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This paper is a comprehensive study of the results about the consistency of
inequality systems. The minimax theorems are the main tools used in proceeding to
this survey. Most of the known results are quoted, and some of them are weakened
or generalized to infinite dimensional spaces. Applications to programming are
given.

The aim of this paper is to summarize the scattered results concerning the
consistency of inequality systems. This problem is closely related to the
minimax theorems, and we shall, ‘incidentally, be obliged to recall, in the
second section, the main and stronger minimax theorems. It is well known
that the minimax theorems more or less involve some convexity in their
assumptions. To overstep these assumptions it is useful to immerse the
inequality index set into a convex set by taking a measure set on it; this will

be done in Sections IV and V. The two following sections are devoted to the .

infinite systems of inequalities with applications to programming. In the last
section we straightforwardly derive the Mazur-Orlicz theorem and some
moment theorems from the consistency theorems on inequalities.

The relationships between inequality systems, fixed-point theorems and
variational inequalities are not investigated here and will be studied in
another paper.

I. INEQUALITY SYSTEMS AND MINIMAX

Let C and D be two nonempty subsets of two Hausdorff spaces X and Y,
respectively, and f a real-valued function from C X D into the real line R.
We are concerned with the consistency of the following inequality systems:

iyeD VxeC Sflx,»)<K0 (1)
3yeED V¥YxEC  f(x,»)<O0. )

* A preliminary and shorter version of this paper was presented at the 2nd International
Symposium on Semi-Infinite Programming and Applications, Austin, Texas, September 1981.
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The subset C is called the index set and we shall often write f(x, -} as f,.(-)
or f(-, ¥) as f,(-). If there exists y € D satisfying (1) (resp. (2)) we shall say
that (1) (resp. (2)) is consistent on D.

We shall also use a weaker form of (1), which we denote (17):

S ) <e. (1)

If (1) (resp. (2)) is consistent on D then necessarily the following
condition (A1) (resp. (A2)) holds.

Ye>0 dy€eD VxecC

YxeCl
YxeC

JyeD
jyeD

Six »)<0 (A1)
Sx, ) <O0. (A2)

Let us give two obvious results showing the links between the inequality
systems and the minimax theorems.

LemMa 1.1. Assume that D is compact and that for every x € C f(x, -)
is lower semicontinuous (l.s.c.) on D. Then (1) is equivalent to

inf sup f(x, ¥) = min sup f(x, ») <0,

yeD xeC yeD xeC
and (A1) is equivalent to

sup inf f(x, y)= sup min f(x, y)<O0.
xeC yeD xeC yeD
LEMMA 1.2. Assume that C is compact and that for every yE€ D f (~,v »)
is upper semicontinuous (u.s.c.) on C. Then (2) is equivalent to
inf sup f(x, y) = inf max f(x, y) <0,

yeD xeC yeD xeC
and (A2) is equivalent to

sup inf f(x, y)=max inf f(x, y) <O0.

xeC yeD xeC yeD

II. MINIMAX THEOREMS

To apply the minimax theorems to the question of the consistency of the
system (1) or (2) we shall suppose that f is not symmetrical in x and y.
More precisely we assume that very little is known about the function f(-, )
(in particular that C is not necessarily convex), but conversely that f.(-) has
some classical properties (such as convexity). So we do not recall the
symmetrical minimax theorems but only those requiring few assumptions on
C. :
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TueoreM 2.1 (Ky Fan [33]). Let D be a compact set, and Jor every
x € Clet f(x,-) be Ls.c. on D. If f is convex-like on D and concave-like on C
then :

min sup f(x, y) = sup min f(x, y). 3)
yeD. xeC xeC yeD -
Before recalling the definition of convex-like, let us introduce two

conditions which lead to a minimax theorem and contain the Ky Fan con-
ditions.

- (K1) 3u>0 3w>0 with 4 +v=1 such that V(y,, y,)€D? Ye> 0
3y; € D such that Yx € C f(x, y,) <uf(x, y,) + v (x, ,) + €.
(K2) 3a>03F>0 with &+ =1 such that ¥(x,,x,) EC* Ye >0
3x; € C such that ¥y € D af (x,, ») + ff(x;, ») < f (x5, ¥) + e.

THEOREM 2.2 (Fuchssteiner and Kénig [18]). Let D be compact, and
Jor every x € C let f(x, -) be Ls.c. on D. If f satisfies (K1) and (K2) then (3)
holds.

Theorem 2.2 is a slight generalization of the theorem of Kénig [29].
Kénig has given many related results and applications in [30, 31]. The same
theorem was also obtained by Simons [60], who has also given some close
results in [61].

We can now recall what we mean by convex-like.

DeFINITION 2.3 (Ky Fan [33]). We say that f is convex-like on D
(resp. concave-like on C) if (K1) (resp. (K2)) holds with e =0 for every
(4. v) € (10, 1])* (resp. for every (a» ) € (10, 1))

Remark 2.4. 1Tt is clear that f is convex-like if, for instance, D is convex
and f(x, -) is convex on D.

Some other minimax theorems with a quasi-convexity assumption are also
worth noting.

THEOREM 2.5. Let D be convex, compact, and for every x € C let f(x, -)
be Ls.c. and quasi-convex on D. Then (3) holds in the Jollowing two cases:

(1) (K2) is satisfied with ¢ =0 [65, Theorem 3]; -

(i) D is a subset of a topological vector space (TVS), C is a convex
subset of a vector space, and for every y €D f (5 ¥) is quasi-concave and
u.s.c. on every segment.qf C [9, Proposition 1].

Remark 2.6. In his proof Terkelsen takes a=8=2"!, but the proof
applies with any « and f such that a + =1, 2> 0, 8> 0.
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* Terkelsen has also shown that there exist functions satisfying the
assumptions of one of the Theorems 2.1, 2.5(i), or 2.5(ii), whereas they do
not satisfy the others. It is essentially due to the fact that quasi-convex does
not imply and is not implied by convex-like.

Theorem 2.5(ii) generalizes the famous Sion minimax theorem [63].
Recently Stachd [64] has shown that it is not possible to weaken the Ls.c.
assumption for f(x, -) on D in Theorem 2.5(ii).

Now, from Lemma 1.1, we get:

COROLLARY 2.7. With the assumptions of one of the previous theorems,
(1) is equivalent to (Al). ‘

It should be possible to give the theorems symmetrical to the preceding
ones. Let us do it for Theorem 2.2.

THEOREM 2.8. Let C be compact and for every y € D f(-, y) be u.s.c. on
C. If f satisfies (K1) and (K2) then

inf max f(x, y) = max inf f(x, ¥). 4)

yeD xeC xeC yeD

COROLLARY 2.9. With the assumptions of Theorem 2.8, (2) is equivalent
to (A2) and (A1) implies that (1') holds.

In the preceding theorems either D or C is compact. There is no simple
assumption relaxing the compactness hypothesis. One can find symmetrical
results in this direction in [50]. We now give some nonsymmetrical results
which rely on the study of the convex program “minimize F(x, 0),” where
F(x,u)=sup,.p((u, y) — f(x, »)) if x€C, +oo otherwise; see [53,
Chap. XI].

Up to the end of this section we assume that D is a subset of the locally
convex TVS Y which is paired with U by the bilinear form (., -). The space
U -is endowed with its weak* topology. We introduce the set 4,=
{(u, t)/3x € C satisfying F(x, u) < t}.

THEOREM 2.10 (Lévine—Pomerol, [45]). Assume that D is closed and
convex, that for every x € C f(x,-) is convex and ls.c. on D, and that
[=inf vep SUPyec (X, ¥) < +00. Moreover assume that either f is concave-
like on C or assumption (ii) of Theorem 2.5 holds

Then max,ccinf,cp f(x, y) =inf,cp sup,cc f(x, y) if there exist a O-
neighborhood M in U and a neighborhood N of [ such that AN M X N is
closed.

Proof. 1t results from [45, Prop. 3 and 4]. Q.E.D.

e e e e
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CoROLLARY 2.11. Suppose that the assumptions of Theorem 2.10 are
satisfied. Then (A2) is equivalent to (2) and (A1) implies (1') provided that
the following condition (C) holds:

(C) 3e>0, a O-neighborhood M in U and a compact subset K in C
such that

(i) YuneE4,NMX]—w,¢e]) IxEK satisfring Flx,u)<1
and

(i) YyeDf(,y)isusc onk.

