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Abbreviations

BFGS = Broyden-Fletcher-Goldfarb- Shanno; DFP =
Davidson-Fletcher-Powell; EF = eigenvector following;

GDIIS = geometry optimization by direct inversion of the
iterative subspace; LST = linear synchronous transit; QST =
quadratic synchronous transit; RFO = rational function opti-
mization.

1 INTRODUCTION

The concept of a potential energy surface is central to
the discussion of molecular structures and geometry optimiza-
tion. The potential energy surface describes the energy of the
molecule as a function of its geometry (i.e., bond lengths,
valence angles, torsions, and other internal coordinates). Equi-
librium geometries are local minima on the potential energy
surface for a molecule; transition states correspond to saddle
points on the potential energy surface. Geometry optimiza-
tion is the process of finding these minima and saddle points.
Because molecules may contain many atoms and have many
coordinates to describe the molecular geometry, it is difficult
to calculate or depict the entire potential energy surface. How-
ever, a simplified two-dimensional potential energy surface can
be visualized as a hilly landscape with valleys representing
reactants, intermediates, and products; transition states cor-
respond to mountain passes connecting the valleys. Figure 1
shows a simple two-dimensional potential energy surface, and
illustrates some of its features.

Potential energy surfaces arise naturally from the
Born-Oppenheimer approximation. Because the electrons are
so much lighter than the nuclei, the electronic part of the
wavefunction can readjust almost instantaneously to any
nuclear motion. In the Bom-Oppenheimer approximation,
a potential energy surface is obtained by solving for the
electronic energy at a series of fixed nuclear positions.
This is usually quite satisfactory for most ground state
systems. However, for photochemical systems, which involve
excited state surfaces as well as the ground state, one
must go beyond the Born-Oppenheimer approximation to
treat molecular motion near seams, conical intersections,
and weakly avoided crossings (see Nonadiabatic Derivative
Couplings and Photochemistry).

Potential energy surfaces make it possible to discuss
molecular structures. The equilibrium geometry of a molecule
corresponds to a minimum on the potential energy surface.
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Figure 1 A model potential energy surface illustrating minima, transition structures, second-order saddle points, a valley-ridge inflection
point. and reaction paths (Reproduced from Ref. 2a, with permission from World Scientific Publishing)

There may be several minima, representing different conform-
ers and isomers of the molecule, or representing reactants,
intermediates, and products of a chemical reaction. If the valley
on the potential energy surface is deep with steep sides, then
the structure of the molecule is fairly rigid and well defined.
However, if the valley is broad or shallow, the molecule is
flexible or reactive, and the concept of molecular structure is
less well defined.

A reaction can be represented by a movement from the
valley of the reactants to the valley of the products. Depending
on the nature of the reactants and products, the reaction
may be a simple conformational change, an isomerization, a
unimolecular reaction, or a bimolecular reaction. The particular
path across the potential energy surface describes the reaction
mechanism. The transition structure is the highest point on
that reaction path which requires the least energy to get
from the reactants to the products. Its energy, structure and
vibrational frequencies can be used to predict reaction rates
by transition state theory (see Transition State Theory). Both
minima and transition structure can be located by geometry
optimization. Efficient methods are also available for following
reaction paths once the transition structure has been located
{see Reaction Path Following).

Since accurate functions for potential energy surfaces are
difficult to obtain even for very small systems, most geometry
optimization methods find equilibrium structures and transi-
tion structures directly, without constructing the full poten-
tial energy surface. Efficient geometry optimization methods
employ the first derivatives of the potential energy surfaces
with respect to the geometric parameters. Usually these are
obtained analytically (see Gradient Theory), but for theoretical
methods without analytical derivatives they can be calculated
numerically. For some algorithms, second derivatives can also
be used. '

The first derivatives of the potential energy surface are
also called the gradient. In classical mechanics, the nega-
tives of the first derivatives of the potential are the forces
on the atoms in the molecule, —3V /dx = F,. Thus, points on
the potential energy surface where the gradient or forces are

zero are called stationary points. In a topological analysis of
the potential energy surface, these points are known as criti-
cal points. The matrix of second derivatives of the potential
energy surface is termed the Hessian matrix or the harmonic
force constant matrix. At a critical point, diagonalization of
the mass-weighted force constant matrix yields the vibrational
frequencies and normal modes. The number of negative eigen-
values of the Hessian or the number of imaginary frequencies
at a stationary or critical point is known as the index of the
critical point. A critical point of index O is a minimum and a
critical point of index 1 is a transition structure.

