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ABSTRACT. We obtain sufficient conditions on' an M-embedded or
L-embedded space so that every nonempty relatively weakly open subset of .
its unit ball has norm diameter 2. We prove that, up to renorming, this holds
for every Banach space containing co and, as a consequence, for every proper
M-ideal. The result obtained for L-embedded spaces can be applied to show
that the above property is satisfied for every predual of an atomless real JBW*-
triple. As a consequence, a characterization of the Radon-Nikodym property
is obtained in this setting, showing that a predual of a real JBW*-triple E
verifies the Radon-Nikodym property if, and only if, E is the loo-sum of real
type I triple factors.

1. INTRODUCTION

The nonexistence of denting points in the unit ball of some function spaces has
been the subject of several recent . papers [13], [23]. A point zg in the sphere of
a Banach space X, Sx, is a denting point of the unit ball in X, B %, if there are
slices, that is, subsets defined as

- S(z*,a) ={z € Bx : z"(z) > ||z"| — o}, " € X*, ae"R,

containing zo, with diameter arbitrarily small. From [6], zo is a denting point of
the unit ball of X if, and only if, zg is an extreme point in Bx and zp is a point
of weak-norm continuity, that is, a point of continuity for the identity map from
(Bx,w) onto (Bx,n), where w and n denote the weak and the norm topology,
respectively. In particular, the existence of denting points in the unit ball of a
Banach space X implies the existence of nonempty relatively weakly open subsets
of the unit ball in X with diameter arbitrarily small. Then the extreme opposite
property to the existence of denting points in the unit ball of a Banach space is
that every nonempty relatively weakly open subset of the unit ball has diameter
2. ‘This is the case, for example, for infinite-dimensional C*-algebras [5], uniform
algebras [20], non-hilbertizable real JB*-triples [4] and for some Banach spaces of
vector valued functions and some spaces of operators [3]. _

The aim of this note is to study when every nonempty relatively weakly open
subset of the unit ball of an M-embedded or L-embedded space has diameter 2. In
Theorem 2.4, we obtain sufficient conditions in order to assure the above property
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in the M-ideals case, when only the original norms are considered, by improving
the results in [23]. After this, it is shown in Proposition 2.6 that every Banach
space containing ¢y can be equivalently renormed so that every nonempty relatively
weakly open subset of its unit ball has diameter 2, and then the same is true for
proper M-ideals.

The result for the L-embedded case is Theorem 2.8, where a sufficient condition
to have diameter 2 for all nonempty relatively weakly open subsets of the unit
ball of an L-embedded space is obtained. This condition works in the setting of
preduals of real JBW*-triples and, as a consequence, we prove in Theorem 2.12
that every nonempty relatively weakly open subset of the unit ball of the predual
of an atomless real JBW*-triple has diameter 2. Then the same holds for preduals
of atomless Von Neumann algebras. Finally an easy characterization of the Radon-
Nikodym property is given in Theorem 2.14, where it is shown that the predual of
a real JBW*-triple E satisfies the Radon-Nikodym property if, and only if, E is

‘the lo-sum of type I real triple factors and then, the predual B of a' Von Neumann

algebra A satisfies the Radon-Nikodym property if, and only if, B is the co-sum
of trace class operators on a complex Hilbert space. The above characterizations
of Radon-Nikodym property can be found in [8] and [2] for preduals of complex
JBW*-triples and in [9] for preduals of Von Neumann algebras. Also the relation
between L-embedded spaces and the Radon-Nikodym propety was studied in [17].

Finally, we also apply Theorem 2.8 in order to obtain that every nonempty

relatively weakly open subset of the unit ball of L, /H* has diameter 2, and Corol-
lary 2.9, where L; and H* denote the classical Lebesgue space and Hardy space,
respectively, on the unit interval [0, 1].

Let X be a real or complex Banach space. We denote by Sx, Bx, ‘and X* the
unit sphere, the closed unit ball and the topological dual, respectively, of X. We
denote by w the weak topology of X, and by w* the weak™ topology of X*. Given a

subspace M of X, we denote by M° the polar or annihilator subspace of M in X*.

