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1. Introduction

It is well-known that the Brouwer /xed point theorem, the Sperner lemma, the
Knaster–Kuratowski–Mazurkiewicz theorem (simply, the KKM principle), and many
results in nonlinear analysis are equivalent. In particular, it was shown in [13] that
the KKM principle implies the Brouwer theorem. In this paper, we show that the
KKM theorem implies far-reaching generalizations of the Brouwer theorem including
well-known /xed point theorems due to Schauder, Tychono9, Kakutani, Himmelberg,
and many others. For the literature, see [17,26].
In a recent work, Tarafdar [34] obtained a /xed point theorem for a continuous com-

pact multimap T :X (X with closed H -convex values, where X is a locally H -convex
uniform space. In the present paper, we show that his theorem holds for u.s.c. maps in-
stead of continuous maps and for the class of generalized convex spaces (or G-convex
spaces) containing properly that of H -spaces and many other types of spaces. Our
main result (Theorem 2) is applied to various /xed point theorems for LG-spaces,
LC-spaces, hyperconvex spaces, and normed vector spaces.
Section 2 deals with a new KKM theorem for generalized convex spaces. In Section 3,

we obtain our main /xed point theorem for LG-spaces and some of its simple conse-
quences, especially, a generalization of the Himmelberg theorem. Section 4 deals with
lower semicontinuous multimaps and >-maps de/ned on paracompact LC-spaces. In
fact, the selection theorems due to Ben-El-Mechaiekh and Oudadess [3] and Park [22]
are used to deduce new /xed point theorems for such multimaps. In Section 5, our
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main result is applied to hyperconvex spaces. In Section 6, we show that some new
versions of selection theorems and /xed point theorems can be deduced for normed
vector spaces. Section 7 deals with historical remarks.

2. Generalized convex spaces

For topological spaces X and Y , a multimap or a map T : X ( Y is a function from
X into the set of nonempty subsets of Y . A map T : X ( Y is upper semicontinuous
(u.s.c.) if for each open subset G of Y , the set {x∈X : Tx⊂G} is open in X ; lower
semicontinuous (l.s.c.) if for each closed subset F of Y , the set {x∈X : Tx⊂F} is
closed in X ; continuous if it is u.s.c. and l.s.c.; and compact if the range T (X ) =
{y∈Y : y∈Tx for some x∈X } is contained in a compact subset of Y .
A generalized convex space or a G-convex space (X; D; G) consists of a topological

space X and a nonempty set D such that for each A∈ 〈D〉 with the cardinality |A|=n+1,
there exist a subset G(A) of X and a continuous function �A : Hn → G(A) such that
J ∈ 〈A〉 implies �A(HJ )⊂G(J ).
Here, 〈D〉 denotes the set of all nonempty /nite subsets of D, Hn any n-simplex

with vertices {ei}n
i=0, and HJ the face of Hn corresponding to J ∈ 〈A〉; that is, if

A = {a0; a1; : : : ; an} and J = {ai0 ; ai1 ; : : : ; aik}⊂A, then HJ = co{ei0 ; ei1 ; : : : ; eik}. We
may write GA = G(A) for each A∈ 〈D〉 and (X ; G) = (X; X ; G). For a G-convex space
(X; D; G) with X ⊃D, a subset C of X is said to be G-convex if for each A∈ 〈D〉,
A⊂C implies GA ⊂C. For details on G-convex spaces, see [27–30], where basic theory
was extensively developed.
There are a lot of examples of G-convex spaces:
If X = D is a convex subset of a vector space and each GA is the convex hull of