Proof. Combining Propositions 3, 4, and 9 in [45] we obtain the
conclusion of Theorem 2.10. It immediately implies that (A2) and (2) are
equivalent (Lemma 1.2). Moreover (A1) entails that
infy ¢ p Sup,ec f(x, ») <O, which is another formulation for (1'). Q.E.D.

In the following theorem we assume that X is also a locally convex TVS,
V being its topological dual endowed with the weak * topology.

THEOREM 2.12. Assume that D and C are closed convex subset of Y and
X, respectively, and that Nx € C f(x,-) is convex and ls.c. on D while
Vy€D f(-,y) is concave and us.c. on C. We suppose that —oo <
SUP,ec infyop f(x, ¥) =1 If there exist a O-neighborhood M in V and a
nezghborhood N of I such that M XN {(v,1)/3y € D sup,o((v, x) +
S )< t} is weak*-closed then

min sup f(x, y) = sup 1nf S p).
eC

yeD xeC x

Proof. It is an immediate translation of Proposition 3.3 of

Lévine—Pomerol [46]. : T QED."’

Remark 2.13. In the situation of Theorem 2.12, the generalized Slater
condition is: @(u) =inf, , F(x,u) is continuous at 0. When either X is a
Banach space or ¥ is normed for a topology compatible with the pairing and
U is a Banach space this condition reduces to 0 € int{u / 3x € C such that
sup,ep ({4, ¥) — f(x, ¥)) <+ co}. Then it implies that the conclusion of
Theorem 2.12 is satisfied; see [46].

When Y and U are, as previously, two paired TVS, an application of
Theorem 2.10 gives a result which w111 be useful for the study of the linear
inequality systems

THEOREM 2.14. Assume that D is a convex subset of Y and C is a closed
convex subset of U. Then

min sup (%, y)=sup inf (u, y)
ueC yeD yeD ueC
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provided that:

(i) sup,epinf, c(u, y) < + o0 ‘
(i) the interior of D (denoted int D) is, for a compatible topology,
nonempty;
(ii) 3y, €int D such that inf, . {u, y,) > —c0.

Proof.  Assuming that D is closed, in order to apply Theorem 2.10 to
—(u, ) it suffices to show that A,={(v,#)/IuEC such that
Sup,cp% + v, y) <t} is closed. Following, mutatis mutandis, the proof of
Proposition 1 in [54], we see that if a generalized sequence (Vg ty)
converges to (7, f) with (v,,?,) € 4,, then there exist u, € Cand t, > 1 such
that v, +u, € —1(D — y,)°, where (D — y,)° is the polar set of (D — y,)
and is weak*-compact. The closedness of 4, follows as in [54]. To relax the
closedness assumption on D one can prove, as in [54, Prop. 2] that

SUPyep infueC(“ﬁ y> = SUPyep infuec <ua y>' QED

Remark 2.15.  Christiansen [11] has independently obtained Theorem
2.14 by using directly the Hahn-Banach theorem. However, the assumption
(iii) is lacking in his version, which makes it fail, as can be seen by the
following example. Nevertheless with (iii) his proof works. One can find
another approach in [5].

EXAMPLE 2.16. Let D be the ice cream come {(,,,,¥s)/ ¥, >0,
¥220, y3< 2y, ,} and C={(u,,u,,u;)/u; <0, u,<—1, u;=0}. The
assumptions of Theorem 2.14 are satisfied except (iii). One can check that
SUp,ep inf, (%, y) =0 and inf, . sup,.p %, y) = +c0.

We would like to finish this section by saying that the theorems recalled
above are by no means the only minimax theorems available in the literature.
Besides the references already cited the reader interested in this topic should
also consult Hoang Tuy [20, 21], who has given some very strong theorems
based on connectness properties, and Lassonde [42], Penot [52], and Chung-
Wei Ha [13], who have obtained a minimax theorem related to the KKM
maps. But these last results cannot be easily handled in the framework of
inequality systems because f is requested to be ls.c. of the two variables.

The problem of the relationships between the KKM maps, Ky Fan’s
inequality [38], and some related fixed-point and minimax theorems is not
confronted here; see, e.g., [32, 19, 39, 62, 2]. One can also find a recent
survey on minimax theorems and a generalization of the convex-like
functions in [22].
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III. DuaLITY RESULTS

Along the lines of Chung-Wei Ha’s work [12], it is possible to obtain

. some duality results which rely on the properties of the previously introduced

set 4,.

We assume in this section that D is a convex subset of the locally convex
TVS Y which is paired with U. The space U is endowed with its weak*
topology.

For every x € C we suppose that f(x, -) is defined convex, proper and
l.s.c. on Y. The functional f is allowed to take the value +oo, which means
that if /" is only defined convex, proper, and l.s.c. on a closed convex subset
of ¥, we can give it the value +co outside. We denote by y,(-) the indicator
function of a set D. ,

We have sup,.,((u, ) — f(x, ¥)) = (f;, + wp)*(u), where * denotes the
conjugate. Using the inf-convolution f; V f,(x) =inf, . . _.(fi(x;) + f2(x,)),
it can be shown that (f, + wp)*(u)=f*V wi(u) if either D is closed and
int(D) # @ [56, Theorem 20] or D is compact. Moreover when int(D) # @,
the infimum in f* V v} is a minimum.

THEOREM 3.1. Assume that D is compact, and that either (K2) or (ii) in
Theorem 2.5 is satisfied. Then (Al) is equivalent to (1) and to

Vou)ECX U, f*u)>min (u, p).

Proof. By Corollary 2.7 we know that (Al) and (1) are equivalent
to  sup,ecmin, e, f(x, ) <O. The latter is equivalent to VYx&C

~(+wp)*0) <0 or Vx € C 0<fFV yf0) = inf,ep (fF1) +

SUp,cp (— ¥)). o Q.E.D.

Remark 3.2. It is obvious that (Al) implies the inequality of the above
theorem. If f, takes the value +oo outside of D, then the inequality of the
theorem implies for u =0 that (A1) is satisfied.

A more interesting result is obtained when D is not compact. Let us
consider MW a basis of closed convex O-neighborhoods in Y. We pick a
neighborhood W, in W and we denote by D + W, the closure of D + W,
which is convex. o

THEOREM 3.3. If for every W e W, W < W,, (1) is consistent on D + W
then ‘ o

Yx,u) €CXU  fFu)> inf (u, y). ®)
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Moreover, assume that ¥Yx € C 3y € Y such that f(x, y) < 0, and either

(i) C is compact, ‘v/yED + W, f(-, ¥) is ws.c. on C and (K2) holds
on D+ W,, or

(i) the assumptions of Theorem 2.10 are satisfied (z’ncludz'ng the
closedness of A, M X N).

Then (5) implies that (2) is consistent on D + W for every W € .

~d

Progf. Let us begin by the direct assertion. If (1) consistent on D + W,
then inf, 575 sup,cc f(x, ¥) <0. Thus sup,.. inf,.575% /(x, ») <0, which
is equ1valent as shown in the previous proof, to VxeC

< (fx+ wsrw)*(0). The interior of D+ W is nonempty; it follows
that (fx + W)*(O) = minueU(fx*(u) + SupyeD+ W< u, y>) Therefore (1)
implies that YW < W, Y(,u)ECXU [fX(u)>inf, 575 (4, ). Our
first assertion follows from inf,.,(u, y>—supWem1n vepsw (U y). To
show this last point, let us suppose that inf,.,(u, y)=a and
SUpy e inf, .57 (u, yy=a—¢e with €>0. If we consider W, =
{y/ Ku, y>|<52 1 we get infy iy (u, ¥y)>a—27"¢; therefore
inf, 57w (4, ¥) > a — 27 "¢, which is absurd.

We now attack the converse assertion. Let W€ W be a neighborhood
such that W< W, and consider W’ < W, such that D + W’ < D + W. Then
(5) entails that f*(u) > infyemw, (u, y). It is true if inf, ., (u, y)=—o0
because f*(u) > —oo (it:is a proper, convex functional). When u % 0 and
inf, ¢, (u, y) is finite, we can find y € W’ such that (u, y) < 0, which implies
our assertion. When u =0 we have f*(0) > 0, since Yx€ C 3y € Y such
that f(x, y) < 0.

