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Direct Sums of Cartan Factors.

CARLO PETRONIO (*)

In [Pe2] we envisaged the orbit of the origin in the unit ball of a di-
rect sum of two complex Banach spaces (endowed with a suitable
norm), with respect to the group of holomorphic automorphisms, and
we obtained some general results. As a special case we considered the
class of p-norms, and we proved that the most interesting case is when
p equals 2. For p = 2 we succeeded in giving some information about
the orbit of the origin when one of the spaces is either a Hilbert space
or a commutative C*-algebra with identity. In this paper we consider
the case when one of the spaces is a Cartan factor. The reason for con-
sidering Cartan factors is that, as we proved in [Pe2], only spaces in
which the orbit of the origin in the unit ball is non-trivial can give rise
to a direet sum in which such an orbit is non-trivial: and the unit ball of
a Cartan factor is homogeneous.

Our main result can be expressed in the following way: if F is a Car-
tan factor of type I, II, III or IV and F is not isometric to a Hilbert
space, then, given a non-trivial complex Banach space G, no point in
the orbit of the origin in the unit ball of the 2-sum of G and F can have
non-zero F-coordinate.

In the last section we shall prove some results concerning duahty

theory for Cartan factors.

1. Preliminaries and notations.

First of all we recall the definition of Cartan factors (see
e.g. [Ha]).

If H and K are complex Hilbert spaces, we shall denote by £&(H, K)
the Banach space of continuous linear operators from H to K, endowed
with the usual «sup» norm; £(H, K) will be called a Cartan factor of

type 1.

(*) Indirizzo dell’A.: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126
Pisa, Italia.




112 Carlo Petronio

An anti-linear involutive isometry = of H will be called a conjugation
on H (remark that such a = enjoys (zx|7y) = (y|%) Vz, y € H); given 7
we define the associated transposition on £(H) by ‘A = tA* .

Lemma 1. Given a coniugatibn 7 on H there exists an orthonormal
basis {4,} of H such that (t¢|¢,) = (¢|¢,) V¢ e H, Va. :
With respect to this basis (A¢,|¢s) = (Ads|.) VA € LH), Va, B.

Proor. For the first assertion it suffices to show that 3{¢,} such
that t¢, = ¢, Va. Given ¢ € H\ {0} set

%={w if w6 +¢=0,

¢ +¢  otherwise;

we have 7¢; = ¢, ¢; # 0; since 7 preserves orthogonality the conclusion
follows at once by a maximality argument. ‘

The second assertion is a direct consequence of the first
one. - MW

Given =, the space {A e £(H):'A = A} will be called a Cartan factor
of type 11, and the space {A € L(H):*A + A =0} will be called a Cartan
factor of type III; it is easily checked that they are closed subspaces of
£(H), and hence they are naturally endowed with a Banach space
structure. o

According to Lemma 1, a Cartan factor of type II (resp. III) is the
space £f),(H) (resp. £, (H)) of symmetric (resp. skew-symmetric)
operators with respect to some fixed orthonormal basis {4, } of H. Since
different choices of the basis give rise to isomorphic Banach spaces, the
subseript will be omitted.

A closed subspace U of &(H) will be called a Cartan factor of type IV
if for any A in U the square of A is a scalar multiple of the identity op-

erator and A* belongs to U. As well-known (see [Ha]), a Cartan factor

of type IV is linearly and topologically isomorphic to a Hilbert space K,
and there exists a conjugation = on K such that the norm of fe K as a

point of the Cartan factor is given by
Il = @lg) + (@197 — [@l=0 V2.

As above, let H and K be complex Hilbert spaces. We shall denote"

by £ (H, K) the closed subspace of £(H, K) consisting of compact oper-
ators; for ¢ H and ¢ e K, an element ¢ @ ¢ of L (H, K) is defined
by .

WO®PG) =119 ¢, ek
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In[Pel] (extending Schatten’s works [Scl] and [Sc2] from the case of

“operators on one Hilbert space to the case of operators between two

possibly different Hilbert spaces) we defined a subspaces £ (H, K) of
£, (H, K) as the set of those operators A such that [|A]|, = tr ((4*A)2)
is finite, and we proved that £, (H, K) is a Banach space with respect to

the norm |-[;. Moreover, we checked that for A e £H,K) and Be
€ & (K, H) the trace tr (AB) of AB can be defined, and we established

the following. _
THEOREM‘L The following isometrical isomorphisms hold:
LH, K)*=L(K, H) £&H, K)*= LK, H)
the value of A on B being defined in any case by tr(4B).