An L-projection (resp. M-projection) on X is a linear projection p on X satisfying
lzll = llp(@)ll +|lz —p()| (xesp. ||z|| = maz{|p()|, |z —p(z)|}) for allz € X. A
subspace M of X is said to be an L-summand (resp. M-summand) of X if it is the
range of an L-projection (resp. M-projection) on X, and an M-ideal of X if M° is
an L-summand of X*. X is said to be L-embedded (resp M-embedded) whenever
X is an L-summand (resp. M-ideal) of X™** (see [12]).

2. THE MAIN RESULTS

‘We begin with an eiementary lemma which will be essential for the main results.

- Lemma 2.1. Let X be a Banach space such that every nbnempty relatively weakly

open subset of Bx has diameter 2. Then every nonempty relatively weakly open
subset of Bxg..v has diameter 2, where Y is an arbitrary Banach space.

Proof. We call Z = X @ Y and let P : Z — X be the projection from Z
onto X, which is weak open. It is clear that Bz = Bx X By and |[P| =

Then if W is a weakly open subset of Z such that W N Bz # 0, one has that
V = P(WNBg) is a nonempty weak open set relative to Bx, and so diam(V) = 2.
Hence diam(W N Bz) = 2. : - . O

The following is a w* version of the above lemma. We omit the proof, since it is -
" similar to the one above.
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Lemma 2.2. Let X be a Banach space. Assume that X** = Y°° @ Z°, where
Y is a closed subspace of X and Z 1is a closed subspace of X*. Assume that ev-
ery nonempty relatively w*(Y°°)-open subset of Byos has diameter 2. Then every
nonempty relatively w*(X**)-open subset of Bx+ has dzameter 2. :

For a Banach space X and a subspace Z of X* given, we denote by (X, Z) the
weak topology on X endowed by the dual pair (X, Z), that is, the smallest vector
topology on X such that every element of Z is a continuous map.

The following result shows that the size of many nonempty relatively weakly
open subsets of the unit ball of an M-ideal have diameter 2.

Proposition 2.3. Let X be a Banach space and let Y be a closed and proper
subspace of X. Assume thatY is an M-ideal of X (that is, there is an L-projection
from X* - onto some subspace Z of X*, with kernel Y°). Then every nonempty
relatively o(X, Z)-open subset of Bx which intersects By has diameter 2.

Proof. Let U be a o(X, Z)-open subset of X and assume that U N By s (. Choose
some zo € U N By.

As Y is a proper subspace of X, given € > 0, there is an z € Sx such that
||x/+ Y[ > 1—¢, where z + Y denotes the class of the element z in the quotient
X/Y.

By [22, Proposmon 2.3], there exists 2 net {za} of elements of ¥’ converging to
z in the o(X, Z)-topology and satisfying

hmsup lzo £ (x — z4)| < 1.

Then, for 0 < X < 1 given, we can choose ag so that A||zo£(z—z4)] < 1, Whenever
o > ag.

Furthermore, for X «close enough to 1, we can assume that
Alzg = (2~ :z:a) € U for each o > ay, since the net {A\(zo % (z — z4))} converges
to Azg in the o (X, Z)-topology and zg € U N Sy.

Then A(zo &+ (z — z,)) € UN By, whenever a > og and 0 < A < 1 is close
enough t0 1. Hence :

diam(U N Bx) > 2X|¢ — 2ol > 2|z + Y| > 2A(1 — €)
whenever o > ap and 0 < A < 1 are close enough to 1. Now, it is enough to take
the limit when A tends to 1 and € to 0, to obtain that U has diameter 2. - 0O

The following is the main result in the M-ideals setting, which improves the
results in [23] where only the nonexistence of strongly exposed points is deduced
with an extra hypothesis.

" Theorem 2.4." Let X be a Banach space and letY be a closed and proper subspace

of X. Assume thatY is an M-ideal of X (that is, there is an L-projection on X*
onto some subspace Z of X*, with kernel Y°). If Bz is weak-x dense in Bx~, then
every nonempty. relatively weakly open subset of Bx. and By has diameter 2.

Proof. As By is weak-+ dense in By, then ||| = supzeBZ |z( )| Vz € X, and so
the norm of X is 0{X, Z)-lower semi-continuous.