Hence we get (£ + uar)*(0) = min, (f*(u) + sup, 55 (i 1))
since D + W” has a nonempty interior. It follows that (f, + vz7%)*(0) >0
for every x belonging to C. From Theorem2.8 or 2.10 we have
infy 5557 SUPrec S(x, ¥) =max, ¢ infy 5/ (x, »),  whence inf, 575
SUp,ec S0 ¥)=—(fz+ vp7%)*(0) <0 for a given £€ C. We conclude
that (2) is consistent on D + W. Q.E.D.

COROLLARY 3.4. Assume that either (i) or (ii) in Theorem 3.3 is
satisfied. Then (A2) implies that (2) is consistent on D+ W for every
W e B. On the other hand (5) implies that VW E W Ve >03yeED+ W
Vx€C f(xy)<e

Progf. Condition (A2) implies both £,*(0) > 0 and f*(x) > inf, ., (&, ¥),
which proves the first assertion.

We have shown that (5) entails that inf, ;5757 Sup,ec f(x, ¥) <0, which is
exactly our second assertion. Q.ED.
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Remark 3.5. The first assertion of the above corollary is nothing else
than Corollary 2.9 when assumption (i) is fulfilled, since (A1) implies (5).

COROLLARY 3.6. Assume that either (i) or (ii) in Theorem 3.3 is

satisfied, and that D=1Y (the whole space). Then (A2) and (2) are

equivalent, and Vx € C inf, ., f(x, y) <0 implies that (1') is fulfilled.

Proof. That (A2) and (2) are equivalent is immediate from Corollary
3.4. We observe that (5) reduces to £*(0) >0 or ¥x € C inf,., f(x, ) <O.
Thus the second assertion straightforwardly follows from Corollary 3.4, too.

Q.E.D.

The two previous theorems have their source in a paper by Chung-Wei Ha
[12], who extends some results of Ky Fan on linear inequality systems [37].

However, our results are not immediately comparable to those of Chung-
Wei Ha, mainly because he works on a “convex-conical-closure” of the
inequality (5), instead of giving conditions ensuring that (5) is really
sufficient. Namely Chung-Wei Ha uses the closed convex conical hull of the
set {(u, f*(u)) / x € C, u € dom f*}. If we denote this cone by K then (5) is
replaced by V (u, £) € Kinf, ., (u, y) <t

Furthermore let us observe that in his result similar to Theorem 3.3 [12,
Theorem 1] the assumption f;*(0) < 0 is lacking, which makes the theorem
false. Actually Chung-Wei Ha cannot be sure in his proof (12, p. 29] that
Tg(u) <I,(u) (it is obviously false, at least when u=0). Let us give an
example where Theorem 1 of Chung-Wei Ha [12] fails to be satisfied.

ExampLE 3.7. For every integer n € N, let us consider Su(»)=0 if
y<0 and y,<—1, +oo otherwise, where y €[> (the square summable
sequence space ordered by its usual positive cone). There does not exist a y
such that VnEN f,(¥)<0. We check that f*(u)=—u, if u>0, +o
otherwise. The set X is the closure of {(u, —u,)/u >0, n € N} and it is easy
to verify that (0, —1) € K. Thus Theorem 1(a) of Chung-Wei Ha [12] is not
satisfied.

IV. CONVEXIFICATION I

As we have already said, generally very little is known about the index set
C. In most cases C is discrete and not convex. It is for this reason that it is
often useful to immerse C in a convex set, as we are going to do by using
different measure spaces.

In this section we assume that:

(a) Cis alocally compact set,

e A =
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(b) Yy€D f(-, ») is us.c. on C,
(¢) Yy€D 3a(y)<+oo such that Yx € C | f(x, ¥)| < a(p).

We consider the space M of the Radon measures on C [8, Chap. III, Sect.
1, n° 3] endowed with its weak* topology or “vague” topology. The subset
ML of the positive bounded measures satisfying |lu[ < 1 is a weak*-compact
subset of M [8, Chap. III, Sect. 1, n° 9, Corollary 2, Proposition 15]. In what
follows we can replace ML by NR={L €M/ u>0 and |ull=1} [8,
Chap. I, Sect. 1, n° 9, Corollary 3, Proposition 15] whenever C is compact.

Let us consider the bifunction K from ML XD into R defined by
K(u, )=, £,y =[c f,(x) du(x). It is immediate that Jel £, du(x) <
a(y) fcdu(x) < +oo since u€ MY, and f, is therefore integrable (8,
Chap. IV, Sect. 4, Corollary 1, Proposition 5]. ’

LemMa 4.1. (i) K(-, ) is u.s.c. and linear on M’ . .
(i) If f is convex-like on D (resp. satisfies (K1)) then K(u,-) is
convex-like (resp. satisfies (K1)) on D.

Progf. The assertion (i) is a consequence of the definition and of
Bourbaki [8, Chap. IV, Sect. 4, Corollary 3, Proposition 5]. Let us
prove (ii). For any 0 € [0, 1], K(u, y3) = [c f(% ;) du(x) < o (6 (% ;) +
(1= 8) f(x, y,)) du(x) since f(x, ;) < 8%, ¥2) + (1 —6) f(x, »,) for every
xeC. Q.E.D.

THEOREM 4.2. Assume that C is compact and that f(x, -) satisfies (Kl).
Then the following assertions are equivalent:

(i) VYu€N Iy E D satisfying [ f(x, ¥) dﬂ(X) <0;-
(') 3o <0 such that Vu €N Iy € D satisfying Je flx, y)du(x) < a;
(ii) the inequality system (2) is consistent on D.

Proof. The first assertion is condition (A2) for the functional K(u, y).
Thus, by Lemmas4.1 and 1.2, it is equivalent to (i) or max,.ginf,,
K(u, ) <0. This latter is equivalent to inf, , max,.qK(u, y) <0
(Theorem 2.8).

Now K(u, y) < max,.c f(x, y) u(C); therefore for every p €N K(u, y) <
max,.q f(x, y). Moreover the inequality holds by choosing u as the Dirac
measure at the point X such that f(X, y) = max,.c f(x, ). So we always
have max, . K(y, y) =max,ccf(x, y). Then (i) is equivalent to
inf, ., max, .. f(x, ¥) <O. Q.E.D.

y

Remark 4.3. The previous theorem relaxes the assumption that (K2)
must be satisfied in Corollary 2.9. Taking for C the finite set {1, 2,...,m}
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Theorem 4.2 subsumes the main theorem of Ky Fan, Glicksberg, and
Hoffman [40]; see also [35, p. 208].

THEOREM 4.4. Assume that f(x,-) satisfies (K1); then the following

assertions are equivalent:

() the inequality system (1') is consistent on D;
(i) Yu€M, Ye>03y€ED such that [, f(x, y) du(x) <e.

Proof. The assertion (i) is equivalent to inf, cp sup,.c f(x, ¥) <O while
the second is equivalent to max, eqn inf, ., Ky, ) <O0.
. As in the previous.  theorem max, cqny inf, ., K(u, y) =
inf, ¢, max, e Ky, ). W t

Assume that (ii) holds; then Ve&>0 there exists JED such that
max, «m K(u, 7) <e. If there exists X € C with f(%, 7) > ¢, let us consider
the Dirac measure at %, dz; we get K(Js, y) > ¢, which is absurd. Thus ()
holds. o

Conversely we have K(1, ) < sup,ec /(% 3) 4(C) < supyec (5, ¥) if
SUWpxec /%, ) >0, and K(u, »)<0 otherwise. It implies that
SUp, emy K(4, ¥) < max(0, sup,. .. f(x, )). Assume that (i) holds; then
for every &> 0 there exists € D such that SUP,ec S(x, 7)< e It fol-
}ows that inf SUp, eqy K, ¥) < Sup, eqy K1, 7)< e, implying that
inf, ., max, e K(u, y) <O0. ' Q.E.D.

COROLLARY 4.5. Assume that D is compact, that Vx € C fi (x, +) is Ls.c.
on D and that f(x,.) satisfies (K1). Then the following assertions are
equivalent:

() the inequality system (1) is consistent on D;

. (i) for every finite family x,; (i € I) and every nonnegative number a,
(EI) with 3, a;=1 there exists y €D such that 3 ;. a; f(x;, ) < 0.