For a point on the potential energy surface to be a min-
imum, it must satisfy two conditions. The first derivatives,
or equivalently the gradient or the forces, must be zero (i.e.,
they must be a stationary or critical point). If the first deriva-
tives are not zero, there is a nearby point that is lower in
energy. Secondly, the second derivative matrix or Hessian or
force constant matrix must be positive definite (i.e., index 0).
In other words, all the eigenvalues of the Hessian must be
positive for a minimum or all of the vibrational frequencies
must be real (i.e., no imaginary frequencies). Note that overall
translation and rotation of the molecule and any redundancy
in the internal coordinates must be removed before obtaining
the eigenvalues of the Hessian. If one or more eigenvalues are
negative, then the potential surface is a maximum along these
directions and the point is not a minimum but a saddle point.
Figure 1 shows a number of minima.

For a point to be a transition structure, the first derivatives
must be zero and the energy must be a maximum along the
reaction path connecting reactants and products. The point
must also be a minimum for all directions perpendicular
to the path. If it is not a minimum in these directions,
there is a nearby path with a lower barrier and a lower-
energy transition structure. Hence, a transition structure is a
critical point of index 1, i.e., one of the eigenvalues of the
Hessian must be negative and all the other eigenvalues must
be positive. Equivalently, a transition structure must have one
and only one imaginary frequency; all the other frequencies
must be real. The eigenvector of the Hessian corresponding
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to the negative eigenvalue, or the normal mode of vibration
corresponding to the imaginary frequency, represents motion
along the reaction path and is termed the transition vector.
A transition structure is also called a first-order saddle point.
An n-th-order saddle point has n negative eigenvalues of the
Hessian, or n imaginary frequencies. This corresponds to a
point that is a maximum in n directions, and hence does not
represent a transition structure. Figure 1 shows a number of
transition structures and second-order saddle points.

2 METHODS FOR FINDING LOCAL MINIMA

Finding an equilibrium geometry involves an unconstrained
optimization on the potential energy surface. Algorithms for
minimization of nonlinear functions of many variables are dis-
cussed extensively in the numerical analysis literature.! For
the present discussion these can be grouped into three broad
categories: methods that use only the energy (such as univari-
ate search and simplex), gradient methods (conjugate gradi-
ent, quasi-Newton, etc.), and algorithms that require second
derivatives (Newton or Newton-Raphson methods). Energy-
only methods are most widely applicable, but are the slowest
to converge. Second derivative methods converge very fast,
but analytic second derivatives are available only for a lim-
ited number of theoretical methods and are significantly more

costly than gradient calculations. Gradient-based algorithms -

are the methods of choice for most levels of theory. If ana-
lytical gradients are not available, it is usually more efficient to
calculate them numerically, rather than to use an energy-only
optimization method. Algorithms for geometry optimization
have been reviewed in a number of recent articles® (see also
Geometry Optimization: 2).

In Newton and quasi-Newton methods, the potential energy
surface is approximated as a quadratic function:

E(X) = Eg + gAY + (1/2)AX'H AX
gX) =g+ H AX ()

where Ax = X — Xy, g is the gradient or first derivative, -and
H is the Hessian or second derivative. At the minimum, the
gradient is zero and the step to the minimum can be obtained
by solving a set of linear equations:

EX)=go+HAX=0
Ax=-H g ()]

This is the Newton step and is the basis of most gradient
optimization methods. A flowchart of a typical quasi-Newton
optimization method is shown in Figure 2.

The efficiency of a quasi-Newton type geometry optimiza-
tion depends on six factors: (a) the initial geometry, (b) the
coordinate system, (c) the initial guess for the Hessian, (d) the
line search, (e) the Hessian updating method, and (f) step size
control. These factors are discussed in the following para-
graphs.

Obviously, the closer the initial guess to the final optimized
geometry, the fewer the steps that will be needed. Good initial
structures for electronic structure calculations can be obtained
using graphical user interfaces and molecular modeling pro-
grams, from molecular mechanics calculations, or from lower-
level electronic structure calculations. For molecules with

Choose coordinate system
Input starting geometry
Obtain initial estimate of Hessian

R

Calculate energy and gradient j

v

Minimize along line between .
current point and previous point

R}

[ Update the Hessian

v

Use Hessian and gradient to take a step
If necessary, restrict step size

v

Check for convergence
on gradient and displacement

¢no

l Check for maximum cycles
s

L——l Update geometry ‘

Figure 2 Flowchart for quasi-Newton algorithms for geometry opti-

mization (Reproduced from Ref. 2a, with permission from World
Scientific Publishing)

—

multiple minima, the initial structure should be close to the
desired local minimum. Finding the global minimum is a much
more difficult problem (see Genetic Algorithms: Introduc-
tion and Applications; Genetic and Evolutionary Algorithms;
Macromolecular Structure Calculation and Refinement by
Simulated Annealing: Methods and Applications; and Simu-
lated Annealing) that is outside the scope of this discussion.?