If F and G are complex Banach spaces, and 1 < p < o, we shall de-
note by F @,G the direct sum of F and G endowed with the so-called
p-norm

(fIP +llglp)? i 1<p< oo,

IK£ o2l = {max{nfn, lol} 5=

2. A few technical lemmas.

According to a theorem proved by Staché in [St], for any complex

Banach space F, the orbit of the origin with respect to the group of -

holomorphic automorphisms of the open unit ball B of F is given by B N
N Fy, where F,is a closed linear subspace of F. Moreover the elements of
Fy can be characterized as those points ¢ of F for which there exists a
continnous homogeneous polynomial @Q.: F—F of degree 2 such
that

#(Q, (@) = [la|P- ¢(c)

whenever a € F, ¢ F* and ¢(a) = |a|-|4]; Q. is uniquely determined
by this condition, and it will be referred to as «the polynomial relative
to c».

As in[Pe2], all our results will deal with the subspace Fy and not
with the orbit of the origin itself.

LemMA 2. Let E and F be non-trivial complex Banach spaces and
assume there exist a linear isometry i: E — F and a surjective linear
projection p: F — i(E) such that |p|| = 1. Then p(Fy) C i(Ey).
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ProOF. Let ce Fy and let Q,: F — F be the polynomial relative to
c. Set ¢;=(@"top)c) and @ =i topoQ,oi: E—E. We will prove
that

$(@1 (@) = |lalP-¢(c)

whenever a e E, ¢ € E* and ¢(a) = ||a]|-|¢|l, which implies ¢; € E; and
then the coneclusion.
Let us define a linear mapping j: E¥ — F* by the formula

JH)b) = #(@ top)b) VeeE*, befF.

It follows from ||p] = 1 that 7 is an isometry. Now, let a € E, ¢ € E* be
such that ¢(a) = ||a]|-||¢[; using the definition of j and the fact that both
1 and j are isometries, we obtain

i@)i@) = [li@ |- [l
and hence, by the definition of @,

7)(Q, (@) = i@ j($)e) =
=3((i "L opoQ, o« 1)@) = [|lalf-$(G o p)(C))

i.e.
3(Q: (@) = [la[*-¢(er)
and the lemma is proved. =

We recall a result we proved in [Pe2], which is the basis for all our
further investigations.

LeEMMA 3. If E is the Banach space C @3(C @ .. C), then Ey = C X
x {0} x {0}. '

Combining Lemmas 2 and 3 we obtain the following.

LeMMA 4. Let L be a non-trivial complex Banach space and as-
sume that there exist a linear isometry i: C @ . C — L and a linear pro-
jection p of L onto #(C @, C) such that |p| = 1.

For any non-trivial complex Banach space G, if (o, ly) € (G D3L),,
then p(l) = 0.

Proor. Choose g;.€ G, gif € G* such that g:*(g;,) = |lg1[| = [lg7] =
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Set F=G®,L and E=C&,(CP ., C) and define

it E>F p;: F->4 (&)
by . .
iy (21, 22, 28) = (2191, %2, %)), -~ P1(g, D) = (0 @91, pD).

iy and p; fulﬁll' the hypothesis of Lemma 2, and hence

(i7" o p1)(go, bo) € By
It follows from Lemma 3 that |

(91 0), " op)p)) € C % {0} x {0}

and hence (1 top)ly) =0, i.e. p(ly) =0. =

CoROLLARY 1. If in Lemma 4 we assume that, for any [ e L, ¢ and
p can be chosen in such a way that [ € {(C @, C), then for any non-triv-
ial complex Banach space G we have

(G DsL)oc G X {0}.

PROOF. If (gy, ly) € (G®,L)y and [y e {C D, C) then Iy =p(l) =
=0. = :

LEMMA 5. In order to prove that (G ©2L) C Gy X {0} it suffices to

show that (G @,;L),c G X {0}.

