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Introduction.

It happens frequently that a reader attractéﬁ by the suggestive
title of a given paper, after reading it, becomes disappointed because of
the peculiar or partial point of view under which the paper was written.
To avoid such a situation concerning the survey we are beginning, the
reader should be forewarned that it will deal not ohly with "Jordan
.structures in Analysis“lbut also (parodying the title of Koecher’s paper
[Kol]l) with "Analysis in Jordan structures". This means that sometimes

Jordan structures arise normally in the treatment of more or less




classical problems in Analysis, but that also analysts have their own
right to apply their methods to Jordan structures. In this way they often
improve or clarify the abstract purely algebraic theory in a context more
familiar for them. Both sides of the topic (frequently closely related)
will be collected in this survey.

Of course the first side seems to be more suggestive, so let’'s try
to attract the attention of the uninterested reader by reviewing (in a
very rough and partial form) the impressive work of Kaup on the algebraic
characterization of bounded symmetric domains on complex Banach spaces:
if the open unit ball of a complex Banach space behaves holomorphically
like that of a C*-algebra, then the Banach space itself is "almost" a
C*-algebra, and there is an intrinsically defined triple product {...} on
it that behaves algebraically and geometrically like the one obtained
from the binary associative product of a C*-algebra by taking
{xyz}=%(xy*z+zy*x). This is the nice way of deriving the ternary Jordan
identity from purely holomorphic properties of Banach spaces. The
resulting mathematical creature, called a JB*-triple, has become a very
useful mathematical model leading to a better understanding of some
aspects of C*-algebras (for example the order-free aspects, that
curiously are more than that was thought). This has been feverishly
studied in the last years, most times with points of view not much
related to its original holomorphic birth. A large part of Section D in
this survey will be devoted to review some recent advances in this field,
selected on behalf of a criterion that we shall explain later.

The Spanish school, which we are pleased to represent here, has
arrived at the Jordan identity (without premeditation) through a rather
different motivation. The Spanish school on Jordan structures can be
characterized by its "very nonassociative" point of view, whenever such a
point of view becomes possible. Exaggeratiﬂg somewhat, we can say that
the Spanish school has been forced to work on Jordan structures because
nonassociative things refuse to be nonassociative as soon as they are
suitably flavoured. Thus, if a unital complete normed nonassociative
complex algebra is subjected to the geometric Vidav condition
characterizing C*-algebras in the associative context, then it is also
"almost" a C*-algebra. Moreover, the symmetrization of its product
behaves algebraically and geometrically 1ikg the symmetrization of the

product of a C*-algebra. In this way Vidav’s condition in the general



nonassociative context gives birth to the binary Jordan identity. As the
reader may suspect, mathematical creatures built by this "nonassociative
Vidav-Palmer theofem", called noncommutative JB*-algebra, are closely
related to Kaup’s JB*-triples: every noncommutative JB*-algebra can be
seen as a JB*-triple under a. suitable triple product naturally derived
from its binary product, and, as a partial converse, every JB*-triple can
be seen as a JB*-subtriple of a suitable (commutative) JB*-algebra.
Because of this close dependence, commutative or noncommutative
JB*-algebras have been not too much worked iﬁ the last years. In any case
the relevant recent results about them, together with the above-mentioned
selected ones about JB*-triples, will be reviewed in Section D of our
survey. The very recent improVement of the classical structure theory of
JB*-algebras (courtesy of Zel’ manov’s prime theorem) will be considered
in Section F. .

As the title itself says, Section A will deal with the subject,
already mentioned in connection with the nonassociative Vidav—Pélmer
theorem, of obtaining identities from geometric conditions on general
nonassociative normed algebras. It may be convenient to remark that
usually "geometric conditions" mean conditions on the norm which are'fine
enough that they are not preserved by equivalent renorming. (Requirements
or results that are preserved under equivalent renorming are called then
"of algebraic and topological type" or, simply, "nongeometric".) The most
relevant recent results in this direction, such as an improved version of
the '"nonassociative Gelfand-Naimark theorem", the description of
absolute-valued nonassociative one-sided division algebras by
representing "smooth normed" Jordan algebras on their prehilbert spaces,
or the Blecher-Ruan-Sinclair nonassociative characterization of
non-self-adjoint algebras of bounded linear operators on complex Hilbert
spaces, will be reviewed. After this chéfacteri%ation, we have the
impression that even the associativity of a general'normed algebra can be
geometrically characterized.

