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Abstract. We present several new results on the asymptotic behavior of non-
linear semigroups of holomorphic mappings on the open unit balls of complex
Banach and Hilbert spaces.

Let X be a complex Banach space and let D C X be a domain (that is,
an open connected subset of X). Recall that a mapping f : D — X is called
holomorphic if it is Fréchet differentiable at each point of D [9]. The set of all
holomorphic mappings from D into X will be denoted by Hol(D, X).

Definition 1. Let D be a domain in X and let g € Hol(D,X). The mapping
g s said to be a semi-complete vector field on D if the Cauchy problem

o) { @row=0

has a solution v(-,z) : RY — D which is well-defined on all of Rt for each
tnitial datum x € D.

Note that since any g € Hol(D, X) is locally bounded (hence locally Lips-
chitzian), this solution is unique and the family {S(¢)}+>0, defined by S(t) :=
v(t,-), is a one-parameter semigroup (flow) of holomorphic self-mappings of D,
ie., ‘

S(t+s)=S5()oS(s) forall ¢,s,>0
) _
@ S(0) =1,

where o denotes the composition operation and I is the restriction of the iden-
tity operator on X to.D. In the case where this flow consists of automorphisms:
of D it can be extended-to-a one parameter group and the Cauchy problem (1)
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has a unique solution u(-,z) : R — D defined on all of R = (—00, 00) for each
z € D. The converse is also true. In such a situation the mapping g is said to
be a complete vector field (see 4, 15)).

We observe that if the solution S(¢) = v(¢,-) of (1) is known, then g €
Hol(D, X) can be recovered as the strong limit

. z—=St)x

@) 9(z) = lim —
(8(t)z = v(t,z)), ie., —g is the right derivative of the semigroup S() at
zero. Therefore the mapping g is seen to be the infinitesimal generator of the
semigroup.

As a matter of fact, for hyperbolic domains the converse is also true: If for
a given semigroup {S(¢) : ¢ > 0} of holomorphic self-mappings of D, which
is continuous in ¢ > 0, the strong limit g(z) in (3) exists for all z € D, then
v(t,z) = S(t)z is the solution of the Cauchy problem (1) for all ¢ > 0 and

"~z € D. In other words, g € Hol(D, X) is a generator of a flow on D if and

only if it is a semi-complete vector field (see, for example, [12]).

Let D be a domain in X and let g be a semi-complete vector field on D.
Suppose that S(t) is the semigroup of holomorphic mappings generated by g.
The uniqueness of the solution of the Cauchy problem (1) implies that the null
point set of g in D coincides with the common fixed point set of S(¢), i.e.,

(4) Nullpg = [ | FizpS(2).

>0

3

In the theory of evolution equations this set is usually called the stationary
point set of the semigroup.

Definition 2. Let g be a semi-complete vector field on a domain D in X with
Nullpg # ¢. A pointa € Nullpg is said to be locally uniformly attractive if the
semigroup S(t) generated by g converges to a in the topology. of local uniform
convergence over D (see [5], [10]).

Definition 3. Let D be a domain in a Banach space X and let G(D) be the
family of all semi-complete vector fields on D. A mapping g € G (D) is said to
be a strongly semi-complete vector field if it has a unique null point in D which
is a locally uniformly attractive fized point for the semigroup generated by g.

Let 0(A) denote the spectrum of a bounded linear operator A: X — X. Itis
known [12] that if D is a bounded domain, then g € (D) with g(r) =0, 7 € D,
is strongly semi-complete if and only if there is &€ > 0 such that ReA > ¢ >0
for all X € o(g/()). Such a point 7 is sometimes said to be strictly regular.

In this paper we will give several sufficient conditions for f € Hol(D, X)
"to be strongly semi-complete on the open unit ball D of X and obtain rates of

—

CoTVergence for the semigroups generated by such mappings-
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Let X* be the dual of X. By (z,z*) we denote the action of a linear
functional z* in X* on an element z of X.
The mapping J : X — 2%~ defined by

(@) ={a" € X" (z.a") = al® = |o*|?}, =zeX,
is called the (normalized) duality mapping. '
Theorem 4. Let D be the open unit ball in X and let g € Hol(D, X) satisfy
(3) Re({g(z),e”) 2 a(|lzl)]lzll, =€D, z*eJ(z),
where « is a real continuous function on [0,1] such that
(6) a(l) =w>0.
Then -

(i) g is strongly semi-complete;
(i3) if {S(t)}s>0 is the semigroup generated by g, then for each pair of points
z and y in D the following estimate holds:

(7) p(S(t)z, S(t)y) < e~ T'p(z,y),

where p is the hyperbolic metric on D. In particular, if T is the null point of
g, then

®) p(S(t)z, ) < e~ Frp(z, 7),
forallz e D.
Proof. Consider for each n = 1,2,... the mappings g, € Hol(D, X) defined
by
t :
©) gn(z) =2+ ~g(z) -y, z€D,

where ¢ > O and y € D. Let D, be the open ball of radius r € [0,1) centered
at the origin. For all z € 0D, = {z € X : ||z]| = r} and for all z* € J(z) we
have by (5),

Re (gn(2),2%) = |l2]? + & Re (g(),") — Re (y,*) 2 12 + L ra(r) - rly|
(10) =r(r+La(r) - [yl

Since (1) > 0, it is easy to see that for sufficiently large n the equation

) patr)i=rat)=1
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has a solution r, € [0,1). ,

Indeed, ¢n(0) = L a(0) <1 for n > t|a(0)] and @n(l) =1+ fw > L
The inequality (5) implies in turn that for such n and r,, and for all z with
llz|| = rn and z* € J(z), the following inequality holds:

(12) Re (gn(z),2") 2 o (1 — |l9l))-

Since g, is bounded on D, [8], it follows by [3] that the equation |

gn(e) =2+~ g(z) ~y =0
has a unique solution z = J¢ (y) = (I+4% g)_l (y) € Dy, foreachye D.In
other words, the resolvent mapping Jx + Maps D into D,.,.

It now follows by the Earle-Hamilton fixed point theorem [6] that J has
a unique fixed point 7 in D. This point is also a null point of g. In addition,
repeating the proof of this fixed point theorem we obtain the estimate

1
(1) p(J%(@,J%(y))g:m_)p@,y)

for each pair of points z and y in D.
Since a(r) is continuous on the interval [0, 1], it follows by (11) that rp, — 1
and a(r,) — w as n — oco. Therefore, by using the exponential formula [13, 14]

%3

S(t)z = nILngO Jg (z)
and (13), we get by induction the estimates (7) and (8). Theorem 4 is proved.

Example. Let D = A be the open unit disk in the complex plane C and let
g € Hol(A,C) be defined by

| 1—cz

1l+cz

g(z) =a—az? +bz

where a € C, Reb> 0 and 0 < ¢ < 1. If we take

cs
1+cs’

afs) = —|a|(1 - s?) + (Reb)s

then we get
Reg(2)z 2 of|2])|2|

and (1) = Reb };z > 0. Hence g(2) is a strongly semi-complete vector field

on A.

SRR
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Remark. Note that if g € Hol(D, X) is known to be a semi-complete vec-
tor field on D, then condition (6) can be replaced by a slightly more general
condition, namely,

(6 a(l) >0 for some € (0, 1],

which will still ensure the validity of assertion (i) of Theorem 4. This implies
the following very simple and interesting sufficient condition.

Recall that a bounded linear operator 4 : X — X is called strongly accretive
if

(14) Re (Az,z*) > K|z
for some k > 0 and all z € X, z* € J(z).

Corollary 5. Let g € G(D) and suppose that the bounded linear operator A =
g'(0) is strongly accretive with constant k > 0. If

(15) k > 4]|g(0)]],
then g is a strongly semi-complete vector field.

Proof. Consider the function a(s) = —||g(0)||(1 — s?) + ks 322 T2 Using (15) we
see that (1) = 0 and o/(1) < 0. Hence there is ! € (0,1) such that a(l) > 0.
By (2] we know that

Re(g(z),z") 2 ([l 1],

Therefore the result follows from the above Remark.

Note that if A = ¢/(0) is strongly accretive and g(0) = 0, then condition
(15) is fulfilled automatically. Hence the origin is an attractive fixed point of
the semigroup generated by g. Actually, this fact follows from more general
considerations and in this case one can obtain an exponential rate of conver-
gence.

To see this, we shall need the following lemma, the proof of which is omitted
because it is similar to part of the proof of Theorem 4.

z€D.

Lemma 6. Let D be the open unit ball in a complex Banach space X and let
g € Hol(D, X) satisfy the following condition:

(16) Re(g(z),z") 2 a({l=])||=|

for all z € D and some z* € J(z), where « is a real continuous function on
[0, 1] such that for all u € [0,1] and for all sufficiently small > 0 the equation

(1) s+ra(s) =p

has a unique solution s() in [0; 1] Then
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(i) g is a semi-complete vector-field on D;
(ii) if B(t,s) is the solution of the Cauchy problem

{ 85(8) | o(B(t,5)) =0
(18)
8(0,s) = s € [0,1)

and v(t,z) is the solution of (1), then the following estimate holds:
(19) o, 2)|| < B, l|=l), =z €D.