ProoF. Assume (G ®,L);cG x {0} and let (9o, 0) € (G@2L);
since the projection

p: GO&L—-G (g9,D—>g
has norm 1 then Lemma 2 implies that
9o = 090, 0) € Go o
and then (gq, 0) € Gy X {0} so that (G®;L)yc Gy x {0}. =

3. Direct sums.

Let H and K be complex Hilbert spaces. If either H or K is 1-dimen-
sional £(H, K) is Hilbertian, and hence, by Theorem 4 of [Pe2], when a
direct sum with 2-norm is performed, homogeneity along £(#, K) is
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preserved, i.e. for any complex Banach space G
(G ©,.£(H, K))2 {0} x £(H, K);
if this is not the case, the situation is radically modified.

TueoreM 2. If H and K are at least 2-dimensional then for any
non-trivial complex Banach space G we have

(G ®;LH, K))yc Gy x {0}.

Proor. Let F = G @, L(H, K), and suppose (g, A) € Fy; according
to Lemma 5 it is enough to show that A = 0. In order to check this, it
suffices to prove that for every arbitrary pair of unit vectors ¢, € H and
¢ € K, we have (A |¢1) =

Fix such ¢; and ¢4 and ﬁnd ¢s€ H and ¢, € K in such a way that
{¢1, ¢2} and {¢y, o} are orthonormal pairs.

* Now, we define the mappings:

l. C@wC%ﬁ(H,K)

@ Y=y @ +y @, - [
p: &, K)—>i(C®.C) |

B> (B |¢1) ¢n ®@ &1 + (B | )t ® S

It is easily checked that i and p fulfill the hypothesis of Lemma 4, and
hence p(4) = 0; then (A¢;|¢;) =0 and the theorem is proved. M

COROLLARY 2. If H and K are at least 2-dimensional then for any
non-trivial complex Banach space G we have

(G ®3y£4(H, K))yc Gy X {0}.

Proor. Since the only property used for £(H,K) in the above
proof is the fact that it contains finite-rank operators, the very same
method works for £H(H, K). =

Let H be a complex Hilbert space. If H has dimension 1, £ (H) has
dimension 1 too, and hence it is a Hilbert space. It is easily verified that
if dim (H) = 2 then £ (H) is not a Hilbert space. Our aim is to prove an
analogue of Theorem 2 with £% (H) replacing £(H, K).

Since for.dim (H) = 2 £9(H) is isometrically isomorphic to a three-
dimensional type IV Cartan factor (see [Ca-Ve]) we shall not consider
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‘this case now. Anyway it will follow from Theorem 5 that the next the-

orem holds for dim (H) =2 too.

-

THEOREM 8. If H is at least 3-dimensional then for any non-trivial
complex Banach space G we have

(G ©,£° (H))o ¢ Gy % {0}

PrROOF. As in Theorem 2, we set F =G ®,£" (H), we suppose
(90, A) € Fy and we use Lemma 4 to prove that A = 0.

Let {¢, } be the basis with respect to which symmetry is considered.
If, by absurd, A =0, we can find two indices oy, o such that
(A4, |¢,,) # 0. We distinguish the cases oy = o and o) # ay.

For oy = as we choose a3 different from «; and we set

it CH, C— L9H)
(, y)»mqﬁ%@@w'@s@qﬁ;,
p: £2(H) - i(CO.C)

B = (B¢051 | ?al ) ¢zz1 ® ¢a1 + (B¢ol3 I ¢13) ¢ag ® ¢ac3

Lemma 4 applies; we obtain p(4) = 0=(44¢,, |4,,) =0.
~ For a; # oy we choose «g different from both of then (we recall that H
is at least 3-dimensional) and we set

i CH,.C—L9H) _
@Yt (4,08, 18,98 T 16, O,
p: £2H) —>i(C . C) |
B> (B, | 82,6y ® Gy +80, © 80y) + (B |815) 6, ® &

and as above we obtain (B¢, |4,,) =0.
In both cases we got a contradiction and hence the theorem is
proved. ™

Let H be a complex Hilbert space. If dim(H)=1 then
dim (£9 (H)) = 0, and if dim () = 2 then dim (£9 (H)) = 1; in both cas-
es £9(H) is a Hilbert space; since for dim(H)=2 £9H)=
= &C, C®) = C? (see[Ca-Ve]), £9(H) is a Hilbert space in this case
too. It follows that an analogue of Theorems 2 and 3 can hold for .,8(“) (H)
only if dim (H) is bigger than 3.
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TuEOREM 4. If H is at least 4-dimensional then for any non-trivial
complex Banach space G we have

(G ®2£9 (H))o ¢ Gy % {0}.