Section B of the survey is devoted to the advances 1in the
nongeometric theory of nonassociative normed algebras'and in particular
of normed Jordan algebras. Concerning the Jordan theory, most of the
advances which have been made involve the existence of a "large" socle in
some way. Thus we - shall review the spectral characterization of

semiprimitive modular annihilator Jordan-Banach algebras, the progress on




the problem of the coincidence of the socle and the largest algebraic
ideal in semiprimitive Jordan-Banach complex algebras, and the structure
theory of prime nondegenerate Jordan-Banach complex algebras with nonzero
socle. Concerning nonassociative results, we shall explain in detail the
recent treatment of the extended centroid of normed nonassociative
algebras. This has led to the important results that ultraprime normed
nonassociative complex algebras, as well as primitive Jordan-Banach
complex algebras, are centrally closed.

In the short Section C, we shall continue with the ideas of the
previous one, reviewing the recent nongeometric theory of Jordan-Banach
(¥*-) triples (*-triple means that the middle variable in the triple
product behaves in a conjugate-linear way). Until now, all known results
in this field involved the existence of a "large" socle. The results are
very fine structure theorems, such as. the description of von Neumann
regular Jordan-Banach triples,, or the classification of ©prime
Jordan-Banach *-triples with nonzero socle and with no nonzero nilpotent
elements. The actual concept of the socle of a Jordan triple and a great
part of the purely algebraic development of the theory of the socle in
Jordan triples have arisen from this analytic motivation.

As we have already commented, Section D will deal with some selected
topics in JB*-algeébras and JB*-triples. Among the recent advances we
shall review, we emphasize here the characterization of the associativity
of a JB*-algebra by the absence of nilpotent elements (including also
suitable interesting refinements), the description of weakly compact
JB*-triples, as well as that of prime JB*-triples with nonzero socle, the
recent results on the strong* topology of a JBW*~-triple, the progress on
the understanding of closed (respectively, w*-closed) inner ideals of
JB*-triples (respectively, JBW*-triples), and the study. of the continuity
with respect to several natural topologies of - the one-parameter subgroups
of holomorphic automorphisms of the open unit-ball of a JB*-triple.

Let’s also make a short comment about the material collected in
Section E, namely, the H*-theory. H*-theory refers to the reasonably
well-behaved binary or ternary products on a real or complex Hilbert
space. A complete nonassociative theory of Wedderburn type for H*—thiﬁgs
was developed before 1988, including also the classification of "simple"
H*-things in some of the most familiar classes of binary or ternary

algebras defined by identities, with special emphasis in the complex



case. In particular simple complex Jordan H*-algebras and H*-triples were
described during this time. (It is interesting to note that the study of
Jordan H*-triples, due to W. Kaup, was motivated by the problem of the
classification of bounded symmetric domains in complex Hilbert spaces.)
Therefore, we shall emphasize in our survey the most recent and important
advances in automatic continuity for general nonassociative H*-algebras
(automatic continuity of derivations and of dense range homomorphisms in
the case of H*-algebras with zero annihilator), as well as the recent
classification theorems of simple H*-things in more restrictive and
familiar contexts. Among these, the classification of simple Lie
H*-algebras (answering affirmatively an old and famous conjecture), that
of simple "structurable" complex H*-algebras (which are categorically
related to simple complex Lie H*-algebras by meéns of an extended
Kantor-Koecher-Tits construction, that is also reviewed), that of simple
real Jordan H*-algebras, and .that of simple real or complex Jordan
H*-things in a trilinear context rather different to Kaup’s *-triple
approach.