Let U be a nonempty relatively weakly open subset of By. Then, there are
21,00 320 € Z and Yo € By such that

—{yEBy.fzi(y—yo)[<1,‘1§i§n}CU,
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since the o(X, Z)-topology on Y is just the weak topology of Y. '

Setting V = {z € Bx : |zi(z — y)| < 1,1 < ¢ < n}, we have that V.1§ a
nonempty relatively o(X, Z) open subset of Bx intersecting By. By _Proposrc.mn
2.3, we obtain that diam(V') = 2. Now, we claim that Up is dense in the topological
space (V,o0(X, 2)).

Indeed, X** = Y°° @, Z°; hence every z € Bx can be written as z = u-l—v with
u € Byoo and v € Bzo. There exists a net of elements y, € By which converges
to u in the weak-* topology. Hence, for every z € Z, we have z(z) = (u + v)_(z) =
u(z) = limy 2(ya). Now it is clear that the assumption |z;(z — yo)l <1,1<i<mn,
implies that, for some ag and o > g, |2:(Ya — ¥o)| < 1,1 <4 < n. That proves
the o(X, Z)-density of Uy in V. Moreover, as the norm of X is o(X, Z)-lower semi-
continuous, we have that diam(Up) = 2 and so, diam(U) = 2. Then we have proved
that every nonempty relatively weakly open subset of By has diameter 2.

As every nonempty relatively weak-# open subset of By« contains a nonempty
relatively weakly open subset of By, and By is weak-+ dense in By, we deduce
that every nonempty relatively weak-% open subset of By« also has diameter 2.
Now, as Y is an M-ideal of X, we have X* =Y°®; Z and then X** =Y°° @ Z2°,
where, ®; and @, denote the 4; and £, sum, respectively. Hence, by Lemma 2.2,
we have that every nonempty relatively weak-* open subset of Bx«« has diameter
2, and then every nonempty relatively weakly open subset of Bx also has diameter
2, since from the weak-* density of By in Bxx«, every nonempty relatively weakly
open subset of By is weak-* dense in some nonempty relatively weak-* open subset
of Bx«+ and the norm in X** is weak-* lower seml—contmuous O

For M-embedded Banach spaces X, we have X*** = X* @; X 03 and so we l}ave
automatically the weak-* density of Bx» in Bx«~. Then we obtain the following

,Corollai'y 2.5. Let X be a nonreflexive M-embedded Banach space, and letY be a
closed subspace of X™* containing X. Then every nonempty relatively weakly open ,

subset of By has diameter 2.

. Proof. IfY is a closed subspace of X** containing X, then X is an M-ideal of Y. In

fact, if p is the L-projection in X*** with kernel X° and image X*, we identify Y™
with the quotient X***/Y° and define 7 : Y* — Y™* by 7 (z*** +Y°) =p(z**)+Y°.
Now 7 is an L-projection whose kernel is the anihilator of X in Y*. -

Finally, as BX=} is weak-* dense in By, given z*** € X*** with ||z +Y°| <
1, we choose y° € Y° such that [|z*** + 3°| < 1, and then there exists a net {21}
of elements of Bx~ converging to *** 4+ y° in the weak-* topology on X***_ Then
{z» + Y°} is a net of elements of By (y«) converging to z™** +Y° in th'e Weak—
topology on Y*. Then we have proved that the closed unit ball of 7(Y™) is weak-x

dense in By«. It is enough to apply Theorem 2.4 to obtain that every nonempty

relatively weakly open subset of By has diameter 2. ' O

Note that, since the property of being M-embedded is hereditary and stable by
quotie;nt's, the same result is true when Y is a nonreflexive closed subspace of X or
a nonreflexive quotient of X. '

In particular, from the above corollary, we deduce that the unit closed I?all'of
every closed and nonreflexive subspace of an M-embedded space‘has- no continuity
points and so has no strongly exposed points, and the same is trge for nonre-
flexive quotients of an M-embedded spaces. Roughly speaking, this fact shows'