Progf. With  our  assumptions, (i) is  equivalent to
min, e p sup,ec f(%, ¥) <O (Lemma 1.1), which in turn is equivalent to
max, cqn inf, ., K(u, y) <0 (Theorem 4.4).

On the other hand the sets 4,={y€ D|f(x, y)<0} are closed and
compact. Then y satisfies (1) if and only if every finite intersection () ier Ay,
is nonempty. Thus, setting C = (J,,{x;}, we can apply the previous theorem
and replace M) by N. We observe to finish that |

P71 yeb
Zigrai=1" Zierai=1

max inf Flx,. V)= . el
‘. ;I @S, y) = max Iynellr)léa, S, 9). QED.
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Remark 4.6. Corollary 4.5 is essentially due to Ky Fan [35], who
assumes that D and f(x, -) are convex entailing (K1). Many consequences of
Corollary 4.5 are derived by Ky Fan [35, 36].

The convexification method, as previously developed, goes back to Von
Neumann. The Radon measures and the compactness property of :t or ML
have of course already been used by many authors; e.g., Ky Fan [32], Peck
and Dulmage [51], and Lemaire [44].

On the other hand it should be possible to convexify the set D in the same
manner to get some results such as those of Ville [66] (see Ky Fan [32]), or
Peck and Dulmage [51] (by taking the finite support probability measures
on Y). But the measurability question related to Fubini’s theorem arises
when f(-,-) is not continuous. This problem should deserve special study;
the interested reader is referred to Kindler [26,27] and Mertens [48].

In order to apply Theorems 3.3 and 3.4 to K(u, y), we need the following
lemma.

LemMA 4.7. Assume that Y is a normed space, that either the Jamily of
the functionals f(x, -) (x € C) is equicontinuous on D, or the functional a(-)
(defined in (c)) is u.s.c. on D. If for every x € C f(x, ) is Ls.c. on D then
K(u, -) is Ls.c. on D for every u € M .

Proof. Let (y,,t,) be a sequence converging to (7,7) such that
K(u, y,)<t,. Let us consider 8(x) = infy,_5cx-1/(x, y). It is clear that
&i(x) is us.c. on C. Now infy, _s1cp-1— a(p) < &) <infj, 51 2();
then for a sufficiently large k& one has —1 — lim sup, L5 a(y) < gx(x) < af7)
or —1 —a(y) < gu(x) < a(y). Thus g.(x) is integrable for every bounded
measure. The theorem of the dominated convergence [8, Chap. IV, Sect. 4,
Proposition 4] says that sup, g,(x) is integrable and we have

|, (2P £4(x) du) = lim [, 8:0e) dux)= | liminf £z, ») du(x)

=[S DA <[ Sl v due) <1,
(with || 7 — y, || <k '), whence K(u, ) < 7.

With the alternate assumption one has Yx € C | f(x, y,)| < |f(x, 7)| + 1,
which is integrable. for every bounded measure. Since lim,_ f(x, y,)=
S (x, ), by Lebesgue’s theorem [8, Chap. IV, Sect. 4, Theorem 2] it follows
that K(u, y) =lim,_ K(4, y,) and K(u, 7) <. Q.E.D.

THEOREM 4.8. Assume that D is a convex subset of a normed TVS Y
paired with U. For every x € C we suppose that f(x, -) is convex proper and
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Ls.c. on a neighborhood D + W, of D (W, € ; see Section I11). Assume
that (a), (b), (c), and the hypotheses of Lemma 4.7 hold on D + W,.
If for every O-neighborhood W € W (1) is consistent on D + W, then

) €M XU sup( )= [ flm ) ) > inf (2. (6)

Also, (6) implies that (1') is consistent on every D + W (W € ).
Moreover the strict inequality in (6) implies that (2) is consistent on
D + W for every W € 1.

Progf. The functional K(u,y) satisfies the assumptions of
Theorem 3.3(i). The inequality (6) is the translation of (5). The first
assertion is nothing else than the first assertion of Theorem 3.3.

By Corollary 3.4, (6) implies that Y W& W Ve > 0 3y € D + W such that
Yue M, K(u, y)<e, which implies that (1’) holds (see the proof of
Theorem 4.4).

The last assertion similarly follows from the first part of Corollary 3.4.

Q.E.D.

V. CONVEXIFICATION II

We have seen in Theorems 2.10 and 2.12 that it is possible to relax the
compactness assumption. To do that, we need a dual system of two locally
convex TVS.

The measure theory offers different possibilities. First, as in the previous
section, the space of the continuous functions on X with a compact support
€4 (X) endowed with the topology ¥, “inductive limit of the sup convergence

on every compact.” Then the topological dual of €. (X) is the space M of the

Radon measures (see [8, Chap. III, Sect. 1, n° 3]).

We can also consider the Banach space €,(X) of the continuous functions
on X which vanish at infinity, endowed with the topology ¥, of the sup
convergence. Then the dual of €,(X) is the space of the bounded Radon
measures IMN°.

Finally we have the space G€(X) of the continuous functions on X,
endowed with the topology T, of the sup convergence on every compact. Its
topological dual is the space MX of the Radon measures with a compact
support (see [8, Chap. IV, Sect. 4, n° 8]).

In any case the spaces M, M°, MX are topologized with their weak*
topologies, the coarser being the weak * topology of M (named the “vague”
topology).

Throughout this section we assume that conditions (a), (b), and (c) of the
previous section hold. In the dual system (€(X), M¥), assumption (c) may
be replaced by the following weaker ones:
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(¢') Yy €D 3a(y) such that Vx € C 0 f(x, y) + a(p), or
(") VYy€D f(-,p)is Ls.c. on C (whence continuous with (b)).

We denote by M, imi , and M~ the cones of the positive measures in M,
M?, and MX, respectively.

We call E, one of the spaces €, (X) (resp. €o(X) or €(X)) endowed with
the topology T,, (resp. ¥, or I;), and we consider a weak *-closed subset &
in the dual of E such that 0 € €, © is contained in the positive cone and
contains  the Dirac  measures. We introduce the set A,=
{(&t)EEXR /3y €D such that sup, . ¢ [ (g(x) + F(x, ) du(x) < t}.

THEOREM 5.1. Assume that for every x € C f(x, -) is convex-like on D.
If there exist a O-neighborhood M in E and o>0 such that
AN M X |—o0, a] is closed, then

min sup K(u, y) = sup inf K(u, y).
yeD ues | uUES yeD
Proof.  We apply Theorem 2.10 to —K(u, y). For every y € D —K(-, y)
is Lsc. (Lemma4.1), convex (actually linear) on &, and
—Sup, ¢ inf, . K(, ¥) <O (because 0 € &). Moreover —K(u, -) is concave-
like on D (Lemma 4.1). The conclusion follows from Theorem 2.10. Q.E.D.

COROLLARY 5.2. With the assumptions of Theorem 5.1, suppose that &
is the cone of the positive measures. Then Theorem 5.1 holds if there exists a
O-neighborhood M in E such that A¢gNM is closed, where #)=
{(¢EE/3yED YxEC gx)+f(x, ») O,

Proof. The set & being the cone of the positive measures, it is easy to
check that

Ay={g€E/IyEDVXxEC gx)+ f(x, ») <0} X [0, +oo]. Q.E.D.

COROLLARY 5.3. With the assumptions of Theorem 5.1 the following
assertions are equivalent. )

(i) the inequality system (1) is consistent on D;
(ii) Yu€S Ye>O03yED such that [, f(x, y)du(x)< &

Proof. The assertion (ii) is equivalent to sup,.ginf,., K(u, y) <0. By
Theorem 5.1 it is equivalent to min,.p sup, s K(u, ¥) <0. The latter is
clearly implied by (i) since u is positive. On the other hand.it implies (i)
because the Dirac measures are contained in &. Q.E.D.

PROPOSITION 5.4. Assume that D is closed and that for every x € C
S(x,+) is Ls.c. on D. Then the closedness assumption in Corollary 5.2 is
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fulf lled in Cy(X) (resp. €(X)) if {y/VxEX f(x,y)<e} (£>0) (resp.
{y/ there exists a compact K < X such that ¥ x €K f(x, y) < &}) is compact.