The concluding section of the survey (Section F) will be devoted. to
the surprising classification theorems for some classes of prime
nondegenerate normed Jordan algebras, obtained very recently by applying
the concepts and methods of the proof of Zel’manov prime theorem for
Jordan algebras. These are: the classification of prime JB*-algebras (the
application of this classification to the answer to some previously
unsolved problems in the theory is also referred), that of simple normed
Jordan complex algebras with a unit (with the appropriate refinement in
the complete normed case), and that of “nondegenerately ultraprime"
Jordan-Banach complex algebras. Some relevant advances on the so called
"norm-extension" problem, closely related to that of obtaining more
general normed versions of Zel’ manov prﬁme theorem, will be also
reviewed.

Now, let’s make some remark bn the general planning of the survey.
As the reader may have divined, it will be impregnated with the spirit of
the Spanish school, emphasizing when it 1is possible the general
nonassociative approach to a given topic; and giving the appropriate
importance to nongeometric aspects of the theory of normed nonassociative
or Jordan structures and the H*-theory, that are fields recently not much

worked outside Spain. In contrast, the field of JB*-triples will be only




partially reviewed, considering mainly those aspects of the theory more
or less related to the work of the Spanish school. We expect other
simultaneous surveys to give a more complete view of this field.

Initially, we thought we would review only the progress made after
the 1988 Oberwolfach meeting on Jordan algebras. However, in most of the
cases the earlier results seemed to us not to be adequately codified for
a relatively nonspecialist reader (this is an important problem to be
overcome in the next years). Hence we have included in each section
(except in Sections C and F) a summary of pre-1988 results including the
definitions of basic concepts without which the nonspecialist reader
would not understand the more recent results to be reviewed. Each section
(now without exceptions) concludes with a subsection devoted to problems
and future directions.

Let’s finally made some technical, remarks. We have restricted the
view of the analytic treatment of Jordan structures to the REAL OR
COMPLEX NORMED CASE. Then, when a purely algebraic concept or result is
quoted, to be sure about its context of validity it is better to think
that we are dealing at least with binary or ternary structures over a
field of characteristic zero. Also topological nonnormed real or complex
aspects, as well as other interesting analytic results involving exotic
base fields, are mot included in the survey. Concerning the 1list of
references at the end of the survey, it should be remarked that almost
all nonassociative or Jordan results here reviewed have an associative
precedent. However, except for very recent works, or when an old result
is not easily available in standard books, we have not 1listed the
corresponding preceding paper. On the contrary, we have tried to include
in our list all nonassociative references we know at this time, except
those concerning the nonassociative C*-creatures (JB—algebras;
JB*-algebras, and JB*-triples), and Banach-Lie algebras. Of course we
have included the books we know about Jordan stfuctures in Analysis
([Ay2], [Di3], [HStol, [I], [IsSt1], [N11l, [Upl], and [Up2]), and also
other surveys that may complement the matter reviewed here in one or
another direction ([Fe3], [Is2]l, ([Iol, [Lo4l, [Mc4l, [Rod10], and
[Rod13]).



A. Some geometric conditions on nonassociative normed algebras

giving rise to Jordan algebras.

It is the aim in this section to show how Jordan algebras and other
algebras close to them answer some natural questions on the geometry of

nonassociative normed algebras.
Summary of results until 1988.

Speaking about Jordan structures (in Analysis), one is tempted to
omit the definition of the most familiar such structure, as it is the one
of a Jordan algebra, because one tﬁinks that this concept must be
well-known for all people interested in the talk, and in any case it
doesn’t seem convenient to begin a lecture with an wunmotivated
definition. But, on the other hand, it could be lamentable to immediately
discourage some nonspecialist reader because of the absence of a simple
definition. A reasonable solution to this doubt may be givens*by::
presenting the Jordan identity as a theorem instead of as an axiom, and
in fact geometric functional Analysis can provide such a theorem.