<o
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that every subspace and every quotient of an M-embedded space fails the Radon-
Nikodym property in a very strong way, if it is not reflexive. As a consequence of
the above corollary, it is worth mentlomng some interesting examples.” As cg is an
M-embedded space, not only every infinite-dimensional subspace or quotient of cg
verifies the conclusion of Corollary 2.5, but also every subspace of £, containing
co- If H is a Hilbert space, and K(H) and L(H) stand for the space of compact
operators on H and the space of all bounded operators on H, respectively, it is
well known that K (H) is an M-embedded space. Again, not only every subspace or
quotient of K (H) satisfies the conclusion of Corollary 2.5, but also every subspace
of L(H) containing K (H), since K (H)**, the bidual space of K (H), is isometrically
isomorphic to L(H). ‘

As the failure of the Radon-Nikodym property in nonreflexive M-embedded
spaces is well known, since every nonreflexive M-embedded space contains an iso-
morphic copy of c¢g, it is natural to ask for the behavior of relatively weakly open
subsets of the unit ball of a Banach space containing co- copies. Of course, not
every Banach space containing co-copies lacks a point of continuity in its unit ball.
For this, it is enough to consider X = ¢y @1 £1. It'is easy to see that (0,e1) is a
denting point of Bx, where e; denotes the first vector of the unit vector basis in
£1. However the following result shows that, up to renorming, the above situation
cannot happen‘

Proposition 2.6. Let X be a Banach space containing a subspace isomorphic to
co. Then there exists an equivalent norm in X so that every nonempty relatively
weakly open subset of the new unit ball has diameter 2

Proof. As the conclusion is isomorphic in nature, we can suppose that X contains
a subspace Y isometric to ¢g. Now, by [12, Proposition IL2. 10], there exists an
equivalent norm | | on X which agrees with the original norm on Y so that YV
becomes M-ideal in X.

Then we have (X, | |*)** = Z @4, Y°° for some subspace Z of X**. Finally, as
Y°° is isometric to £y, and every nonempty relatively weakly open subset of By,
has diameter 2, it is enough to apply Lemma 2.1 to obtain that every nonempty
relatively weakly open subset of (Bx,| |) has diameter 2. O

As every proper M-ideal, that is, an M-ldeal which is not an M-summand, con-
tains an isomorphic copy of cg, we deduce the following

Corollary 2.7. Let X be a proper M-ideal of a superspace Y. Then there is an
equivalent norm in'Y so that every nonempty relatively weakly open subset of the
new unit ball of X and Y has diameter 2.

Now we pass to study the size of nonempty relatively weakly open subsets of the
unit ball of an L-embedded space. The result is the following

Theorem 2.8. Let X be an L-embedded Banach space, that is, X*=Xo Z
for some subspace Z of X**. If Bz is weak-+ dense in Bx«~, then every nonempty
relatively weakly open subset of Bx has diameter 2.

Proof. Let U be a nonempty relatively weakly open subset of Bx. As X is infinite
dimensional, there is an zo € U N Sx and then there exist f1,--, f, € X* such
that :

={z € Bx :|filz—z0)| < 1, 1$i§n}CU.
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Let V = {2** € Bxw : |fi(z* — z¢)| < 1, 1 <1 < n}. Then V is a nonempty
relatively weak-* open sibset of Bx«« such that zo € Uy C V. v _

From the weak-* density of Bz in By« we can choose a net {z)} of elements
in By converging to zo in the weak-x topology of X**, hence there is a Ao such
that zy € V, whenever A > )\g. Furthermore, as the norm of X** is weak-* lower
semi-continuous, we have liminfy ||z)|| > ||zo|| = 1. Then, given € > 0 then there
isa > Ap such that ||z,]| > 1 —¢, and 2z, € V. Now, we deduce

diam(V) > ||lzo — zul| = [[zoll + llzul] > 1+1—e=2—¢.
Ase >0 was arbitrary, we conclude that diam(V) =2. .

Finally, from the weak-x density of Bx in Bx«~ we obtain that Uy is relati-

vely dense in the topological space V endowed with the weak-* topology of X™**.

Now, the weak-x lower semicontinuity of the norm in X** allows us to assure that
diam(U) > diam(Uyp) = diam (V') = 2. SRR

In order to show examples where Theorem 2.8 works, we denote by H* and L,
the Hardy space and the Lebesgue space on the interval [0, 1]. Also, H¢ stands for
the subspace of H? of functions in H* vanishing at 0. From [1, p. 27], the unit ball
of Ly/H} lacks extreme points, and it is well known that Ly/Hj is an L-embedded
space. Then we can apply Theorem 2.8 as in Theorem 2.12 to obtain the following

Corollary 2.9. Every nonempty relatively weakly open subset of the umt ball of
L1/H} h as diameter 2.