Proposition 7. Let g € G(D) be such that g(0) =0 and A = ¢'(0) is-stfongly
accretive with Re (Az,z*) > k||z||?. Suppose that {S(t)}i>0 is the semigroup
generated by g. Then the following estimates hold:

() .
I5@®)z] < |zlle ™ =", €D, t>0;
(i)
IS®=ll o ke llzll
(1=s®=)* ~ (1 —|l=l))?
Proof. Both estimates follow directly from Lemma 6 if we set
L
l—-s

a(s) = ks Y

In this case =

B(t,s) < se'kiﬁt,

where {3(t,-)} is the semigroup generated by a. ;

Note that the estimate (i) is due to Gurganus [7, Proposition 2.5.4] while
(ii) was obtained by Poreda [11]. Note also that the condition g(0) = 0 is
essential in their considerations as well as in the above approach.

For the case where X is a Hilbert space we would like to obtain more general
estimates when g has an arbitrary null point which is strictly regular.

For a step in this direction we shall need the following general lemma. We
omit its simple proof.

Lemma 8. Let D and Q be two domains in a complexr Banach space X such
that Q = f(D) for some biholomorphic mapping f : D — . Then there is a
linear invertible operator T' from the space Hol(Q, X) onto the space Hol(D, X)
which takes the set G(Q) onto the set G(D) (i.e. G(D) = T(G(Q)). In other
words, the classes of semi-complete vector fields on Q and D are linearly iso-
morphic. Moreover, such an isomorphism T : G(Q2) — G(D) can be given by
the formulae

L) Wor o AW AN [
\&U) LGN =N
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and -

(21) THR)O) =1 FHNe(FH,
where g € G(Q2) and ¢ € G(D).

Now let o : [0,1] — RT be a continuous function on the interval [0,1] such
that for some 6 > 0 and for each 7 € [0, §) the function s + ra(s) is increasing
on [0,1]. We also assume that o satisfies the following range condition: For
each r € [0,6) and for all p € [0, 1], the equation

(22) s+ra(s)=p

has a (unique) solution s = s(r,p) € [0,1]. This solution is an increasing
function of p € [0, 1] for each fixed r € [0,8). Also, for each ¢t > 0 there exists
the limit

23) et = Jim o (24,

where by s(™(t,p) we denote the n-th fold iterate of s(r,p), i.e., s(© (r,p) =
p, s™(r,p) = s"=V(r,s(r,p)), n=1,2,... This limit is the solution of the
Cauchy problem

(24) { 28 +a(B(t,p)) = 0
ﬁ(o’p) =Pp

Assume now that X is a Hilbert space H and that g is a holomorphic mapping
on B, the open unit ball of H. As we have already mentioned, since g is locally
bounded, hence locally Lipschitzian, the Cauchy problem

{ 2ulb) 4 g(ult,z)) =0

u(0,z) ==z

(25)

has a unique local solution u = wu(t,z) which is real-analytic in ¢ in some
neighborhood of zero, and holomorphic in a neighborhood U, of z. We would
like to compare this solution with the function B(t,p) defined by (24) and
to find out when u = wu(t,z) can be extended to a global solution of (25)
defined on R* x B. To this end, we define, for a given 7 € B, a function
m, : [0,8) x Uy — R* by

(26) me(t,y) = [|M_r (u(t, 9))],

where M_ is the M6bius transformation which takes 7 to zero [6]. It is natural
to compare this function with the function 8 (¢, ||M_,(y)|). As a matter of
fact, we will see below that both local and global relations between these two
functions are completely determined by their derivatives at merely one point.
For each 7 € B, let N, = {g € G(B) 7 g(+) = 0}. : '




256 - M. ELIN, S. REICH D. SHOIKHET

Theorem 9. Let g € Hol(B, H) and let a, B and m be the functions defined
above. Then the following assertions are equivalent:
(i) for some T € B,

m-(t,z) < B(¢, | M- (z)]))

whenever u(t, z) is defined;
(tt) for some T € B,

om,

ot
(iii) for some T € B, the mapping g belongs to N and satisfies

a(|M_r(2) DI M_-(z)|
o(r,z)

<3ﬂ

< 5| =—e(IMr@);
t=0+

t=0+

Re({g(z),27) 2

where z € B, o(z,y) =1 - [[M_y(2)|* and 2* = —fom — =y

Thus, if one of the above assertions holds, then u(t,z) has a unique ex-
tension to all of RY x B and the estimate (i) holds globally. The points T in
(i)-(iii) are one and the same.