To this end, consider a complex nonassociative algebra A endowed
with a complete algebra norm I.ll, assume A has a unit 1 with #1l=1, and
that the equality A=H(A)+iH(A) holds. Here H(A) denotes the closed real
subspace of A of those elements h in A such that f(h) is a real number
whenever f is in the dual Banach space of A and satisfies Ifli=f(1)=1.
Algebras A as above are called Vidav algebras (in short V-algebras), and
in the associative context, thanks to the Vidav-Palmer theorem (see for
example [BoDul), they are exactly the unitaf'C*—alggbras. In the general
nonassociative setting we have: '

A.1. Every V-algebra satisfieé the following two identities:

az(ba)=(ézb)a ("Jordan axiom"), and
a(ba)=(ab)a ("flexibility").
Moreover, if A is a V-algebra, then H(A)niH(A)=0, the mapping
h+ik—i—eh—ik (h,keH(A)) is a conjugate-linear algebra involution on A4,
and the equality HUa(a*)H=HaH3 holds for every a in A (where, for a and b

in 4, Ua(b):=a(ba+ab)—a2b).




This nonassociative version of the Vidav-Palmer theorem was obtained
in [Rod4] after a wide collection of papers, namely [Bol, [Yoll, [Yo3],
[Marti2], [Rod3] and [KaMartiRod], and becomes one of the natural ways of
introducing the functional analyst to the Jordan world. In fact the
variety of algebras arising from this theorem, namely the one of flexible
algebras satisfying the Jordan axiom, is known in the literature as that
of noncommutative Jordan algebras (see for example [Mc2]). Noncommutative
Jordan algebras contain associative (and even alternative) algebras as
well as (commutative) Jordan algebras (defined of course as those
commutative algebras satisfying the Jordan axiom). Complete normed
noncommutative Jordan complex algebras with a conjugate-linear algebra
involution * satisfying HUa(a*‘)ll=IIall3 are called noncommutative
JB*-algebras, and we will have the opportunity of talking about them
later.

Another reasonable approach to nonassociative counterparts of
assoclative C*-algebras may arise by the consideration of complete normed
nonassocliative complex algebras with a conjugate-linear algebra
involution * satisfying the Gelfand-Naimark axiom la*all=llal®. In the case
of the existence of a unit, these Gelfand-Naimark nonassociative algebras
turn out to be very particular cases of the nonassociative Vidav algebras
considered above. The fundamental result in this direction was obtained
in [Rod3] wusing a "light" wversion of A.1, earlier proved in
[KaMartiRod], together with a result in [WriYo2] on isometries of
JB-algebras, and reads as follows.

A.2. Let A be a complete normed nonassociative complex algebra with
a unit 1 and a conjugate-linear vector space involution * satisfying 1%=1
and Ha*aH=HaH2 for every a in A. Then A is an alternative algebra, and *
Is an algebra involution on A.

We recall that an algebra A4 is said: to be alternative if the
equalities a2b=a(ab) and ba2=(ba)a hold for all a,b‘in A, and that this
requirement is equivalent (via Artin’s theorem [Scl]) to the fact that
the subalgebra of A generated by two arbitrary elements of 4 is
associative. Complete normed alternative complex algebras with an algebra
involution * satisfying la*all=hall® for every a in the algebra are called
alternative C*-algebras. It is easy to see that alternative C*-algebras
are noncommutative JB*-algebras. More precisely, alternative C*-algebras

are exactly those noncommutative JB*-algebras that are alternative. The



algebra of complex octonions can be structured in an essentially unique
way as an alternative C*-algebra ([KaMartiRod] and [Bra2]), and it is
easy to derive from [ZhS1ShShir; Theorem 9 in p. 1941 that this
alternative C*-algebra is the only prime alternative C*-algebra that is
not associative. Then a standard C*-argument reduces the theory of
general alternative C*-algebras to the particular cases of primitive
associative C*-algebras and of the alternative C¥*-algebra of complex
octonions (see [PaPeRodl] and [Bra2l).