The same is true for L;/H* instead Ll / HO since they are 1s0metr1c '
Let X be a Banach space. For u in Sx, we define the roughness of X at u,
(X, u), by the equality '
u+ Rl + llu—hll -
1]

We remark that the absence of roughness of X at u (ie., n(X,u) = 0) is nothing
other than the Fréchet differentiability of the norm of X at u [10, Lemma 1.1.3].
Given € > 0, the Banach space X is said to be e-rough if, for every u in Sx, we
have n(X, u) > e. We say that X is rough whenever it is e—rough for some € >0,
and extremely rough whenever it is 2-rough.

Assume that X is a Banach space such that every nonempty relatively Weakly
open subset of Bx has diameter 2. Then, by [10, Proposition I.1.11], the dual X*
of X (resp. the predual X, of X, if this exists) is extremely rough.

Then, we have the following consequences (see Theorem 2.12 and Corollary 2.13

- for part ii)): :

N(X,u) = Hm sup jp-o

Corollary 2.10. The following Banach spaces are extremely rough
i) The dual of any nonreflexive M-embedded space.
ii) The real atomless JBW*-triples, and so the atomless Von Neumann. alge-
bms ‘

Corollary 2.11. Every Banach space X containing an isomorphic -copy of co can
be equivalently renormed so that X™* becomes extremely rough.

In order to show a new application of Theorem 2:8 we introduce some notation.
We recall that a complex JB*-triple is a complex Banach space X with a con-
tinuous triple product {---}: X x X x X — X which is linear and symmetric in
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the outer variablés and conjugate-linear in the middle variable, and satisfies:

(1) For all z € X, the map y — {zzy} from X to X is a hermitian operator
on X and has nonnegative spectrum.

- (2) {ab{xyz}} {{abz}yz} — {x{bay}z} + {zy{abz}} for.all a,b,z,y,2z € X.
(3) [[{zzz}| = ||z|]® for all z € X.

‘We also recall that a bounded linear operator T on a complex Banach space X
is said to be hermitian if |exp(irT)| = 1 for every real number 7.

Following [14], we define real JB*-triples as norm-closed real subtriples of
complex JB*-triples. Here, by a subtriple we mean a subspace which is closed
under triple products of its elements. A triple ideal of a real or complex JB*-triple
X is a subspace M of X such that {XXM}+{XMX} C M. Real JBW*-triples
where first introduced as those real JB*-triples which are dual Banach spaces in
such a way that the triple product becomes separately w*-continuous (see [14,
Definition 4.1 and Theorem 4.4]). Later, it was shown in [18] that the requirement
of separate w*-continuity of the triple product is superabundant.

Finally, we recall that an element z of a real J B*-triple F is'said to be a tripotent
if {zxzxz} = 2. Given z,y tripotents in E, we say that z and y are orthogonal if
{uwv} = 0 and we say that z > y if x — y and y are orthogonal tripotents. Then a

minimal tripotent will be a trlpotent which is minimal in the partial order defined

above.
Examples of real JB*-triples are the spaces L(H, K), for arbitrary real, com-
plex, or quaternionic Hilbert spaces H and K, under the triple product {zyz} :=
(a:y z+ zy*z). Also, the corresponding spaces of all symmetric, S(H), and skew,
A( ), bounded linear operators on H can be considered real JB*-triples. The

“above examples become particular cases of those arising by considering either the

so-called complex Cartan factors (regarded as real JB*-triples) or real forms of com-
plex Cartan factors [16]. We recall that real forms of a complex Banach space X

are defined as the real closed subspaces of X of the form X” := {z € X : 7(z) = z},

for some conjugation (i.e., conjugate-linear isometry of period two) on X. We note

that, if X is-a complex JB*-triple, then every real form of X is a real JB*-triple

(since conjugations on X preserve triple products [15]). Among complex Cartan
factors, the so-called complex spin factors become especially relevant for cur
present approach. They are built from an arbitrary complex Hilbert space (H, (--))
of hilbertian dimension > 3 by taking a conjugation ¢ on H, and then by deﬁnmg
the triple product and the norm by

{zyz} = (zly)z + (zly)z — (z]0(2))o(y)

and

lz]* := (zle) + +/(z]2)2 = |(zlo (@))%,

respectively, for all z,y,z in H. Following [19], we say that a real JB*-triple is a
generalized real spin factor if it is either a complex spin factor (regarded as a
real JB*-triple) or a real form of a complex spin factor.