Proof. Let us consider the O-neighborhood in E, M={g/Vx€EC

g(x)>—¢} (resp. M={g /3K YxEK g(x)>—¢}). Let g, be a converging

net in A} ﬂM 8.~ & For every o there exists y,€ D such that Yx&€ C
S(x, ya)< 8.(x) and —g,(x) <e. With our compactness assumption the
net y, remains in a compact. A subnet p,. converges to FED and

Sx, 7)< —g(x). Q.E.D.

Remark 5.5. When © is a cone the Slater condition (see Remark 2.13)
reduces to: ‘

There exists a O-neighborhood M in E such that Vg € M 3y € D such that
Yxel fix,y)+ g(x) < 0. In order words it means that

Ocint {g/3y€ED such that supj (g(x) + f(x, ¥)) du(x) < +o0

For instance, w1th E= GO(X) it becomes “3e&>0 E!y €D such ‘that
YxeC fix, )<

Up to the end of thls section we assume Y is a normed TVS paired with U
as in Section III, whereas O does not necessarily belong to .

We introduce the set By = {(u, ) / 3u € S sup,.p, ((u, ¥) — K(u, y)) <t}

THEOREM 5.6. Assume that D is closed, convex, and that ¥ x € C f(x, -)
is convex and l.s.c. on D. We suppose that the assumptions of Lemma 4.7 are
Sulfilled and that —I=inf,_p, sup,.cK(u, y) < +oo. If there exist a O-

neighborhood M in U and a neighborhood N of [ such that ByNMMXN is

weak *-closed then

max inf K(u, y) = inf sup K(u, y).

LES yeD yeD ue_G

Proof. We apply Theorem 2.12 to —K(u, y) From Lemmas 4.1 and 4.7,
—K(u, -) is concave and u.s.c. on D. The other assumptions of Theorem 2.12
are also satisfied. ) Q.E.D.

COROLLARY 5.7. With the assumptions of Theorem 5.6 the following
assertions are equivalent.

(i) The ineguality system (1') is consistent on D;
(i) Yu€E® Ye>03yE D such that fcf(x, ydux)<e

Progf. It is obvious that (i) implies (ii). The converse also holds as in the
proof of Theorem 4.4. : ‘Q.E.D.
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Remark 5.8. The preceding corollary is a generalization of the
Theorem 4.4 to a noncompact measure set.

VI. APPLICATION TO THE INFINITE SYSTEMS OF CONVEX INEQUALITIES
The positive integer set is denoted by N.

THEOREM 6.1. Assume that D is closed and convex and that ¥Yn € N
Jx(+) is convex, proper and lLs.c. on D.

If there exist ny € N and ¢ > 0 such that DN {y /¥n< n, fo(y)<eb is
compact. Then the following assertions are equivalent:

(i) 3y €D such that VnEN f,(»)<0;

(i) vmVi,>0, i=1,2,.,m VYe>0 3yED such that
s A fi(y)<e.

Proof.  Let us set f(n, y)=f(») if y €D and +co otherwise. The set N
is endowed with the discrete topology. Then conditions (a), (b), and (c”) are
fulfilled. Thus the result is a consequence of Corollary 5.3 and of
Proposition 5.4. Q.E.D.

COROLLARY 6.2. Assume that the hypotheses of Theorem 6.1 hold and
that Yy € D 3a(p) such that YnEN |f,(») < a(y). If 3¢ >0 such that
DN {y/YneN f(y)<e&} is compact, then the assertion (i) of Theorem 6.1
is equivalent to .

(i) Y420 Y2, A4,<+0 VYe>O0 3IyED  such  that
X Aifi(n)<e.

Proof. 1t results from Proposition 5.4, condition (c”) being replaced by
(c), and the measures with a compact support by the bounded ones. Q.E.D.

LeEmMMA 6.3. With the hypotheses of Theorem 6.1 assume that D is
contained in a finite dimensional euclidean space R"; then the Jfollowing
assertions are equivalent: h

() 3ng€N3e>O0suchthat DO {y/Vn<n, f,(y)< e} is compact;
(i) 3e>O0suchthat DN {y/YnEN f,(y)<e} is compact.

Proof. 1t suffices to show that (ii) implies (i). Let us assume that (i)
holds and that (i) does not. Then YnEN DN {y/Vi<n fi(¥)< g} is
unbounded. Thus a nonzero vector y, belongs to its recession cone (one can
suppose that || y,|| = 1). A subsequence of y, converges to . For any i, € N
YA>0 Ji,(¥ + Ay,) < ¢ for n sufficiently large. Consequently S (¥ + A7) <e,
which contradicts (ii). Q.E.D.
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Remark 6.4. (a) The assertions (i) and (ii) in Theorem 6.1 are obviously
equivalent to:

(iii) vYm V4,20, i=1,2,.,m, 3y €D such that >.7, 2, /:(») 0.

" The same remark holds in Corollary 6.2 and whenever we are in an

analogous situation. ~

(b) Combining Theorem 6.1 and Lemma 6.3 we obtain Theorem 21.3 of
Rockafellar [55].

Let us now consider the following program (P), where D and the functions
s n=0,1,2,.., are as in Theorem 6.1:

minimize So(»)
(P) subject to L(»)<L0 foreveryn € N. .
and yeD

PRdPOSITION 6.5. Assume that the value of the program (P) is a finite
real number y. If there exist ny, and >0 such that DN {y/VYn<n,

LN BN {y/fo(») <y} is compact, then

y= swp inf (3 440)+40)
420 yeD \i=1
1€igm
Proof. For every a > 0 the inequality system fi(y)<y—a, fi(¥) <0 is
inconsistent. Thus there exist 4, >0, 0 <i< m, and ¢ > 0 such that Vy E D
S AL + A(fo(¥) — 7+ @) > & (Theorem 6.1). The program (P) being
consistent, A, 0 and Ag' X7, A, f(») + fo(¥) >y — a whence

m "
sup inf Y A, f(9) + fo(0) >
A;>0 yeD j=1
1<i<m

The reverse inequality is obvious. i Q.E.D.

Remark 6.6. Following Duffin [14-16] we can say that a program (P)
satisfying the condition of Proposition 6.5 is canonically closed. Duffin gives
the above proposition for a finite number of constraints. Proposition 6.5
generalizes to ininite dimensional spaces Y the main result of Karney [25,
Theorem 4.5]. Combining Lemma 6.3 and Proposition 6.5 we essentially
obtain the same results as Karney [23, Theorem2.1] and [25,
Proposition 2.3 and Theorem 4.5], and generalize [24, Theorem 2].

THEOREM 6.7. ~ We assume that D is convex and that Y¥n € N f, is finite
and convex on D. Also we suppose that ¥ y € D Ja(y) such that Yn €N
| £ ¥) € a(y). Then the following assertions are equivalent: ‘
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(i) Ye>O03y€EDsuchthat YneN f,(y)<¢;
(i) Vli>02§?°=lli<lVa>0EIyEDsuchthatZ;“;Iliﬁ(y)ge

Moreover assume that Y is normed, that the previous assumptions hold on
D+ W, for W, € B (see Section III), and that the family f,(-) (n €N) is
equicontinuous on D + W,,. Then

(i) ¥4,>0, 32,4, <1, Iy €D such that Y2, %, f(y) < O/implies
that:

(iv) YWEB3IyED+ I such that YnEN f,(») < 0.

Progf. The first assertion is the translation of Theorem 4.4 for S, y)=
Sa(3)-

Condition (iii) 1mphes that the strict inequality (6) holds in Theorem 4.8.
Thus we get (iv). Q.E.D.

Remark 6.8. Corollary 6.2 can also be regarded as a direct consequence
of Theorem 6.7.

We will not examine in this section the classical case, where the set D is
assumed to be compact, and the numerous consequences of Corollary 4.5.
We will study this situation in the last section.

Less well known are the results that can be obtained when C is compact.

For instance, we straightforwardly derive the following result from
Theorem 4.2.

THEOREM 6.9. Assume that C is compact, that Vx € C f(x, +) is copvex
on the convex set D, and that Yy € D f(-, y) is finite, u.s.c., and bounded
JSrom below on C. Then the following assertions are equivalent:

(i) 3y €D such that Vx € C f(x, y) <0
(i) 3a<O0VueM, |u|=13yED such that [.f(x, y)du(x)< a
Let us consider the program (Q):
minimize S(»)

(Q){ subjectto . VYx€C f(x,¥)<0
yeD.