Recall that a smooth normed algebra is a unital normed algebra
(i.e.: a normed algebra with a unit 1 satisfying l1lI=1) whose unit is a
smooth point of its closed unit ball, i.e.: there is a unique element ¢
in the dual space of the given normed algebra with l¢li=¢(1)=1. It is well
known that C is the only smooéh normed nonassociative complex algebra,
and that R, C, and H (the division algebra of real quaternions), with
their wusual absolute values ass norms, are the only smooth normed
associative real algebras. J. I. Nieto [Ni] determined the smooth normed
alternative real algebras, using earlier results of E. Strzelecki [Str]

on smooth normed power-associative real algebras. But actually general

nonassociative smooth normed real algebras are noncommutative Jordan:

algebras (hence power-associative), as shown by the following theorem
that was proved in [Rod4] as a relatively easy consequence of A.1 (see
also [Rodl10] for a more direct proof that does not involve A.1).

A.3. Given a real pre-Hilbert space E with a bilinear

anticommutative product A satisfying (xaylz)=(x|yaz) and lxayl=lixllliyll for
. } ]
all x,y,z in E, consider the real normed space B=R16°E with product

defined by
_ (al+x)(Bl+y):={aB-(x|y) 1 1+ay+Bx+XAy.
Then B is a smooth normed algebra. Moreover all smooth normed real

~ ..

algebras are of this type.

Note that, as a consequence of A.3, every smooth normed real algebra

A is a quadratic algebra over R (i.e.: A has a unit element 1, and, for
every a in A, there are «,B8 in R such that a2+aa+Bl=0), and that the norm
of such an algebra derives from an inner‘product. Because the commutative
smooth normed real algebras are in fact Jordan algebras, we shall call
them the "smooth normed Jordan algebras". They correspond to the

construotioﬁ in A.3 by taking A=0.




There are nice classical precedents for the above results deriving
identities from geometric requirements on general nonassociative normed
algebras, such as the Urbanik-Wright theorem [UrWr] describing
absolute-valued algebras with a unit. Recall that an absoluté—valued
algebra is a nonzero algebra A4 with a norm I. Il satisfying llabli=liallllbll for
all a,b in A. There are examples of infinite dimensional complete
absolute-valued real or complex algebras, even with a nonreflexive
underlying Banach space (see [UrWr], [Url], [Bell, and [Rod12; Remark
3(i)1). But, if the absolute-valued algebra has a unit, then the
dimension must be finite, as shown by the following result in which we
collect the theorems of Urbanik-Wright and Nieto.

A.4. For a real algebra A, the following assertions are equivalent:

i) A is an absolute-valued algebra with a unit.

ii) A is a smooth normed alternative algebra.

iii) A equals R, €, H, or O (the division algebra of real
octonions), with its usual absolute value as norm.

An easy consequence of A.4 is the earlier result of F. B. Wright
[Wr] on absolute-valued real division algebras. Recall that a left
division algebra is a nonzero algebra (say 4) with the property that,
whenever a and b are in A with a#0, there exists a unique x in A
satisfying ax=b. 'Of course there is an analogous concept of right
division algebra, and we say that A is a division algebra if it is at the
same time a left division and a right division algebra. Recall also that
two absolute-valued algebras A and B are said to be isotopic if there
exist linear isometries 00,0, from A onto B satisfying

@1(xy)=¢2(x)¢3(y)
for all x,y in A. With this terminology Wright’s theorem can be stated as
follows.

A.5. An absolute-valued real algebra is a division algebra if and
only if it is finite dimensional, and this is the cése if and only if it
is isotopic to R, C, H, or O.

Finally, we <cite the following sufficient condition for the
finite-dimensionality of absolute-valued algebras obtained by M. L.
El-Mallah and A. Micali in [MMil].

A.6. Every flexible absolute-valued algebra is finite-dimensional.

Advances since 1988.
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Returning to nonassociative Gelfand-Naimark situations, we note
that, as a relatively easy consequence of A.2, it was shown in [Rod3]
that complete normed nonassociative complex algebras with a unit 1 and a
conjugate-linear algebra involution * satisfying lla*all=lia*llllall are
nothing more than wunital alternative C*-algebras. In this "weak"
Gelfand-Naimark situation one is tempted to consider the possibility of
relaxing the requirement (ab)*=b*a* to the weaker one 1*=1, without
perturbing the characterization of alternative C*-algebras (in the same
way as this was possible in the "strong" Gelfand-Naimark situation
studied in A.2). Actually the answer to this question is "almost"
affirmative, as we see from the next theorem. It was proved very recently
in [CRod5], uéing A.1l and A.2 among other tools, and it seems to be new
even in the asscociative setting.