Proor. Let {¢,} be the orthonormal basis of H with respect to
which skew-symmetry in £(H) is defined, set F =G ©,L9(H) and
suppose (gy, A) e Fy. As we remarked above, it is enough to show that
A=0.

In order to prove this it suffices to check that for an arbitrary fixed
pair of indices a; # ap, it happens that (B¢, |4,,) = 0.

Since H is at least 4-dimensional, we can find «3 and «4 in such a way
that «;, ..., a, are different from each other. For the sake of simplicity,
we set ¢; = ¢, .

As above, we define two linear mappings

it C®,C— £9H
@, P>t ®% —$1 @ F) + Y3 ® 8 —3:® 1),
p: L2°H) - (CH.C)
B> (B |¢2)(¢, ® 31 —$1 @ ) + (Bos |$)($4 ® 65 —$3 @ 80

It is readily verified that the hypothesis of Lemma 4 are fulfilled. It
follows that p(4) =0, hence (B¢, |¢,,) =0 and the proof is com-
plete. = '

TueoreM 5. Let U be a Cartan factor of type IV, and assume that
U is at least 2-dimensional. Then for any non-trivial complex Banach
space G we have

(G@2 U Gy X {0},

ProoF. Since if dim(U)=2 then U= C D, C (see[Ca-Vel), the
theorem is certainly true in this case (once again Lemma 4 is
used).

Using Corollary 1, the general case will be deduced from the follow-
ing fact: given « € U\ {0} there exists a subspace V¥ of U with the prop-
erty that:

a) ve
b) © is 2-dimensional;
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¢) ©is a type IV Cartan factor with respect to the induced -

norm;

d) there exists a surjective linear prOJectlon p:U— P with

o]l < 1.

To see this, we represent U as a Hilbert space K with conjugation 7,
as we mentioned in Section 1. We define a 2-subspace M ¢ K containing
2 in the following way: if & ¢ Cax then M is generated by = and =x; oth-
erwise we remark that x* is t-invariant, so that we can find z'e
e 2+ \ {0} such that &' = 2', and then M is generated by  and z'. Since
M is r-invariant, it is a type IV Cartan factor with respect to the in-
duced norm. We are left to check property d).

We define p: K— M as the orthogonal projection; our aim is to
prove that for y e M and z e M+ the continuous real function

£ =y + talf,

has minimum in 0. We can assume that y and z are both non-zero; since
M and M * are z-invariant, (|2) = (ty|2) = (y|72) = 0, and then fcan be
re-written as

A = [y + 2262+ (g2 + 212207 = |@gle) + | 2) 12 ]2)2

(|w| denotes the norm of w in K). If for some point ¢, 0 the argu-
ment of the square root vanishes in {,, it is easily verified that fis ex-

‘pressed by

f) = |y|* + |2]*¢*

and hence it does have minimum in 0. Conversely, suppose the argu-
ment of the square root does not vanish in R\ {0}; then fis differen-
tiable in R\ {0}; by direct calculation we obtain that f'(¢) =¢-q(®),
where ¢ is a strictly positive continuous function. It follows that f has
minimum in 0 in this case too, and hence the proof is com-
plete. =

Theorems 2, 3, 4 and 5 of the present paper (ftogether with the ac-
companying remarks) are summarized by the following.

THEOREM 6. Let G be a non-trivial complex Banach space and let

F be a Cartan factor of type I, II, III or IV. The follomng mutually ex-

clusive possibilities are given:
~a) F is a Hilbert space, and

(G @ F),2{0} x F;
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b) F is not a Hilbert space, and
(G @2 F), ¢ Gy X {0}.

The above result provides the machinery for the proof of an ana-
logue of Theorem 8 in [Pe2], with the spaces L (Q, ) replaced by Car-
tan factors. V

‘We shall denote by @ the category of all non-zero Cartan factors of
type I, IL, III or IV (the morphisms being the linear isometries) and by
S the category whose objects are the Banach spaces obtained from the
objects of @ by a finite number of operations of direct sum of the type
@, (with re[1, »]), and whose morphisms are the linear isometries
again. (If the collection $ of all Banach spaces were a set, and not only a
category, we would have defined S as the closure of € in # with respect
to the operations @.,.)