The coordinate system can have a very large effect on
the rate of convergence of a geometry optimization. Carte-
sian coordinates are the simplest and provide an unambiguous
representation for any structure. However, Cartesian coordi-
nates are strongly coupled; for example, to change the length
of a bond, one has to change the x, y, and z coordinates of
two or more atoms. An alternative is to use internal coordi-
nates, such as bond lengths, valence angles, dihedral angles,
etc. For acyclic molecules, it is easy to construct a nonredun-
dant internal coordinate system, i.e., one that contains only
3N — 6 internal coordinates for an N-atom molecule. For a
cyclic molecule, a coordinate system that contains all of the
bonds and angles would have more than the requisite 3N — 6
coordinates. For example, a six-membered ring has 6 bonds, 6
valence angles, and 6 dihedrals for a total of 18 coordinates,
whereas there are only 12 nonredundant internal degrees of
freedom. For molecular systems, optimizations in redundant
or natural intemal coordinates appear to require significantly
fewer optimization steps than nonredundant internal coordi-
nates or Cartesian coordinates.® The transformation of Carte-
sian energy derivatives to redundant internal coordinates and of
redundant internal displacements to Cartesians can be carried
out using a generalized inverse.?

The initial estimate of the Hessian will also affect the rate
of convergence. The closer the guess is to the correct Hessian,

PRUOICERS
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the faster the convergence. Cartesian coordinates for molecules
have strong anharraonic coupling between coordinates and the
Hessian has many off-diagonal elements. However, if a good
estimate of the Hessian is available, the rate of convergence
of optimizations in Cartesian coordinates can be quite satisfac-
tory. In internal coordinates, the coupling is much smaller and
the Hessian is more nearly diagonal. For cyclic molecules, sim-
ple, nonredundant internal coordinates (e.g., coordinates that
do not include ring closure bonds) are also strongly coupled,
but for redundant or natural internal coordinates the coupling
is much smaller and the Hessian can be nearly diagonal. An
initial empirical estimate of a diagonal Hessian can be quite
satisfactory for redundant internal coordinates and can be read-
ily transformed to other coordinate systems. The initial Hessian
for electronic structure calculations can also be computed by
molecular mechanics or semiempirical methods. The Hessian
from an optimization or a frequency calculation at a lower
level of theory is often a very good initial guess for an opti-
mization at a higher level. Some difficult optimizations may
require an accurate initial Hessian computed analytically or
numerically at the same level of theory as that used for the
optimization.

As illustrated in Figure 2, the main loop of a quasi-Newton
geometry optimization consists of (i) an energy and gradient
evaluation, (i1) a line search, (iii) the Hessian update, (iv) the
prediction of the change in geometry, and (v) a convergence
test. A one-dimensional minimization along the line between
the current point and the previous point can improve the
optimization by taking into account the nonquadratic nature
of the potential energy surface. An accurate line search would
require additional calculations, but an approximate search
can be carried out without any extra energy or gradient
calculations. A cubic or quartic polynomial can be fitted to the
energy and directed gradient at the current and the previous
point, and the minimum for the line search can be found using
the polynomial.

The next step in a quasi-Newton optimization is the update
of the Hessian, from H°¢ to H™*. We wish to adjust the
Hessian in the quadratic approximation represented by equa-
tion (1) so that it fits the gradient g, at the current point X;
and the gradient g;_;-at the previous point. This requirement
leads to:

H™ A% = AF 3)

where AY=3X —X_; and Ag=g —g;-1. There are
numerous methods for updating H to give H™¥; some
of these methods are Munagh-Sargent, symmetric Powell,
Davidson-Fletcher-Powell (DFP), optimally conditioned, and
Broyden-Fletcher-Goldfarb-Shanno (BFGS).! This latter
update is generally accepted as the best formula for
minimization, and can be written as:

H™* = Hold + A§A§‘/AE‘A§ — HoldA;A}IHold/A;tHoldA; 4)

This update is symmetric and positive definite, and minimizes
the norm of the change in the Hessian. Corresponding formulas
to update the inverse of the Hessian are also available.!