A∈ 〈X 〉 equipped with the Euclidean topology, then (X ; G) becomes a convex space in
the sense of Lassonde [14]. Note that any convex subset of a topological vector space
is a convex space, but not conversely.
If X = D and each GA is assumed to be contractible or, more generally, in/nitely

connected (that is, n-connected for all n≥ 0) and if for each A; B∈ 〈X 〉, A⊂B im-
plies GA ⊂GB, then (X;G) becomes a C-space (or an H -space) due to
Horvath [8,9].
The other major examples of G-convex spaces are metric spaces with Michael’s con-

vex structure, Pasicki’s S-contractible spaces, Horvath’s pseudoconvex spaces, Komiya’s
convex spaces, Bielawski’s simplicial convexities, JoMo’s pseudoconvex spaces, and so
on. For the literature, see [27–30]. Recently, we gave new examples of G-convex spaces
and, simultaneously, showed that some abstract convexities of other authors are sim-
ple particular examples of our G-convexity (see [24]). Such examples are L-spaces of
Ben-El-Mechaiekh et al. [2], continuous images of G-convex spaces, Verma’s general-
ized H -spaces, Kulpa’s simplicial structures, P1;1-spaces of Forgo and JoMo, generalized
H -spaces of StachMo, and mc-spaces of Llinares. Moreover, Ben-El-Mechaiekh et al. [2]
gave examples of G-convex spaces (X ; G) as follows: B′-simplicial convexity, hyper-
convex metric spaces due to Aronszajn and Panitchpakdi, and Takahashi’s convexity
in metric spaces.
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Futhermore, any hyperbolic space X in the sense of Kirk [12] and Reich-Shafrir [32]
is a G-convex space, since the closed convex hull of any A∈ 〈X 〉 is contractible [30,
p. 542]. This class of metric spaces contains all normed vector spaces, all Hadamard
manifolds, the Hilbert ball with the hyperbolic metric, and others. Note that an arbitrary
product of hyperbolic spaces is also hyperbolic (see [32]).
Now, we deduce a KKM theorem for G-convex spaces.
For a G-convex space (X; D; G), a multimap F :D ( X is called a KKM map if

GA ⊂F(A) for each A∈ 〈D〉.
The following result is well known:

The KKM Principle. Let D be the set of vertices of Hn and F :D ( Hn be a KKM
map with closed (resp. open) values (that is, coA⊂F(A) for each A∈ 〈D〉). Then⋂

a∈D F(a) �= ∅.

The closed-valued version is due to [13]. The open-valued version is a simple con-
sequence of the closed-valued version in view of Shih [33, Theorem 1]. For the history
of generalizations and applications of the open-valued version of the KKM principle,
see [29].
The following is a KKM theorem for G-convex spaces:

Theorem 1. Let (X; D; G) be a G-convex space and F :D ( X a multimap with closed
(resp. open) values. Suppose that F is a KKM map. Then
(i) {F(a)}a∈D has the 6nite intersection property; and
(ii) if

⋂
a∈N F(a) is contained in a compact subset K of X for some N ∈ 〈D〉, then

we have
⋂

a∈D F(a) �= ∅.

Proof. Let A = {a0; a1; : : : ; an}∈ 〈D〉. Then there exists a continuous function �A :
Hn → GA such that, for any 0 ≤ i0 ¡ i1 ¡ · · ·¡ ik ≤ n, we have

�A(co{ei0 ; ei1 ; : : : ; eik})⊂G({ai0 ; ai1 ; : : : ; aik}) ∩ �A(Hn):

Since F is a KKM map, it follows that

co{ei0 ; ei1 ; : : : ; eik} ⊂�−1
A (G({ai0 ; ai1 ; : : : ; aik}) ∩ �A(Hn))

⊂
k⋃

j=0

�−1
A (F(aij) ∩ �A(Hn)):

Since F(aij) ∩ �A(Hn) is closed (resp. open) in the compact subset �A(Hn) of GA,
�−1

A (F(aij)∩�A(Hn)) is closed (resp. open) in Hn. Note that ei ( �−1
A (F(ai)∩�A(Hn))

is a KKM map. Hence, by the KKM principle, we have
n⋂

i=0

�−1
A (F(ai) ∩ �A(Hn)) �= ∅;

which readily implies
⋂n

i=0 F(ai) �= ∅. This completes the proof of (i).
Note that (ii) follows immediately from (i).
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For X =Hn, if D is the set of vertices of Hn and G=co, the convex hull, Theorem 1
reduces to the KKM principle [13]. If D is a nonempty subset of a topological vector
space X (not necessarily Hausdor9), Theorem 1 extends Fan’s KKM lemma [6].