It is well known that every complex JBW*-triple E has a unique isometric pre-
dual V', and this is an L-embedded space. This is also the case for preduals of real
JBW*-triples as done in [4]. -

Now we are ready to show the applica‘tion of Theorem 2.8.
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Theorem 2.12. Let A be a real JBW*-triple and let A, be its predual. If A
is atomless, that is, A lacks minimal tripotentes, then every nonempty relatwely
weakly open subset of Ba, has diameter 2.

Proof. As A is atomless, according to [21, Corollary 2.1], we deduce that B4, lacks
extreme points. Now, A, is an L-embedded space by [4, Proposition 2.2]; then we
have A* = A, ®1 Z, for some subspace Z of A*. Let us see that Bz is weak*-dense
in Bgx.

As B4, lacks extreme points and the set of extreme points of B4~ is the union
of the sets of extreme point of B4, and By, we obtain that ext(Ba-) = ext(Bz),
where ext(K) denotes the set of extreme points of K. Now, the Krein-Milman
theorem applied to B- gives us that By« = co¥” (ext(Bz)), and then the desired
conclusion.

Finally, it is enough to apply Theorem 2.8 to finish the proof. a

In the setting of C*-algebras, the concept of mininal tripotents is exactly the
well-known notion of minimal projections. As a Von Neumann algebra is also a
real JBW*-triple, we obtain the following

Corollary 2.13. Let A be an atomless Von Neumann algebra, that is, A lacks
manimal projections, and A, stands for its predual. Then every nonempty rela,twely
weakly open subset of By, has diameter 2.

Finally, we show a characterization of Radon-Nikodym property in the setting
of the preduals of real JBW*-triples and, as a consequence, in the setting of the
preduals of Von Neumann algebras, too.

Theorem 2.14. Let A be real JBW*-triple and A, its predual. Then:

1) A, satisfies the Radon-Nikodym property if, and only if, A is.purely atomic,
that is, A is the weak-* closed linear span of its minimal tripotents. Fur-
thermore, in this case, A is the fo.-sum of weak-x closed simple ideals which
are either finite-dimensional, infinite-dimensional generalized real spin fac-
tors or of the form L(H,K), S(H) or A(H) for some real, complex or
quaternionic infinite-dimensional Hilbert spaces H and K.

il) A. fails the Radon-Nikodym property if; and only if; A. can be equivalently
renormed so that every nonempty relatively weakly open subset of Ba, has

_ diameter 2. , ’

iii) A. satisfies the Radon-Nikodym property if, and only if, A. satisfies the
Krein-Milman property.

~ Proof. i) Assume that A, verifies the Radon-Nikodym property. By [21, Theorem
3.6], we have A = B ®o, C, where B and C are weak* closed real triple ideals of
A, such that B is purely atomic and C is atomless. By the above corollary C = 0,
since the Radon-Nikodym property is hereditary. Then A = B is purely atomic.
Now, in order to describe the preduals of real JBW™ triples sat1sﬁyng the Radon-
Nikodym property, assume that A is purely atomic. We denote by A=A®iAthe
complexification of A. By [21], A is a purely atomic complex JBW* triple and then,
by [11], A is the £o, sum of type I Cartan factors, that is, the £ sum of w*-closed
simple ideals which are either finite-dimensional; infinite-dimensional complex spin
factors or of the form L(H, K), S(H) or A(H) for some complex Hilbert spaces H
and K. Taking into account that the conjugation 7 preserves the triple product
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and is w —contmuous it is enough to apply [16] to deduce that A is the 4, sum
of w*-closed simple ideals which are either finite-dimensional, infinite-dimensional
generalized real spin factors or of the form L(H, K), S(H) or A(H) for some real,
complex or quaternionnic Hilbert spaces H and K. Finally, as the Radon-Nikodym
property is stable by £; sums and the preduals of the aboVe spaces satisfy the
Radon-Nikodym property (see [7]) we deduce that A, verifies the Radon-Nikodym
property.