The quasi-Newton geometry optimization methods and
related approaches discussed above are suitable for finding
minima for small to medium-sized molecules. For difficult
cases, the Hessian can be recalculated every few steps or at
each step, rather than by an updating scheme. This is equiva-
lent to a Newton or Newton-Raphson algorithm.

Once the Hessian has been updated, a Newton step given
by equation (2) is taken on the model quadratic surface. For
this step to be in the downhill direction, the Hessian must be
positive definite, i.e., all of the eigenvalues must be positive.
Positive definite character can be tested and enforced by using
a modified Cholesky decomposition to calculate the inyerse,
or by diagonalizing the Hessian and adjusting the offénding
eigenvalues.

If the structure is far from the minimum (e.g., large gra-
dients) or the potential energy surface is very flat (one or
more small eigenvalues of the Hessian), then a simple Newton
step may be too large, taking the molecule beyond the region
where the model quadratic surface is valid. Under these cir-
cumstances, it is wise to take a shorter step.!? One can limit
the step to be no larger than a trust radius 1. Minimizing the
energy in equation (1) subject to the constraint that |Ax| < T
yields a step equal to:

AX=—-H-)g 5)

where A <0 and A is less than the lowest eigenvalue of
the Hessian; A is adjusted so that the constraint is satisfied.
If b; are the eigenvalues of the Hessian and V; are the
corresponding eigenvectors, the trust radius limited step can
also be written as:

- - v;(¥.8) .
Xyl =X —z ASLISPY < min(b;, 0) and

| ;- Ay
2)* )
o vik @

Jz1

As the optimization proceeds, the trust radius can be increased
or decreased, depending on whether the change in the energy
predicted by the model surface compares well or poorly with
the actual calculated energy difference.

The rational function optimization (RFQ) method® of con-
trolling the step size involves minimizing a rational polynomial
approximation of the surface:

E(X) = Eo + [gHAT + (1/2)AT'HAR]/(1 + aAX'AX) (7))

rather than a model] quadratic surface, equation (1). The param-
eter ¢ is adjusted so that the step is downhill and less than or
equal to the trust radius 1. This leads to a set of equations
equivalent to equations (5) and (6). An advantage of both the
trust radius approach and the RFO method is that they will
step in the downhill direction even when the Hessian is not
positive definite, whereas the simple Newton method (equa-
tion 2), will step toward a saddle point if the Hessian is not
positive definite.

The GDIIS method® (geometry optimization by direct
inversion of the iterative subspace) is an alternative approach
for predicting the change in the geometry that is comparable
in efficiency to the quasi-Newton methods. A linear combina-
tion of the current and previous points is chosen so that the -
Newton step is a minimum:

;’i = EC]-:\"]‘ and ;H—l —;',' = H—l Ecjgj such that
3 cj=1and [%iy1 ~ x| is a minimum ®)

The GDIIS approach does not depend as critically on the
quality of the Hessian as quasi-Newton methods. It can be
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used with a constant Hessian or with updating. If the Hessian
is diagonal or a constant and a sparse inverse Hessian is used,
the GDIIS method can also be quite efficient for large systems.

For very large molecules, the storage and diagonalization
or inversion of the full Hessian can become too costly. One
alternative is to use a sparse or blocked Hessian in a quasi-
Newton scheme.l? Another alternative is to use a conjugate
gradient approach,! which avoids the use of a Hessian. The
next point is given by:

Xipt =X +as; 5= —g +[@ - 8-1)' 8/8 &1 (9)

where « is found by a line search that minimizes the energy.

At the end of each optimization step, there is a test for
convergence. Checking the difference in the energy is not
very sensitive, because the energy changes very little near
the minimum. Examining the gradient (magnitude, root mean
square, and/or maximum component) is a better convergence
test. It may also be desirable to test the predicted displace-
ments, since for fairly flat potential energy surfaces these can
be large even if the gradient is small.

After an optimization has converged, one should test
whether the structure is a true minimum. Since optimizations
tend to retain the starting symmetry (because gradients belong
to the totally symmetric representation), a lower-energy, lower-
symrnetry structure could exist nearby. This can be checked by
calculating the full second derivative matrix or by calculating

the vibrational frequencies (the Hessian used for the optimiza-

tion is not sufficient since it normally contains no information
about lower-symmetry distortions). For a minimum, all of the
eigenvalues must be positive or all of the vibrational frequen-
cies must be real.