If £ is an object of S, E is linearly and topologically isomorphic to a
product F; X ... X F}, where Fy, ..., F}, are objects of & for i e {1,..., k}
we can think of E as the space built up starting from F; and adding to it
other objects Gy, ...Gy, of S; that is, we can represent E by

(L ((Fi8,,G1) 8,,G,) D, ...) 8,6,

(or by a similar formula where the sums are not all performed at the
right side). In such a case we will say that «@,,, ..., @,, are, in the or-

-der, the direct sums which appear in E after F;».

TuHEOREM 7. Let E be an object of S, topologically and linearly iso-
morphic to a product of objects of G F; X ... X F,. Then

Ey=R; X ..XR,

where R;CF; is either {0} or the whole F;.
Precisely, R; is equal to F; if, and only if, one of the following condi-
tions is fulfilled:

(@) F;is a Hilbert space and after F; there are first some @, (pos-
sibly none) and then some @ . (possibly none);

(b) after F; there are only @. (possibly none).

Proor. We confine ourselves to a sketch since the argument imi-
tates closely the one presented for Theorem 8 in [Pe2].

Let us consider by simplicity the first coordinate F; and prove that
if (@) or (b) are satisfied homogeneity along F; is preserved, while if
neither (a) nor (b) are satisfied homogeneity along F is lost.

In case (@) the conclusion follows from Theorems 3 and 4 of [Pe2],
while case (b) is immediately settled.
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If neither (@) nor (b) are fulfilled, one of the foll‘owing cases
oceurs: ‘

(c) after F, there is some @, with p # 2, ;o;
(d) after Fy there is a @ ., followed by a @;;
(e) Fy is not a Hilbert space and after F there is a @,.

In all these cases homogeneity along F; is lost: case (c) follows from

Theorem 2 of [Pe2], case (d) from Theorem 6 of [Pe2] and case (¢) from
Theorem 6 above. ® -

4. Duality theory for Cartan factors.

Theorem 1 establishes a duality theory for Cartan factors of type I;
we will prove that a completely analogous result holds for Cartan fac-
tors of type II and III. Afterwards we will consider the case of type IV
Cartan factors.

Let H be a non-trivial Hilbert space, let = be a conjugation on H and
let A—*A be the transposition associated to t.

We set £ (H) = £9(H) N &,(H) and £ (H) = £2(H) N &(H) for

i=0,1. We want to prove the following.

THEOREM 8. &Y (H) and £ (H) (for i =0, 1) are complex Banach
spaces with respect to the induced norms, and the following isometrical
isomorphisms hold:

W =, @ =L,
®) LPE*=L0H), @  SHE)* = L9H),
the value of A bon B being given in any case by tr(4B).
) For the proof of this theorem we need a few technical preliminar-
les.We recall that for A e £(H), [A] = (A*4)Y/2.
LeMMA 6. VA e &(H), ['A] = €A*]x.
PROOF. Since (zxt|wy) = (y|x) we have
(CA*x|y) = (rA*D)*2|y) = (@|wA*7y) = (A* 7y | ) = (‘T?/lATﬂC)v= '
= (TATn | y) = CA)* = TAT=[PAP = A * 1 = (z[A*] 7)?

and conclusion follovvs.from the fact that <[A*]z=0. =
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LEMMA 7. (@) Aee(H)='Acei®H), |'Alp=[All, tr¢d) =
= tr(4); . ,

(b) Ae & H)="Aec£,H), |'A] =lAl

ProOF. (a) Let {$,} be an orthonormal basis of Hj; then if ¢, = T4 s
{¢..} is an orthonormal basis too, and hence

P4ll = tr @AD = SEIA*1%.]4.) = S |14%14.) =
= §<[A*]sb;1¢a> = tr(4*D = [4*]: = Al
The ﬁrstvtwo assertions are proved; as for the third one
tr(A) = SCAg |8.) = SA* w4 |¢.) =
= Z(eg | A% 8,) = DA |4) = tr (4).
(b) is obvious. ®

Now, for A e £(H) we set A°=1/2-(4 +'4), A®=1/2-(4 —'A). It
follows from Lemma 7 that if Ae £;(H) then A°, A%e &(H) (for
1 =0,1).

LeEMMA 8. (a) Given A e £, (H) we have
tr(AB)=0 VBePH)«='A=—A.