3. Locally G-convex spaces

From now on, we assume for simplicity that all topological spaces are Hausdor9
and that D is a subset of X .
A G-convex space (X; D; G) is called an LG-space (or a locally G-convex space)

if (X;U) is a uniform space such that D is dense in X and if there exists a basis
{V�}�∈ I for the uniformity U such that for each �∈ I , {x∈X : C ∩ V�[x] �= ∅} is
G-convex whenever C ⊂X is G-convex, where

V�[x] = {x′ ∈X : (x; x′)∈V�}:
For a C-space (X ; G), an LG-space reduces to an LC-space [8,9] (or a locally

C-convex space [34]). Any nonempty convex subset X of a locally convex t.v.s. E
is an obvious example of an LC-space (X ; G) with GA = coA for A∈ 〈X 〉. For other
examples, see [8,34].
A G-convex space (X ; G) is called an LG-metric space if X is equipped with a

metric d such that for any # ¿ 0, the set {x∈X : d(x; C)¡ #} is G-convex whenever
C ⊂X is G-convex and open balls are G-convex. This concept generalizes that of
LC-metric spaces due to Horvath [8].
The following is our main result:

Theorem 2. Let (X; D; G) be an LG-space and T :X ( X a compact u.s.c. multimap
with closed G-convex values. Then T has a 6xed point x0 ∈X ; that is, x0 ∈Tx0.

Proof. We may assume that V� is always closed for �∈ I . Let V ∈{V�}�∈ I . Since the
open members of U form a basis and V ∈U, there exists an open member W of U
such that W ⊂V . Note that for each x∈X , W [x] is an open neighborhood of x. Since
K =T (X ) is compact and D is dense in X , there exists an M ={y1; : : : ; yn}∈ 〈D〉 such
that K ⊂⋃

y ∈M W [y].
For each yi ∈M , let F(yi):={x∈X : Tx ∩ V [yi] = ∅}. Since T is u.s.c., each F(yi)

is open. Moreover, since T (X )⊂K ⊂⋃n
i=1 V [yi], we have

n⋂
i=1

F(yi)⊂
{

x∈X : Tx ∩
n⋃

i=1

V [yi] = ∅
}

= ∅:

We will apply Theorem 1 to the G-convex space (X; M ; G). Since the conclusion of
Theorem 1 does not hold, F :M ( X cannot be a KKM map; that is, there exist an
N ∈ 〈M 〉 and an xV ∈GN such that xV �∈ F(N ) =

⋃
y ∈N F(y). Hence, TxV ∩ V [y] �= ∅

for all y∈N , and

N ⊂L := {y∈X : TxV ∩ V [y] �= ∅} :

Since TxV is G-convex and (X; D; G) is an LG-space, L is G-convex. Therefore,
xV ∈GN ⊂L and hence TxV ∩ V [xV ] �= ∅.
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So, for each basis element V , there exist xV ; yV ∈X such that yV ∈TxV and
yV ∈V [xV ]. Since T (X ) is relatively compact, we may assume that yV converges
to some x0 ∈K . Then xV also converges to x0. Since T is u.s.c. with closed values,
the graph of T is closed in X × T (X ), and hence we have x0 ∈Tx0. This completes
our proof.

Remark. Note that, in the above proof, if GN ⊂D for each N ∈ 〈D〉, it is suOcient to
assume that T has G-convex values on D, not necessarily on the whole X .

In order to give an example of Theorem 2, we introduce a notion due to Himmelberg
[7]:
A nonempty subset Y of a topological vector space E is said to be almost convex if

for any neighborhood V of the origin 0 in E and for any /nite set {y1; y2; : : : ; yn}⊂Y ,
there exists a /nite set {z1; z2; : : : ; zn}⊂Y such that, for each i=1; 2; : : : ; n, zi − yi ∈V
and co{z1; z2; : : : ; zn}⊂Y .
We give a new example of G-convex spaces:

Lemma 1. Let X be a subset of a topological vector space E. If X has an almost
convex subset Y, then X has a G-convex structure.