3 METHODS FOR FINDING TRANSITION
STRUCTURES

Quasi-Newton methods are quite reliable for minimizations.
Similarly robust algorithms are not available for transition
structures, since it is usually not possible to partition the prob-
lem in advance into a maximization in a fixed one-dimensional

Transition Structure A

Maximum on LST

space and a minimization in the remaining space. The direc-
tion of maximization normally must be determined during the
course of the optimization. A variety of methods for find-
ing transition structures exist and are discussed in a number
of review articles®>’ (see Transition Structure Optimization
Techniques).

One approach for optimizing a transition structure would be
to transform the transition structure search into a minimization.
Since the norm of the gradient is zero at the transition structure,
one could minimize the gradient norm.® However, the gradient
norm surface has many more minima and maxima than the
original surface, not just at the stationary points of the original
surface but also at bumps and shoulders of the original surface.
Thus a gradient norm optimization could easily converge to
an undesired feature. The GDIIS method can have similar
problems unless an appropriate transition vector is maintained
in the Hessian. In the associated surface method® a transition
structure search is changed into a minimization by changing
the sign of the lowest eigenvalue so that the Hessian is
positive definite. If started within the quadratic region of
the transition structure, this approach will converge. Under
unfavorable circumstances, it may converge to some other
low-lying transition structure on the surface, rather than to
the desired transition structure.

A regular quasi-Newton optimization will converge to a
transition structure provided that the initial guess is within
the quadratic region and the Hessian has a suitable negative
eigenvalue and eigenvector at each step in the optimization.
However, the quadratic region around a transition structure
may be much smaller than around a minimum. Consequently,
the radius of convergence of a simple quasi-Newton algorithm
may be much smaller, and special techniques need to be
employed to get close to the transition structure.

The linear synchronous transit (LST) and quadratic syn-
chronous transit (QST) approaches!'® may be useful for getting
closer to the transition structure. In the LST approach, the reac-
tion path between reactants and products is approximated by
a straight line (usually in distance matrix space or in inter-
nal coordinates) and a maximum is found along this line.
Figure 3 shows some examples of LST and QST paths. The

Structure B

Figure 3 A model potential energy surface illustrating linear synchronous transit (LST) and quadratic synchronous transit (QST) paths
(Reproduced from Ref. 2a, with permission from World Scientific Publishing)
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maximum on the LST path is an upper bound to the transi-
tion structure energy, but may be some distance from the true
transition structure if the actual reaction path is very curved.
Under favorable circumstances, it may be close enough to the
quadratic region of the transition structure for a quasi-Newton
method to converge.

If a reaction is dominated by one coordinate (e.g., a tor-
sion angle for a conformational change, or a bond length for
a bond making/breaking reaction), then it may be possible
to step along this coordinate while optimizing the remaining
coordinates. This is termed coordinate driving. Under favor-
able circumstances, one can climb uphill toward the desired
transition structure, but at the cost of numerous constrained
optimizations. In unfavorable cases, one may end up climbing
the wrong hill or walking up the wrong valley.

Alternative approaches that try to climb to the transition
state from both sides simultaneously can be more successful !
A smal! step is taken from a point on the reactant side toward
a point on the product side. Then the energy is minimized in a
plane perpendicular to the step or such that the distance to the
point on the product side is constant. A similar step is taken
for the point on the product side. After several steps, when
the two points are close enough to each other, the transition
structure can be found by interpolation and quasi-Newton
optimization.

With a suitable initial guess for the transition structure (if
necessary. using one of the methods discussed above to get
close to the transition structure). a modified quasi-Newton
method can be used to optimize the transition structure. The
flowchart is the same as Figure 2. A family of related proce-
dures for quasi-Newton-like transition structure optimization
go by names such as RFO, eigenvector following (EF), and
walking up valleys.* These methods take a controlled step
toward a maximum along the lowest eigenvector and toward
a minimum in the remainder of the space. This can be devel-
oped either in the trust radius approach (equation 5), or by
the RFO method (equation 7), and is best done in terms of
the eigenvectors and eigenvalues of the Hessian. If b; and ¥;
are the eigenvalues and eigenvectors of the Hessian, then the
RFO or EF step toward a transition structure can be written
analogously to equation (6):

TG 5 oAy

S =X —a (‘—b‘—](l% +ZM (10)
There are several ways of choosing Ag, A, and a so that the
optimization takes a step toward the transition structure but
does not exceed the trust radius.5 However, the following
conditions must be fulfilled: to step uphill in the shallowest
ascent direction, b < Ag < b2/2; to step downhill in the
remainder of the space, A <0 and A < ba.