We suppose that the functions f(x,y) satisfy the assumptions of
Theorem 6.9, and similarly that f(y) is convex and finite.

PROPOSITION 6.10. Assume that the value y of the program (Q) is finite,
then

= max ot ([ s i+ 509)

ueM, yed
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provided that the following condition holds:
(i) 3y €D such that ¥Vx € C f(x, y) <O0.

Proof. Let us consider the compact set C' = C U {x,}, where x, is any
point which does not belong to C, {x,} being a neighborhood of x,. We set
f(xs, ¥)=Sf(y)—y. Then the inequality system Vx&€C’' f(x,»)<0 is
inconsistent. By Theorem 4.2 there exists u €N such that Yy&€D

J [ G, ) du(x) + uo(f(¥) —y) > 0. Now u, is strictly positive; otherwise

Theorem 4.2 shows that (i) cannot be true. Considering uy'u=v we get
[v|=us* and Yy €D [, f(x, y)dv(x)+ f(»)>y. On the other hand for
every ¢>0 the system VYx€C’ f(x,y)<e is consistent. Applying
Theorem 4.2 to f—e¢ it follows that max,.gqinf,cp(fcf(x, ¥) du(x) +
Lo(A¥) —¥))<0. For every positive measure with x> 0 it follows that
inf, ., (J ¢ f(x, ¥) du(x) + f(¥)) <y and y is attained for u = v. Q.E.D.

Remark 6.11. When C is finite Proposition 6.10 essentially is the Ky
Fan—Glicksberg—Hoffman Theorem 2 [40]. Also it is noteworthy to point
out that, thanks to the Helly-type theorem of Klee [28] as recalled by
Borwein [4], the case Y is finite dimensional can be reduced to a finite
number of inequalities. More precisely when f(x, y) is quasi-convex in y for
every x € C, and u.s.c. (of the two variables), /() is quasi-convex and u.s.c.,
D is closed and convex, then v in Proposition 6.10 has a finite support.
Moreover (i) is equivalent to: for every set of n + 1 points {xg, X; .., X, } in
C there exists yE€D such that f(x;,,y)<0, i=0,1,..,n (see [4,
Theorems 3.1 and 4.1]).

We finish this section by applying Corollary 5.7. We have introduced the
set By={(u,t)/3u €S such that sup,.,({u, y)—K(u, y)) <t} Setting
C=Nand S={u/u€ MX ||u| =1} the set B, becomes

m m : %
By= w6 /3430 1<i<m S 4 =1,<2 Al.f,.+%> W) <
i=1

THEOREM 6.12. Assume that D is a closed convex subset of the normed
TVS Y, that the functions f; are Z s.c., convex and proper on D. Assume also

that
inf  sup Z/lif}(y)<+oo,
YED  Ao.m =1
):["=;/1,'=1

that there exists § € D such that Y¥n € N f, is continuous at y and that
m
(u, £) /VmVYA;>0,1<i<m, > ;=1 such that min

i=1 Uplhgseees Um+1
Ut Uyt F Uy =U

B, =

is weak*-closed.

(Z AP AT ) + i:g (Upirs y>) <t
i=1
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Then the following assertions are equivalent:

(i) Ye>03yEDsuchthat VneN f,(y)<e

(i) VYm Vl >0, 1<i<m, Y7L A;=1, Ve>0 Iy €D such that
2 M) <

Proof. With the continuity assumption at 7, it is easy to check that B,
has the given form (see [56, Theorem 20]). All the hypotheses of
Corollary 5.7 are satisfied except those related to Lemma 4.7. Here it is not
necessary to use Lemma 4.7 because K(u, -) =" 1 A; fi(-) is Ls.c. Q.E.D.

VIIL APPLICATION‘ TO INFINITE SYSTEMS OF LINEAR INEQUALITIES

Of course a linear inequality being in particular a convex one, the results
of the previous section apply.

Throughout this section we suppose that Y is a locally convex TVS whose
the topological dual is U (see Section III). A linear inequality is of the type
(u;, y)< b;, where u; € U and b, € R.

Theorem 6.1 becomes:

THEOREM 7.1. Assume that D is closed and convex. If ‘there exist ny € N
and & > 0 such that DN {y/VYn<n, {u,, y)< b, + &} is compact, then the
Jfollowing assertions are equivalent:”

(i) 3y € D such that VnEN {u,, y)<b,
> (@) vm VA,>0, 1Kig<m, VYe>O0 3yED  such that
e Alu,, ¥) —by) <.
i=17"i ne n/ X

When Y is finite dimensional the compactness condition may be weakened
toDN{y/¥YrEN {u,, y)<b,+ ¢} is compact (Lemma 6.3).
The following result is a consequence of Corollary 6.2.

COROLLARY 7.2. Assume that D is closed and convex and that the u,
are contained in a weak*-compact set of U. Assume also that there exists
beER such- that YnEN |b,|<b. If there exists ¢>0 such that
DNi{y/YneN (u,, y)<b,+¢} is compact, then the following assemons
are equivalent:

(i) 3y €D such that YnEN {u,,y)<b,
() vYi,>0, PiA4<l, VYe>0 3y€ED  such  that
22 A ups y) — b)) <e
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We also have
(i) YA;>0, X2, 4;<1, 3y €D such that 32, A,((uy, y) —b) <0

implies that

(iv) YWeEW 3ye D+ W such that Vn € an(y) < O (W is a basis
of convex 0-neighborhoods).

Proof. It results of Theorem 6.7, because the bounded sets in the dual are
equicontinuous. Q.E.D.

We suppose that, as at the end of the previous . section,
S ={uc€MX /|ul =1} Then the set B, is equal to {(u,t)/3Im 31120
1<Z<m’ Zz 1’11—1 SU.Ch that (Zz—l zb +SupyeD <u Zz 1 z Uy y>)

<t}). When D is a cone By={(u,t)/3Im 31,20, 1<i<m, )L A;=1
such that 7, Au;—u €D’ and Y7, 4,5, < t}. '

For every u € @ we introduce the linear application T(u)= (O 7L, u;u;,

m u;b), so that By=T(S)+ (—D°)x R., where R_ denotes the
nonnegative real numbers. '

THEOREM 7.3. Assume that D is a closed convex cone of a normed TVS.
If there exists b > 0 such that ¥n € N |b,| < b and if T(S) + (—D°) X R, is
closed, then the following assertions are equivalent:

(i) Ve>O03yED such that YnEN (u,, y)<b,+6
() vYm ¥1,;20, 1<i<m, Y, A;=1, Ve>0 3y ED such that
i Au ) — b <e
Proof. In order to apply Theorem 6.12 it remains to verify that
—[ < 4+00. It is true since for y =0 one has —/ < b. Q.E.D.

Setting F = ,cn(%,»b,) We have T(S)=co(F), where co denotes the
convex hull (see [7, Chap. II, Sect. 2, Proposition 8]).

CoROLLARY 7.4. Assume that D is a closed convex cone of a Banach
space Y. If co (F) is weak*-compact (which is the case if F is weak™-
compact), then the conclusion of Theorem 1.3 holds.

Proof. One has T(8)=co (F), which is- compact, thus 7(&)+
(=D° x R, is closed. From the compactness we also deduce that VA €N
|b,| < b. (The dual of a Banach space is weak* complete [7, Chap. IV, Sect.
2, Corollary 2, Proposition 1]; thus co (F) is weak*-compact when F is
weak *-compact [57, Chap. II, 4.3, p. 50]). Q.ED.

Using Theorem 2.14 we obtain another type of assumption on co (F).

THEOREM 7.5. Assume that D is a closed convex set and that the
interior of co (F) is nonempty (for a compatible topology). If moreover there
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exists (i, b) € int co (F) such that inf,p (@ ) > —0, then the following
assertions are equivalent:

() 3yEDsuch that VneEN (u,, y)<b,;

(i) Ym V4,20, 1<i<m, Y, A;=1, Ye>0 3yED such that
2o Al(up vy — b)) <.

