z®

V(PH3)V = 0; V(PHg) = PF + H2 - \H
on the gradient extremal path a7

Note that, if the third derivative term is not zero, then the
tangent to the gradient extremal is not an eigenvector of H.
Instead of stepping along the eigenvector, ¥, an improved
method for following the gradient extremal path described by
Sun and Ruedenberg?® steps along V, the correct tangent, so
that X;,; = X; + oV;. The gradient and Hessian are calculated
at x;,1, and equations (15) and (16) can be used to calculate
a correction step,

%1 =X, — A[AA']"!(PHg) (18)
where P H g and A = PV(PHg) are computed at X,,, and a
generalized inverse is used.

A bifurcation in a gradient extremal path occurs when
there is more than one independent solution to equation (16).
Appropriate cautions are need to follow a gradient extremal
through bifurcations.?® Unlike steepest descent paths, gradient
extremals can also have turning points where an uphill path
changes to a downhill path or vice versa. These are character-
1zed by a tangent perpendicular to the gradient, and can occur
near cirques and cliffs on potential energy surfaces. While
steepest descent reaction paths generally simplify the descrip-
tion of potential energy surfaces, the multitude of bifurcations
and turning points encountered with gradient extremals can
lead to complicated topology even for small systems such as
H,CO.®

4 RELATED ARTICLES

Reaction Path Hamiltonian and its Use for Investigating
Reaction Mechanisms; Scaled Particle Theory; Trajectory
Simulations of Molecular Collisions: Classical Treatment;
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LLAM = large amplitude motion; RP = reaction path;
RPH = reaction path Hamiltonian; RSH = reaction surface
Hamiltonian; SAM = small amplitude motion; SRP = specific
reaction parameter; SRPH = solution reaction path Hamilto-
nian.

1 INTRODUCTION

Key issues in chemistry are the description and under-
standing of mechanism and dynamics of chemical reactions.
In principle, this understanding can be obtained by designing
and carrying out suitable experiments. However, in practice
it is rather difficult to get a detailed mechanistic and dynamic
description of even the simplest chemical reactions. This has to
do with the fact that apart from reactants, products, and possi-
ble stable intermediates, all other molecular forms encountered
during a reaction have such a short lifetime that standard
experimental means are not sufficient to detect and describe
them. Progress in modemn laser spectroscopy seems to pro-
vide an access to transient species with lifetimes in the pico-
to femtosecond region;! however, much more development in
this research area is needed to make this approach a standard
experimental method for describing reaction mechanism and
reaction dynamics in detail.

Today, computational investigations utilizing state-of-the
art methods of quantum chemistry, in particular ab initio
methods, provide the major source of knowledge on reaction
mechanism and reaction dynamics. For this purpose, the inter-
actions between the atomic and/or molecular species involved
in a reaction are calculated and analyzed with the help of ab
initio methods.