Proof. Choose a neighborhood V of the origin 0 of E. For any A= {y1; y2; : : : ; yn}
∈ 〈Y 〉, there exists a B= {z1; z2; : : : ; zn}∈ 〈Y 〉 such that zi −yi ∈V for all i=1; 2; : : : ; n
and coB⊂Y ⊂X . De/ne GA := coB as above. Then (X; Y ; G) becomes a G-convex
space.

From Remark of Theorem 2 and Lemma 1, we have the following:

Corollary 1. Let X be a subset of a locally convex Hausdor< topological vector space
E and Y an almost convex dense subset of X. Let T :X ( X be a compact u.s.c.
multimap with closed values such that Ty is convex for all y∈Y . Then T has a 6xed
point.

Proof. By Lemma 1, we have a G-convex space (X; Y ; G). Since Y is dense in X and
E is locally convex, (X; Y ; G) becomes an LG-space. Now, in view of Remark with
D = Y , we have the conclusion from Theorem 1.

For a single-valued map, Theorem 2 reduces to the following:

Theorem 3. Let (X; D; G) be an LG-space such that singletons are G-convex. Then
any compact continuous function f :X → X has a 6xed point.

For metrizable spaces, Theorem 1 reduces to the following:

Theorem 4. Let (X ; G) be an LG-metric space, and T :X (X a compact u.s.c. map
with closed G-convex values. Then T has a 6xed point.
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4. Locally C-convex spaces

In this section, we are mainly concerned with C-spaces (X; D; G); that is, each GA

is in/nitely connected for A∈ 〈D〉. In this case, we can de/ne an LC-space as in
Section 3.
The following is due to Ben-El-Mechaiekh and Oudadess [3, Corollary 6(A)(iii)]:

Lemma 2. Let X be a paracompact space, Z ⊂X with dimX Z ≤ 0, B⊂X countable,
(Y;G) a complete LC-metric space such that G{y}={y} for all y∈Y , and T :X ( Y
a l.s.c. map such that Tx is closed for x �∈ B and Tx is G-convex for x �∈Z . Then T
has a continuous selection f :X → Y ; that is, fx∈Tx for all x∈X .

For simplicity, we consider only the case B = ∅ as in [3,11, Theorem 3].
From Theorem 3 and Lemma 2, we have the following:

Theorem 5. Let (X ; G) be a paracompact LC-space such that G{x}={x} for all x∈X ,
Y a compact LC-metric subset of X, and Z ⊂X with dimX Z ≤ 0. Let T :X ( Y be
a l.s.c. map with closed values such that Tx is G-convex for x �∈Z . Then T has a
6xed point.

Proof. By Lemma 2, T has a continuous selection f :X →Y . Now, by applying The-
orem 3, f has a /xed point x0 ∈Y ; that is, x0 = fx0 ∈Tx0.

Let X be a topological space and (Y; D; G) a G-convex space. A multimap T :X ( Y
is called a >-map provided that there is a (companion) multimap S : X ( D satisfying
(a) for each x∈X , M ∈ 〈Sx〉 implies GM ⊂Tx; and
(b) X =

⋃{Int S−y: y∈D}.
Even for C-spaces, this concept is more general than that of Horvath [8, De/nition

4:1(a)].
We need the following result [22, Theorem 8]:

Lemma 3. Let X be a paracompact space, (Y; D; G) a C-space, and T :X (Y a
>-map. Then T has a continuous selection.

From Lemma 3 and Theorem 3, we have the following:

Theorem 6. Let (X; D; G) be a paracompact LC-space such that singletons are G-convex.
Then any compact >-map T :X ( X has a 6xed point.