Proof. It suffices to prove (ii) implies (i). Assume (ii); it entails that

sup “inf ((u, y) + s1) 0.
(u,8)€co(F) (y,0)eDx(—1)
From 2.14
min sup  ({w, y) + 51) <0,
(¥,t)eDX{=1} (u,s)€co(F)
whence there exists y, € D satisfying (i). Q.E.D.

If D has a nonempty interior we get the following “symmetrical” result.

THEOREM 7.6. Assume that co (F\U {0}) is closed and that D is convex,
contains 0, and has a nonempty interior (for a compatible topology). If there
exist a € R, £, > 1 and y, € int D such that Y¥n €N (u,,, Vo) —tob, < a, then
the conclusion of Theorem 7.3 holds.

Proof.  We only have to prove that (i) implies (i). Condition (ii) means
that

. %y

sup . - inf. ((u, y) +b1) <0,

(u,b)eco(F) (y,6)eDX R’
where R’ = ]—00,—1]. Applying Theorem 2.14 to —’((u, y) + bt) we get

inf sup  ((u, y)y+bt)<0

(¥,0)eDX R’ (u,byeco(F)

provided that this last expression is not —co. To ensure that, we may assume
that O € co(F), which does not change the problem.
It follows that Ye>0 3(7 HEDXR'" such that VYneN
(Uys 7Y + b, < &, which implies (i) after dividing by —, since —F~'j € D.
‘ Q.E.D.

 Remark7.7. If D is a cone with vertex 0, we can replace, in the above
proof, R’ by ]—co,a] with a <0. Thus the interior point (¥0, —t,) of
D X R’ used in the assumptions of Theorem 7.6 may be replaced by
(J’o, _ﬁ) with ﬁ > —a.

We finish this section by studying the following program (I7).

(IT) minimize (u,, y) subject to y €D and Yn € N (u,,, »<b,.
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PropoSITION 7.8. The set D being convex, assume that the value y of
(I) is finite. Then

y= sup inf <<uo, Y+ > Alus y) _bi)>
Ai»0,m yebD : i=1 .
1€ig<m

in the following cases:

(i) D is closed and 3n, €N 3e>0 such that DN {y/Vn<n,

(Un y) < by + e} O {y [ (o, ¥) <y} is compact. i

(ii) D is closed, co(F) has a nonempty interior and 3(i, b) € int co (F)
such that —oo < inf, ., <@, y).

(iii) D is a cone, Y is a Banach space, co(F) is weak*-compact, and
ey > 03y7E D such that YnE N (u,, ) —b, < —¢,.

(iv) D has a nonempty interior, 0 € D, co(F U {0} U (u,, 7)) is closed,
3a€R 3ty> 1 such that YVnEN (u,, yo) —t,b,<a; 3e,>0375E D such
that YneEN (u,, 7y —b, < —¢,.

Progf. The first two assertions are proved as in Proposition 6.5. With the
assumptions (iii) or (iv), we can observe that for every a€ IR,
0<ag27%,, the inequality system (u,, y)<y—a, {4;, y><b;—a is
cinconsistent. Thus there exist 4, >0, 1<i<m, > [, 4;,=1, and £ > 0 such
that Vy €D YL, A;((uy y) — by 4+ ) + Ao(Cg, ¥) — 7 + @)) > & (Theorems
7.3 and 7.6). :

If A,=0 then it follows that Vy€D Y7t A,((u;, y)—b))>&—a>
—271¢,, which is absurd for 7. Thus 4, 0 and after dividing by 4, we get
our result. Q.E.D.

Remark 7.9. When F is weak*-compact it is clear that the following
assertions are equivalent:

(i) e, >03IFED such that ViEN (u;, 7y — b; < —&¢;
(i) 37€ D such that Vi€ N (u;, ) —b; < 0.

Taking into account this observation, Proposition 7.8(iii) generalizes to
Banach spaces the result of Duffin and Karlovitz [17, p. 126]. It is
noteworthy that the Duffin—Karlovitz proof [17, p. 128] is nothing -else than
a direct proof of the closedness of B,. o -

- On the other hand the first assertion of the above proposition generalizes
to infinite dimensional spaces Y the main result of Karney [23,
Theorem 2.1]. When Y is finite dimensional, in order that (i) be satisfied it
suffices that rc(D) N {y/ Yn €N (u,, y) <0} N {y/{u,, y) < 0} be reduced
to {0} (rc(D) is the recession cone of D) (see Len?ma 6.3 and [§5,
Theorem 8.4]). The value of () is° —oo if there exists
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yEre(D)N{y/¥n€N (u,, y) <0} such that (u,, y) < 0. Thus condition
(i)  actually reduces to re(D)N{y/YnEN (U, ¥)L0}N
{y/(up, y)=0}={0}. Hence Proposition 7.8() is equivalent to
Theorem 2.4 of Karney [23]. ’

At last, let us say that we have not envisaged in this section the well-
known results relying on the properties of the (closed) conical hull of F; see
[37, 12], and a recent survey by Borwein [6].

VIII. MAZUR-ORLICZ-TYPE THEOREMS

This section mainly relies on the result of Ky Fan (Corollary 4.5). Ky
Fan himself has already drawn a large number of applications from this
result [34-36]. Here we would like to focus our attention on the
Mazur—Orlicz and moment theorems.

First let us show that the Mazur—Orlicz theorem [47, 59] can easily be
deduced from Corollary 4.5.

THEOREM 8.1 (Mazur and Orlicz [47]). Let E be a vector space, T a
nonempty set, p a sublinear functional on E, d a functional on T,and ¢ a
mapping from T into E. Then the following statements are equivalent:

(i) There exists a linear functional v on E such that YxE€E
v(x) < p(x) and V1 € T v(p(?)) < d(2);

(i) ¥Ym V4,20, 1<i<m, Y4ET, 1<i<m, Y, 4,d()<
PO Ao (8))-

Proof.  Let us set f(t,v) =d(t) — v(p(t)). The vector space E is endowed
with its finest locally convex topology [1, p. 168]; then v is continuous and
p is also continuous [1, p. 169].

The condition ¥ x € E v(x) — p(x) < 0 means that Pp*(@)<0. Thus we can
restate (i) as “Jv € {v / p*(v) <0} such that V¢ € T f(r, v) <0.” Since pis
continuous then {v / p*(v) <0} is weak *-compact [49]. By Corollary 4.5(1)
is equivalent to:

(i) YmV2, >0, 1<k<m, Yf_; A =1, v satisfying p*(v) <0 and
k=12 d(t) <vTRo, A 0(8)-

It is clear that (iii) implies (ii). Now p being positively homogenous one
has  p(x) =maxp*() <0 ((x,v)) [43, Theorem 6.8.7]. Consequently
21 A d(t) S PRy Ac0(t,)) implies that there exist v satisfying
v Fo1 Aep(t)) = P, A0(4)) and p*(v) <O showing that (ii) implies
(iii). Q.E.D.

Along the same line it is possible to obtain numerous “moment” theorems.

INEQUALITY AND MINIMAX 287

TuEOREM 8.2 (Bittner [3]). The following assertions are equivalent:

(i) There exists a linear functional satisfying Vx € E f(x) < p(x) and

f(x) > a; (i €1), where p is a convex functional and I an arbitrary set.

(i) YmVYi,>0, 1<i<m, Y7L, 40, <K P(X[=q AiX;), where P is the
sublinear hull of p.

Proof. As previously we endow E with its finest locally convex topology,
so that p is continuous. Then (i) is equivalent to:

(i) VYm V2, >0, 1<i<m, Ym, A, =1, 3f satisfying p*(f)<0 and
A <SG Aixy). Now (ili) is equivalent to (ii) if P is the sublinear

hull of p which is defined by P(x)=inf, ,u 'plux) (see [43,
Theorems 6.8.7 and 6.8.9]). ~ QED.

The following “moment” theorem 1is also closely related to the
Mazur-Orlicz theorem. See also [10, 58, 41] for some other results in the
same spirit.