Proof. Since m,(0,z) = (0, || M—-(z)|]), the implication (i)=>(ii) is clear.
Further, by direct calculations we obtain that

_ o(T,z)
t=0+ | M- (z)|

om-

= Re(g(@),").

Since the inequality in (iii) and [1] imply that g € N, the implication (ii)=>(iii).,

follows because Mﬂz——( o = —a(||M—-(z)||). Thus it remains to be
t=

shown that (iii)=>(i). To this end, we use Lemma 8. Since g € N, u(t,z)
is well-defined and belongs to B for all (t,z) € RT x B. Hence the operator
T : Hol(B,H) — Hol(B, H) defined by ,

@) T(9)() = (M) ()] (M () = (M—r) (M ())g(M;())

takes g € N; to ¢ € Nyg. Now we observe that since the explicit expression for

the linear operator A (= A(z)) := (M_.;)'(M-(z)) is

1+ (z,7)
1— |||

where P, is the orthogonal projection of the Hilbert space H onto the one-
dimensional subspace spanned by 7,

(28) A= (Pr+VI=TFE (I - B +()a),

we get ‘
(p(x), ) = (Ag(M:(x)), ) = (9(M-(2)), A'2) = J
() . . — ll=|l® ;
(29) =T <,(M{ DM () = 1+(:c,7')/'
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Also, if z = M,(z), then

1|

+(z,7) =1+ (M_r(2),7) = Ty

and
L— [zl =1~ [M—-(2)|* = o(r, 2).
Hence by (29) we obtain

z). 2 =L_|m_ z z—Tl;”—Z‘IE‘ =
{p(z),z) 11— (z,7) 2 <g( ), 1—<T,Z>>

= o(r,2) <g(2)7 1_7|z“2 - 1—?T,z>>'

Thus (iii) implies that

(30) Re(p(2),2) 2 a(llzl)ll=], 2€B.

Now, if v(t, 2) is the solution of the Cauchy problem

{ & +o) =0
v(0,2) = z,

then it follows by Lemma 6 that
v, 2)ll < B [l=]), z€B.

But v(t, M_,(z)) = M_,(u(t,z)) and this concludes the proof.

Remark. If §(t,s) — 0 as t — oo for a fixed s € [0,1), then g is seen to be
strongly semi-complete and assertion (i) establishes a rate of convergence of
the semigroup S(t) = u(t,-) to its stationary point 7 € B. It would be nice, of
course, to find a universal class of functions & such that this convergence will
be of exponential type. We intend to study this problem elsewhere.
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FRACTIONAL POWERS OF OPERATORS VIA
HYPERSINGULAR INTEGRALS

STEFAN SAMKO
UNIVERSIDADE DO ALGARVE

Introduction

The well known Balakrishnan formula represents the fractional power (—A)>
in case of the generator A of a semigroup T}, t > 0, in terms of a (hyper)-singular
integral with respect to the variable ¢ € R, that is,

where 0 < a < 1,9 € D(A) , and I is the identity operator. In the case a > 1,

this formula can be written with the usage of “finite differences” (T} — I)*, £ =
1,2,3,..,>a :

[« 2. 1 *° ——1
(1) (—A)f—mjo t-eL (= T,) fdt £ > a,

with (e, £) = —T'(~) Aa(f) , where Ao (£) = Y5 _(—1)F-1 (£) . In particular,
the fractional power of the Laplace operator is given by (1) with T; = P, where
P, is the Poisson semigroup of operators:

_ tf(x—y)
Bf=o /Rn (|2 4 22)(n+1)/2

On the other hand, positive fractional powers of the Laplace operator can
be given also in the form

dy, t>0.

& 1 (A ) ()
(2) (—A)2f=mell_%/ly,>sw v,

see [23], p.56, which is also known as the Riesz fractional derivative and denoted
as D*f = (—A)%2 f. Here dy, ¢(c) is the known normalizing constant and the
finite difference (Ai f)(z), generated by the standard shift wf = flz —v),
may be centered one and then 0 < a < £, see [15], or a non-centered and
then0 < a < 2 [é] , Where [§] stands for the entire part of &, see [23], Ch.3,
Section 1.

Hypersingular constructions of the type (2) can be used for an effective
realization of fractional powers of some differential operators of mathematical
physics, such as fractional powers (I — A)%, A being the Laplace operator;
fractional powers (—A; + £)# of parabolic (heat) operator or (I —Ag + £)%,

the Laplace operator being applied in the spatial variable z = (z1,--,2n) ;

fractional powers of the wave operator; of Schrédinger-operator and others. ™
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