Proof. By Lemma 3, T has a continuous selection f :X → X . Since f(X )⊂T (X )
and T is compact, f is also compact. Therefore, by Theorem 3, f has a /xed point
x0 = fx0 ∈Tx0.
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5. Hyperconvex spaces

A metric space (H; d) is said to be hyperconvex if⋂
+

B(x+; r+) �= ∅

for any collection {B(x+; r+)} of closed balls in H about which d(x+; x-) ≤ r+ + r-. For
any nonempty bounded subset A of H , its convex hull coA is de/ned by

coA =
⋂

{B: B is a closed ball containing A}:

A subset C of H is said to be convex if coN ⊂C for each N ∈ 〈C〉.
For details for hyperconvex spaces, see [10] and references therein.
It is known that the space C(E) of all continuous real functions on a Stonian space

E (that is, an extremally disconnected compact Hausdor9 space) with the usual norm
is hyperconvex, and that every hyperconvex real Banach space is a space C(E) for
some Stonian space E. The spaces (Rn; ‖ · ‖∞), l∞, and L∞ are concrete examples of
hyperconvex spaces.
Moreover, we note the following:

(1) Horvath [9, Theorem 9] showed that any hyperconvex space (H; d) is a complete
LC-metric space (H;G), where GN :=coN for each N ∈ 〈H 〉. He also gave other
examples of LC-metric spaces.

(2) Khamsi [10, Theorem 4] obtained a KKM theorem for hyperconvex spaces, which
is a particular form of Theorem 1.

From Theorems 4 and 5, we have the following:

Theorem 7. Let (H; d) be a hyperconvex space and T : H ( H a compact map with
closed convex values. If T is either u.s.c. or l.s.c.; then T has a 6xed point.

For a single-valued map T = f: H → H , Theorem 7 reduces to [21, Theorem 7],
which extends earlier works in [5, Lemma 3; 5, Theorem 6]. The u.s.c. case of Theo-
rem 7 was given as Park [25, Theorem 7] with three Corollaries by di9erent method.
Since any hyperconvex space is an LC-metric space, Theorem 6 reduces to the

following form of the Fan–Browder theorem:

Theorem 8. Let (H; d) be a hyperconvex space and T : H ( H a compact map such
that
(1) for each x∈H; Tx is convex; and
(2) H =

⋃{Int T−y: y∈H}.
Then T has a 6xed point.

For the case H itself is compact, Theorem 8 reduces to [20, Theorem 3].
Note that there are a large number of applications of the Fan–Browder theorem for

convex spaces (see [17,23] and references therein). Analogously, there would be useful
applications of Theorem 8.
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6. Normed vector spaces

For normed vector spaces, we have the following form of Lemma 2:

Theorem 9. Let X be a paracompact space; Z ⊂X with dimX Z ≤ 0, B⊂X countable;
Y a normed vector space; and T : X ( Y a l.s.c. map such that Tx is complete for
x �∈B and Tx is convex for x �∈Z . Then T has a continuous selection.

Proof. Without loss of generality, we may assume that Y is complete (for the condi-
tions on T remains unchanged in the completion of Y ). Now, by applying Lemma 2,
we have the conclusion.

For B=Z =∅, Theorem 9 reduces to the following due to Zheng [38, Theorem 2:4]:

Corollary 2. Let X be a paracompact space; Y a normed vector space; and T : X ( Y
a l.s.c. map with complete convex values. Then T has a continuous selection.

More precisely, we can deduce the following result from Corollary 2:

Corollary 3. Let X be a paracompact space; Y a normed vector space; and T : X ( Y
a map with complete convex values. Then T is l.s.c. if and only if for each given
x∈X and g∈T (x); there exists a continuous selection s for T such that s(x) = g.

If Y is a Banach space, Corollary 4 reduces to Chen [4, Theorem 2:4], whose proof
can be easily modi/ed to that of Corollary 3 by applying Corollary 2.
The following form of the Schauder /xed point theorem is a simple consequence of

Corollary 1 or Theorems 2–4.

Lemma 4. Let X be an almost convex subset of a normed vector space and f: X →
X a compact continuous map. Then f has a 6xed point x0 ∈X ; that is; x0 = fx0.