TueoreM 8.3 (Landsberg and Schirotzek [41]). Let E and F be two
vector spaces paired by the bilinear form (-, -). Let P be a cone in E and let
T be a nonvoid set. Further let ¢ be a map from T into E and f a functional
on T. Assume that W is a convex weak*-compact subset of F containing 0.
Then the following statements are equivalent:

(i) 3Jv € W such that Vx EP (x,v) >0 and Yt E T (p(t),v) = f();
(i) Ym Y1, 1<k<m, such that Y7 A0(t)E W’ +P then
Dk=1 A f(8) + 1 20.
Proof. The vector space E is topologized by the MacKey topology

I(E, F) while F is endowed with the weak* topology o(E, F). Then W being
compact, Corollary 4.5 implies that (i) is equivalent to:

(i) Vm Vi, 1<k<m, v € WNP° such that

Tl s

Ao(ty)s v) — S A S () <0.
1 =

It is clear that (iii) implies (i) because if Y7, A0(t)EP+ W'
(W P%O one has 37, A, {o(t,), v) > — 1. o

Let us show that (ii) implies (iii). We have for any z€E
min, ¢y pots 2) K0 K MaX ey po (s 2). If Min,cpnpov, z) < 0, then there
exist @ >0 and v, € WM P® such that min, gy mpe(0, 0z) = —1 = (v,, az).
For every A, let us set z= 3", 1,0(t,); we have az € (WNP°) =W’ + P
and (v,, az)=—1. Now W° + P has a nonempty interior since W° is a 0-
neighborhood and for every ¢ sufficiently small (¢ — &)z € W° + P implying
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by (i) that (a—e) X/ 4 f(6)>—1 Thus o X7, 4, f(6)>—1=
a > 7 A lo(ty), vy) entailing (iii).

Assume now that min,.u~po(v, z) =0, then for every real number S
Bz € W' +P. 1t follows from (ii) that 37, A, f(z,) > 0. Thus there exists
vy € WN P° such that 37, 4,{0(¢,), v,) = 0 and (iii) is satisfied. = Q.E.D.

Remark 8.4. 1In the above theorem, it is not necessary that P be a cone.
When P is any subset of E, it suffices to replace in (ii)
R Aot )EWP P by “YM A0(t) € co(WPUP),” where co
denotes the convex hull.

In the preceding theorem, when we do not have a compact subset W it is
possible to obtain a similar result by taking a cone P with a nonempty
interior so that P° has a compact basis. For instance let us prove a result of
Ky Fan [34, Theorem 17].

TreoreM 8.5 (Ky Fan [34]). Let E be a locally convex TVS and F its
topological dual. Let P be a convex cone with int(P)# @, x; (i€1) be a
Jamily of vectors of E and «a, (i € I) be a family of real numbers. Assume that
there exists x; € int(P) with a; >0. Then the following assertions are
equivalent:

(i) 3Jv EF such that VxEP (v x)>20and Vi€l (v,x,)=q,

() VYm Vi, 1<k<m, such that Y7 ,A,a,=0 the Ilinear
combination Y7, A,x, is not in int(P).

Proof. Let us set H; = {v/ <v,vx,‘0> <a,.o}. Since 0 € int(P —x, ) the set
H=P°MH, is Weak*—compact. In (1), v € H; therefore (i) is equivalent to
(see the prev1ous proof):

(ili) VmVA, 1<i<m, 3v€ Hsuchthat 37 A, {x;,0)< I, L.

It is clear that (i) implies (ii) since v 0 and (v,x) >0 for x €int P [7,
Chap. II, Sect. 2, Corollary 1, Proposition 17].

To prove the equivalence of the three assertions it remains to show that
(ii) implies (iii). Assume that (ii) holds; then (iii) is satisfied with v =0 if
27142, >0. Thus we consider a=37,4;0;<0 and we set
1- i)a + /la =0 (/1 =a(@—a;)” ). Applying (ii) it follows that x=
(L=2) M Ax, + Ax; , & int(P). Thus we can separate X and int(P), which
implies that there exists v, satisfying (v,,X) <0 and Yx EP (v,,x)>0.
Setting & = a; vo((vy, x;,)) ' we check that (iii) is fulfilled. Q.E.D.

Let us finish by showing how to obtain a result in the same spirit as the
previous results, using Theorem 7.5. ‘

For any set C we denote by C° the conical hull of C (i. e, C°=U;504C)
and by C’ the open conical hull of the interior of C (i.e., C'={J;,4 int C).
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THEOREM 8.6. Let E be a locally convex TVS, and F its topological
dual, and let C be a convex subset of E. Consider a family x; (i€I) of
vectors in E and a;E R (i € I). Assume that there exists i, € I such that .

x;, € int C and &, < 0. Then the following assertions are equivalent:

(i) JvEFsuchthat Vx€C {x,v)>0and Viel (x;,v)<a

(i) YmeN V4,20, 1<i<m, such that A0, <0 then
(Crdx— C)NCl =g

(iii) YmeN V4,20, 1<i<m, Yz€C° JvEF such that ¥xeC
(x,v) >0 and 3L, A ((xp,0)) — (2, v) < Xy A

Proof. Let us introduce the set C'={v|VYx € C (x,v)>0}. We can

reexpress (i) as Jv € C such that (—x,v) <0 and (x;,v) < ;. Setting F=
(—C X {0 U (Uer(x;5 @;)) and assuming that —x; + W is contained in
int (—C) (W being a  O-neighborhood), one can verify that
(—=x;,+27'W)x (]27";,0[) is contained in co(F). Then Theorem 7.5
applies, It follows that (1) is equivalent to (see remark 6.4):

i’y vymeNVvi >0, 1< m, Y1t A;=1, 3v € C such that

P p

> Ax, vy — 2 Adx )< > Aya; (where x* € C).
i=1 k=p+1 i=1

iel iel

It is easy to see that (iii)’ is equivalent to (iii).

Now (i) implies (ii) because, as in Theorem 8.5, v#0 and Vx&€C
(x,0)>0 implies (x,v)>0 for x€intC [7, Chap.Il, Sect. 2,
Proposition 17].

As above it remains to prove that (ii) implies (ili). Assume (ii). If
>m o A; >0 then v=0 satisfies (iii). If 7L llla =a <0 then
X;,+ 2 jLy Ax;— C¢ does mnot meet C‘. Separating  C' and
X+ Y7y Ax;—z we find v, such that Yx € C' (vg,x) >0 and (o, Xy, +
Y, Ax;—z)<0. But one has (x;,v,)>0; we therefore get
(v, S A;x; — z) < 0, and uv, for u sufficiently large satisfies (iii). Q.E.D.

Note added in proof. Since this paper was submitted, I have become aware of the
following recent works which are more or less concerned with some parts of my survey, and
anyway bring some related additional references.

Al. HoANG Tuy, Convex inequalities and the Hahn-Banach theorem, Dissertationes Math.,
No. 97 (1972).

A2. A. IRLE, Minimax theorems under convexity conditions—a survey, Bayreuth. Math. Schr.
6 (1980), 1-21.

A3.KY FAN, Some properties of convex sets related to fixed point theorems, Math. Ann. 266
(1984), 519-537. .
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nm n $$es lar scale e simul T tware des and systems i
simulation, g system ation, so 3| 1G] 1

Solitons and Nonlinear
Wave Equations

R.K. Dodd, J.C. Eilbeck, J.D. Gibbon and H.C. Morris
November 1982, x + 630pp., £24.00 (UK only) / $ 45.00, 0.12.219120.X

The book presents a basic, selfcontained, but extensive treatment of t i i
which soliton behaviour occurs, the derivation of mathematical modeﬁs ofh:u222§::tagr:¥s;$\ngigg
solu.tl.on of the resu_ltlng equations using the inverse scattering method and other technithues. An
addljclon_al featu_re is a_numerical chapter on nonlinear evolution squations. Areas of physical
application conmdereq include plasmas, classical fluids and quantum optics. Detailed derivations
of the relgvant eqguations using such methods as the technique of multiple scaling and reductive
perturbation theory are given in each case.

Practical Optimization

Philip E. Gill, Walter Murray and Margaret H. Wright
Paperback: June 1982, xvi + 402pp., £12.50 (UK only) | $25.00, 0. 12.283952.8

Numerical optimization and parameter estimation are essential tools in a wide variety of appli-
cations, suph as engineering, science, medicine, sociology and economics, For these optimiza-
tion techniques to be exploited effectively, problem solvers need to be fully informéd of the
scope and organization of software for both the specialist and non-specialist. These topics
form the basis of the organization of Practical Optimization. ‘
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