The Annals of Applied Probability

Approximations of the Wiener sausage and its curvature measures

Jan Rataj, Evgeny Spodarev, and Daniel Meschenmoser
Source: Ann. Appl. Probab. Volume 19, Number 5 (2009), 1840-1859.

Abstract

A parallel neighborhood of a path of a Brownian motion is sometimes called the Wiener sausage. We consider almost sure approximations of this random set by a sequence of random polyconvex sets and show that the convergence of the corresponding mean curvature measures holds under certain conditions in two and three dimensions. Based on these convergence results, the mean curvature measures of the Wiener sausage are calculated numerically by Monte Carlo simulations in two dimensions. The corresponding approximation formulae are given.

Primary Subjects: 60J65
Secondary Subjects: 60D05
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber.
If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Links and Identifiers

Permanent link to this document: http://projecteuclid.org/euclid.aoap/1255699545
Digital Object Identifier: doi:10.1214/09-AAP596
Mathematical Reviews number (MathSciNet): MR2569809
Zentralblatt MATH identifier: 05735976

References

[1] Berezhkovskiĭ, A. M., Makhnovskiĭ, Y. A. and Suris, R. A. (1989). Wiener sausage volume moments. J. Statist. Phys. 57 333–346.
Mathematical Reviews (MathSciNet): MR1031416
Digital Object Identifier: doi:10.1007/BF01023647
[2] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion—Facts and Formulae, 2nd ed. Birkhäuser, Basel.
Mathematical Reviews (MathSciNet): MR1912205
[3] Federer, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93 418–491.
Mathematical Reviews (MathSciNet): MR110078
Zentralblatt MATH: 0089.38402
Digital Object Identifier: doi:10.2307/1993504
[4] Federer, H. (1969). Geometric Measure Theory. Springer, New York.
Mathematical Reviews (MathSciNet): MR257325
[5] Fu, J. H. G. (1985). Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52 1025–1046.
Mathematical Reviews (MathSciNet): MR816398
Zentralblatt MATH: 0592.52002
Digital Object Identifier: doi:10.1215/S0012-7094-85-05254-8
Project Euclid: euclid.dmj/1077304735
[6] Karatzas, I. and Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113. Springer, New York.
Mathematical Reviews (MathSciNet): MR917065
[7] Klenk, S., Schmidt, V. and Spodarev, E. (2006). A new algorithmic approach to the computation of Minkowski functionals of polyconvex sets. Comput. Geom. 34 127–148.
Mathematical Reviews (MathSciNet): MR2221466
Digital Object Identifier: doi:10.1016/j.comgeo.2006.02.002
[8] Kolmogoroff, A. and Leontowitsch, M. (1933). Zur Berechnung der mittleren Brownschen Fläche. Physik. Z. Sowjetunion 4 1–13.
[9] Last, G. (2006). On mean curvature functions of Brownian paths. Stochastic Process. Appl. 116 1876–1891.
Mathematical Reviews (MathSciNet): MR2307063
Zentralblatt MATH: 1107.60049
Digital Object Identifier: doi:10.1016/j.spa.2006.05.003
[10] Le Gall, J.-F. (1988). Fluctuation results for the Wiener sausage. Ann. Probab. 16 991–1018.
Mathematical Reviews (MathSciNet): MR942751
Zentralblatt MATH: 0665.60080
Digital Object Identifier: doi:10.1214/aop/1176991673
Project Euclid: euclid.aop/1176991673
[11] Matheron, G. (1975). Random Sets and Integral Geometry. Wiley, New York.
Mathematical Reviews (MathSciNet): MR385969
Zentralblatt MATH: 0321.60009
[12] Rataj, J., Schmidt, V. and Spodarev, E. (2009). On the expected surface area of the Wiener sausage. Math. Nachr. 282 591–603.
Mathematical Reviews (MathSciNet): MR2504619
Zentralblatt MATH: 1166.60049
Digital Object Identifier: doi:10.1002/mana.200610757
[13] Rataj, J. and Zähle, M. (2003). Normal cycles of Lipschitz manifolds by approximation with parallel sets. Differential Geom. Appl. 19 113–126.
Mathematical Reviews (MathSciNet): MR1983898
Zentralblatt MATH: 1042.53053
Digital Object Identifier: doi:10.1016/S0926-2245(03)00020-2
[14] Rogers, C. A. (1998). Hausdorff Measures, 2nd ed. Cambridge Univ. Press, Cambridge.
Mathematical Reviews (MathSciNet): MR1692618
[15] Schneider, R. (1993). Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge.
Mathematical Reviews (MathSciNet): MR1216521
[16] Spitzer, F. (1964). Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 110–121.
Mathematical Reviews (MathSciNet): MR172343
Digital Object Identifier: doi:10.1007/BF00535970
[17] Stachó, L. L. (1976). On the volume function of parallel sets. Acta Sci. Math. (Szeged) 38 365–374.
[18] Sznitman, A.-S. (1998). Brownian Motion, Obstacles and Random Media. Springer, Berlin.
Mathematical Reviews (MathSciNet): MR1717054
Zentralblatt MATH: 0973.60003

2010 © Institute of Mathematical Statistics

The Annals of Applied Probability

The Annals of Applied Probability