4

Theorem A.7. Let A be a complete normed complex nonassociative
algebra with a unit 1 and a conjugate-linear vector space involution o
satisfying 17=1 and lla"al=a"lllall for every a in A. Then. A is an
alternative algebra, and (except possibly in the case when A 1is
isometrically isomorphic to the C*-algebra EZ) O is an algebra involution
on A and the eq&ality' HaDaH=HaH2 holds for every a in A. For the
exceptional case of the C*-algebra Gz, the involutions o satisfying the
above requirements are exactly the mappings of the form a—sa*+f(a)l,
where * denotes the C*-algebra involution and f is any fixed linear form

on @2 such that f(1)=0 and f(a*)=-f(a) for all a in CZ.

After the above theorem, we don’t know any substantial progress
about Vidav-Palmer and Gelfand-Naimark nonassociative. theorems, except
for the paper of A. Bensebah [Benl], where a:Vidav—Palmer type theorem is
proved for some nonunital complex Jordan-Banach -algebras. Of course,
there are classical and recent advances about the structure theory of the
models built by the nonassociative Vidav-Palmer theorem (A.1), namely the
noncommutative JB*-algebras, but, as we have said before, these results

will be reviewed later.

Returning now to absolute-valued algebras, we must say that all the

classical examples of infinite-dimensional such algebras we mentioned
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fail to be one-sided division algebras. Very recently, J. A. Cuenca
[Cue3] and A. Rodriguez [Rod12] have proved the existence of
infinite~dimensional complete absolute-valued real one-sided division
algebras. The Banach spaces of the algebras in these examples are in fact
Hilbert spaces, of hilbertian dimension Ro in the Cuenca’s nice
construction, and of arbitrary infinite hilbertian dimension in the more
involved one of Rodriguez. Since the fact that absolute-valued complex
one-sided division algebras are isomorphic to the complex field can be
considered as folklore, it seems to be reasonable to look for a structure
theory of arbitrary absolute-valued real one-sided division algebras.
Such a structure theory is provided in [Rod12], and will be reviewed in
what follows. The first result in this direction is given by the next

proposition.

Proposition A.8. An absolute-valued algebra is a left division
algebra If and only if it is isotopic to an absolute-valued algebra with

a left unit.

Note that, as a consequence, absolute-valued algebras with a left
unit are left division algebras. Now the attention must be centered on
absolute-valued real algebras with a left wunit. To state the
corresponding structure theorem for such algebras, it is convenient to
introduce some natural terminology. Given a Jordan algebra J and a vector
space X, a representation of J on X will mean an homomorphism (say ¢)
from J onto a Jordan algebra of operators on X. If J has a unit 1 and
(1) equals the identity operator on X, the representation Y will be
called unital. If X is a pre-Hilbert space, if * is an algebra involution
on J, and if the representation Yy satisfies

W) (M E)=(nlY(x* X E))
for all x in J and all 7,€ in X, then we wiil say that ¥ is a
*-representation. Every smooth normed Jordan algebra J=RleH (see A.3)
will be considered as an algebra with algebra involution * defined by

(AL1+m)*:=21-7 .
Theorem A.9. If J is a smooth normed Jordan algebra and Y is a

unital *-representation of J on the pre-Hilbert space of J, then the

normed space of J with product o defined by
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xoy:=y(x)(y)
is an absolute-valued real (automatically left division) algebra with a
left unit. Moreover, up to isometric isomorphism, all absolute-valued

real algebras with a left unit can be constructed in this way.