The RFO and EF family of optimization methods can
proceed toward the transition structure even when started
outside the quadratic region. However, the Hessian must have a
suitable lowest eigenvector that leads uphill to the appropriate
transition structure. It is possible to follow an eigenvector other
than the lowest one by rescaling the coordinate system so
that the desired eigenvector is the lowest one. Note, however,
that not all transition structures can be reached by EF from a
minimum.

Since the Hessian for a transition structure search must
have one negative eigenvalue, the BFGS method is unsuitable

since it is usually positive definite. The Bofill update!? appears
to be quite satisfactory and consists of a combination of the
symmetric Powell and Murtagh-Sargent updates:

AHgp = [(Ag — HAX)AT + AX(AZ — HAT) /AR AR
- [(Az - HAX)AJJATAR/(AR'AZ) (1)
AHys = (Ag — HAX)(Ag — HAX)'/AX' (Ag — HAX)Y (12)
AHposn = ¢ AHgp + (1 — $)AHus;
¢ =1-[AF'(Ag - HADP/|A%’|Ag - HAZ?  (13)

The line search for transition state optimization must be
done more carefully than for minimization. If the step is
predominantly along the transition vector, one needs to search
for a maximum; if it is predominantly in the remaining space,
one must search for a minimum. However, if the step has
significant contributions from both parts, then the line search
should be skipped, or it should look for a minimum in the
gradient norm.

A difficulty with quasi-Newton methods for transition struc-
ture searching lies in choosing and maintaining a suitable
direction for the transition vector. The LST or QST path can
provide a guide for the optimization. Several gradient-based
methods are available that alternate between maximizing along
the path and minimizing perpendicular to the path.!* Another
method uses a QST path to control an EF approach.!* Starting
from a reactant-like structure and a product-like structure, a
few steps are taken toward the maximum along the LST path.
Then an EF method is used to converge to the transition struc-
ture. At each step the QST path through the current estimate of
the transition structure and the reactant-like and product-like
structures is used to select the appropriate eigenvector of the
Hessian to be used for the EF method.

The steepest descent reaction path (see Reaction Path
Following) is usually calculated after the transition structure
has been located. There are some approaches that calculate
both in the same procedure. These methods start with an
approximate reaction path represented by a series of structures
interpolated between reactants and products. The path is suc-
cessively improved by a series of relaxation steps. Elber and
Karplus'*® refined the path by minimizing the integral of the
energy along the path under the constraint of equally spaced

points:

1 i EG)+EG-))

1 i - -
s=7 /x° EGE)as~ 1 L - Fl (4)

i=1

Stacho and Ban!*P improve the path by taking a steepest
descent step for each point and then redistributing the points
to maintain equal spacing. Ayala and Schlegel'* refine the
path by optimizing the highest point to the transition struc-
ture and requiring the remaining points to satisfy the steepest
descent reaction path equation. Early implementations were
used with molecular mechanics methods and required a large |
number of steps;'*P recent methods are nearly as efficient as
conventional transition structure and reaction path following
calculations on the same reaction, and are suitable for elec-
tronic structure calculations.!%

Once a transition structure optimization has converged, one
must verify that it is a true transition structure and that it
connects the desired reactants and products. The full Hessian
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needs to be calculated at the same level of theory as the opti-
mization. There must be one and only one negative eigenvalue
for the structure to be a transition structure. Equivalently, there
must be one and only one imaginary frequency. The eigenvec-
tor corresponding to the negative eigenvalue or the normal
mode corresponding to the imaginary frequency should be
inspected to confirm that motion along this coordinate con-
nects reactants to products. A scan of the energies along an
LST path connecting the transition structure to reactants and
to products can be used to check if there are any additional
transition structures along the reaction path. A better approach
is to follow the steepest descent reaction path or intrinsic reac-
tion coordinate from the transition structure to reactants and
to products (see Reaction Path Following).
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Abbreviations

CG = conjugate gradient; CPU = central processing units;
QN = quasi Newton; SD = steepest descent; TN = truncated
Newton.

Glossary

Convergence order, p
The largest number such that a finite limit 8 (the convergence
ratio) exists for a sequence {x;} where