(b) Given Ae £ (H) we have tr(AB)=0 VBe &P (H)=‘A=
=A. ) . |
(¢) Given A e £(H) we have tr(AB) =0 VBe £f(H)=‘A= —A.

(d) Given A e &(H) we have tr(AB) =0 VBe FOH) A=A

~ Proor. (a) <.

tr(AB) = — tr((A 'B) = — tr ({(BA)) = — tr (BA) = — tr(AB).

=. Suppose A°# 0; since A°e £ (H) and £ (H) = & (H)* we can
find B e £, (H) with tr (4°B) = 0; but by the hypothesis and by the first
implication ' '

tr(A°B) =tr(A°*B*) =tr(4AB®*) =0

and this is absurd.
The proof of (b), (¢), and (d) is completely analogous. ™
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Leva 9. (o) Ae£9(H), Be £9(H)=|A+B|=max{|4], |BJ}.
0 Ae &(H), Be & (H)=||A + B, = max {||A;, [Bl};}.

Proor. (a) Since the transposition is an isometry

|4+ Bl <[4 ~Bl =4 - B = |4 - B>
=lAl= 2|4 +B+4-Bl< 204+Bl+]a-Bh=]4+B5].

The same holds for ||B].

(b) As the transposition is an isometry for |-|l; too, the proof
works as above. W

PROOF oF THEOREM 8. Lemma 7 implies that £ (H) and £© (H)
are closed subspaces of £ (H) for i =0, 1, and hence the first assertion
is abvious.

(1) By Theorem 1, Lemma 8 and the Hahn-Banach theorem there
exists a one-to-one mapping « from £ (H)* onto £ (H) such that

$(B) =tr («(¢)B) Voe £ (H)*, Be £y H).

« is obviously a linear isomorphism. We are left to prove that « is an
isometry, ie.

tr (AB)
lali= sup ZABL

VA € &9 (H).
sespa  |Bl P

By Theorem 1, sinee £§(H) ¢ £, (H), inequality = is obvious.
As for the converse, using part (a) of Lemma 9,

| tr (A(B® + B®))| | tr (AB®)|
1Al = sup TRl S S e =
Besun  |B*+ B Besa | B°]

o 1EED)
Be £ H) ”B”

(2) As above, it suffices to prove that

|4l < sup B VA e £9(H).

Be O H)

-~ The proof works -as above, using part (b) of Lemma 9.

(3) and (4) are completely analogous. ™

)
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Now we turn to the case of type IV Cartan factors.

As we mentioned in Section 1, if U is a type IV Cartan factor then U
is linearly and topologically isomorphic to a Hilbert space K; for a suit-
able conjugation = on K the U-norm is given by

]y = (@]2) + (@|x? — |@]|2) |22 xekK).

Since K is a reflexive space U is reflexive too; moreover the dual space
U* of U is linearly and topologically isomorphic to the dual space K of
K; we recall that K is the Hilbert space which coincides with K as a real
Hilbert space, in which multiplication by complex number and inner
product are given by :

rxr=1xgx (eC, zek),
@lyr=@lvx @ yek).

We remark that = is_a conjugation on K too.
The U*-norm on K is given by

T — 1 VI S
ze KN\ {0} [o]]o,

In order to determine completely the dual space of U we only have to '

compute explicitly this norm.
e =1/2-ly) + |Gl .

Proor. The theorem is certainly true if dim U = 1.
Now, assume dim U = 2 and let {¢,, ¢» } be an orthonormal basis of
K such that =¢; = ¢; for 1 =1,2. An isometrical isomorphism

i uUu—-Ceq,.C

THEOREM 9. |y

is explicitly given by |
J@idy + 22¢2) = (2 + 122, 21 — 122).
Since (CB. C)* =C&,C,
j*: Co,C—u*

is an isometrical isomorphism. By direct computation we deduce from
this that the U*-norm on K has the required expression.

Now, assume that dim U = 8; for y € K\ {0} we define M as the
subspace of K generated by y and =y and we consider the orthogonal
projection o of K onto M. During the proof of Theorem 5 it was checked

2
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that [p] =1, ie.
lp@) |y < lxfly  VzeK. -
It follows that
l@ln] _ sup @]

e K\ {0} Hx”u - _acEM\{O} ”xﬂu

Everything reduces to the 2-dimensional (or, possibly, 1-dimensional)
case, and hence the theorem holds in the general case too. =
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