From Lemma 4 and Theorem 9, we have the following:

Theorem 10. Let X be an almost convex subset of a normed vector space; Z ⊂X
with dimX Z ≤ 0; B⊂X countable; and T : X ( X a compact l.s.c. map such that Tx
is closed for x �∈B and Tx is convex for x �∈Z . Then T has a 6xed point.

Proof. Note that Tx is compact and hence complete for each x �∈B. Applying
Theorem 9, T has a continuous selection f: X → X . Since f(X )⊂T (X ) and T
is compact, so is f. Therefore, by Lemma 4, f has a /xed point x0 = fx0 ∈Tx0 ⊂X .
This completes our proof.

For B = Z = ∅, Theorem 10 reduces to the following generalization of Zheng
[38, Theorem 2:5]:



S. Park / Nonlinear Analysis 48 (2002) 869–879 877

Corollary 4. Let X be an almost convex subset of a normed vector space; and T : X (
X a compact l.s.c. map with closed convex values. Then T has a 6xed point.

Remark. Zhang [37, Lemma 2:1] obtained a particular form of Corollary 4 for a
nonempty closed convex subset X of a Banach space.

7. Historical remarks

1. For a paracompact LC-space (X ; G), Theorem 2 reduces to Ben-El-Mechaiekh
et al. [2, Corollary 4:7] with a di9erent proof (see also [25, Theorem 5]).

2. Historically, well-known /xed point theorems due to Brouwer, Schauder, Tychono9,
Kakutani, Hukuhara, Bohnenblust-Karlin, Fan and Glicksberg, and Himmelberg are
all simple consequences of Corollary 1. For the literature, see [17,26].

3. Particular forms of Theorem 4 were obtained by Rassias [31] for a compact convex
subset of a metrizable topological vector space and by Park [15, Corollary 13:2]
for a metric compact convex space.

4. The study of C-spaces was initiated by Horvath [8,9]. Note that [8, Corollary 4:4]
is a particular form of Theorem 3 for LC-spaces and that [8, Corollary 4:5] is a
consequence of Theorem 5. The origin of >-maps goes back to the works of Fan
and Browder. For the literature, see [16,17,23,27–29].

5. Our work in this paper is motivated by Tarafdar [34, Theorem 2:1], which is a
C-space version of Theorem 2 for continuous (u.s.c. and l.s.c.) multimaps on X =D.
Further, he applied his result to locally strongly convex spaces, locally strongly
contractible uniform spaces, and locally group contractible commutative topological
groups. In all of his results, continuity of multimaps can now be weakened to u.s.c.
After this paper was submitted, Watson [35, Theorem 4:1] published a particular
form of Theorem 2, and Wu and Li [36, Theorem 2] showed a particular form of
Theorem for LC-spaces under some superSuous restrictions.

6. The notion of hyperconvex spaces was introduced by Aronszajn and Panitchpakdi
[1]. Until recently, the study of such spaces was mainly devoted to their relationship
with nonexpansive maps. However, Khamsi [10] applied his KKM theorem to prove
an analogue of Ky Fan’s best approximation theorem extending the Brouwer and
the Schauder /xed point theorems. See also [5].

7. Motivated by [10], the present author [20] obtained a Ky Fan-type matching theorem
for open covers, a coincidence theorem, a Fan-Browder-type /xed-point theorem, a
Brouwer–Schauder–Rothe-type /xed-point theorem, and other results on hypercon-
vex spaces. Since hyperconvex spaces are C-spaces, some of the works in [10,20,21]
are consequences of theory of G-convex spaces [27–30].

8. Lemma 2, Theorem 9, Corollaries 3 and 4 are generalizations of the well-known
selection theorems of Michael. For the literature, see [3].

9. Far-reaching generalizations of Lemma 4 for a convex set X are known; see
[17–19,26]. Note that many of well-known textbooks state the original form of
Schauder’s theorem in 1930, where X is a nonempty closed convex subset of a
Banach space.
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10. Since the Brouwer /xed point theorem is equivalent to the KKM principle, it is
clear that Theorems 1–4, Corollary 1, and Lemma 4 are also equivalent formulations
of the Brouwer theorem.
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