ii) If A, fails the Radon-Nikodym property, as in the above paragraph, we set
A = B®y C. Now, as B and C are w*-closed real triple ideals of A, we have
Ay = D@1 E, where E is the predual of the atomless real JBW *-triple C‘. By the

~above corollary, every nonempty relatively weakly open subset of By has diameter 2.

Now it is enough to apply Lemma 2.1, to see that A, can be equivalently renormed
so that every nonempty relatively weakly open subset of B4, has diameter 2. The
converse implication is trivial.

iii) It is well known that. every Banach space satisfying the Radon-Nikodym
property also verifies the Krein-Milman property. In order to prove the converse,
assume that A, fails the Radon-Nikodym property. Then, by i), A is not purely
atomic. Now, as in i), A = B® C, where B and C # 0 are weak* closed real triple
ideals of A, such that B is purely atomic and C is atomless. Then, A, = D @, E,
where E is the predual of the atomless real JBW*-triple C. By [21, Corollary
2.1], we deduce that Bg lacks extreme points and hence A, fa1ls the Krein-Milman
property : O

Corollary 2.15. Let A be a Von Neumann algebra and A, its predual. Then

) A, satisfies the Radon- Nzkodym property if, and only if, A is purely atomic.
Furthermore, in this case, there exists {H;} a family of infinite-dimensional
complez Hilbert spaces, such that A = fo — Y, L(H;) and A, = £ —
>.; N(H;), where N(H) denotes the space of all nuclear operators on H.

ii) A, fails the Radon-Nikodym property if, and only if, A, can be equivalently

renormed so that every nonempty relatively weakly open subset of Ba, has -

diameter 2.
iii) A. satisfies the Radon-Nikodym property if, and only if, A, satzsﬁes the
Krem—leman property.
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ABSTRACT. We extend the Shoenfield jump inversion theorem to the members
of any 11 class P C 2¢ with nonzero measure; i.e., for every 29 set § > (ZV
there is a AJ real A € P such that A’ =1 S. In part1cu1ar, we get jump
inversion for A§ 1- random reals.

\

This paper is part of an ongoing program to study the relationship between two
fundamental notions of complexity for real numbers. The first is the computational
complexity of a real as captured, for example, by its Turing degree.. The second
is the intrinsic randomness of a real. In particular, we are interested in the 1-
random reals; which were introduced by Martin-Lof [13] and represent the most
widely studied randomness class. For the purposes of this introduction, we will
assume that the reader is somewhat familiar with basic algorithmic randomness, as
per Li-Vitdnyi [12], and with computability theory [18]. A review of notation and
terminology will be given in Section 1. o

Intuitively, a 1-random real is very complex. This complexity can be captured
formally in terms of unpredictability or incompressibility, but is it reflected in the
computational complexity of the real? To put this question more precisely: which
Turing degrees contain 1-random reals? We call such degrees 1-random. A beautiful
result here is the theorem of Kucera [9] and Gécs [6] that every set is Turing
reducible to a l-random real. Therefore, 1-random reals can have arbltrarlly high
Turing degree. Moreover, Kugera proved that every degree a > 0’ is 1-random.
On the other hand, the dlstrlbutlon of 1-random degrees belovv 0 is only part1ally
understood.

It is well known that there is a nonempty I19 class Wh1ch contains only 1-random
reals. In particular, consider the complement of one of the ¥ classes in a universal
Martin-Lof test. Hence, by the low basis theorem of Jockusch and Soare [7], there
are low l-random reals. Several other results on the distribution of 1-random de-
grees are known. For instance, minimal degrees and I-generic degrees cannot be
I-random [11], so there are lots of AJ degrees which do not contain 1-random reals.
Furthermore, Kucera [9] proved that the 1-random degrees are not closed upwards.
In particular, he constructed a AJ PA degree a which is not 1-random. Recall that
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