The first assertion in Theorem A.9 is easy to prove, and has become
the common starting idea in [Cue3] and [Rod12] for the construction of
the infinite-dimensional examples of absolute-valued left division
algebras mentioned above. Concerning the last assertion in Theorem A.9
(the most relevant one), it can be stated without involving Jordan
algebras and their representations on vector spaces, as follows: The norm
of any absolute-valued algebra A with a left unit e derives from an inner
product (.}.), and, for a,b,c in A with a orthogonal to e, we have

(ablc)=-(blac) and -alab)=-llal’b .
The proof of this last assertion:in Theorem A.9, as well as that ‘of a
part of Proposition A.8, relies on a Theorem, also proved in [Rodl12],
asserting that, if P is a space of bounded linear operators on a real
normed space X containing the identity operator on X and satisfying
ITCx)N=NTHnxH

for all T in P and x in X, then P is a Jordan algebra of operators on X
which, endowed with the operator norm, 1Is lisometrically isomorphic to
some of the smooth normed Jordan algebras. The paper [Rodl2] also
contains Interesting results about irreducible *-representations of
smooth normed Jordan algebras on real Hilbert spaces, from which one can
derive the existence of complete absolute-valued real 1left division
algebras of arbitrary infinite hilbertian dimension and without nonzero

proper closed left ideals.

In the line of deriving identities froﬁ'geometpic requirements on a
nonassociative normed algebra, even the associative identity may be
obtained. Classical examples of this fact are Kadison’s paper [K] and
Corollary 32 in [Rod3], where the associativity is obtained together with
the commutativity. But, as has been observed in [ILouRod; p.2841, some
results in [PaPeRodl] imply that even unital associative C*-algebras can
be nonassociatively characterized as thése algebras satisfying the

assumptions in A.2, and whose Banach spaces contain no 8-codimensional

"primitive M-ideals” in the sense of [ALfEf]. We shall conclude the
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exposition of recent advances in this line by reviewing the following
nonassoclative characterization of unital not necessarily self-adjoint
algebras of bounded linear operators on complex Hilbert spaces, recently

obtained by D. P. Blecher, Z-J. Ruan, and A. M. Sinclair [BlRuSin].

Theorem A.10. A unital normed nonassociative complex algebra A is
isometrically isomorphic to some unital algebra of bounded linear
operators on a suitable complex Hilbert space if (and only if), for each
natural number n, there exists an algebra norm ”'"n on the algebra Mn(A),
of all nxn matrices with entries in A, satisfying the following
conditions:

i) H.H1=H.H (the given norm of A).

ii) For n,m in N, x In Mn(A), and y in Mm(A), we have
Hx@yHn+m=max{Han,HyHm}, where xey denotes the (n+m)x(n+m) matrix with x
and y In the diagonal blocks (in that order) and zero in the off-diagonal
blocks.

iii) For n Iin N, x 1In Mn(A), and o,B in Mn(@), we have

HaxBHnsﬂaHHanHBH, where .|l denotes the natural C*¥-norm on Mn(ﬁ).

It is also proved in [BlRuSin] that, when the algebra A4 satisfies
the two equivalent assertions in the above theorem, then actually A can
be seen as an algebra of bounded linear operators on a complex Hilbert
space H in such a way that, for n in N, the abstract norm Il.lln on Mn(A)
agrees with the operator norm of elements of Mn(A) when they are
naturally regarded as operators on the lz—sum of n copies of H. Let’s
finally remark that Theorem A.10, together with the associative
Vidav-Palmer theoren, gives rise to another nonassociative
characterization of unital associative C*-algebras [BlRuSin; Corollary

3.31. .
Problems and future directions.

In our opinion, after A.1, A.2, Theorem A.7, and the structure
theory for noncommutative JB*-algebras (that we shall review in Sections
D and F), the work on nonassociative Vidav-Palmer and Gelfand-Naimark
theorems can be considered as concluded. However, it remains to provide a

reasonably available complete proof of these results. To be more precise,
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a complete proof of A.1 from standard algebra and functional analysis,
and following the network of references in the original papers, may need
around 500 pages. This is so mainly because the known proofs of the
equality IIUa(a*)H=IIal|3 in A.1 (see [Yo3] and [Rod3]) use the main results
in Wright’'s paper [Wril, which in its turn depends on the large and
difficult work of Alfsen-Shultz-Stormer on the structure of JB-algebras
[ALfShuSto]. Although this last work was clarified later in [Shu] and
[Hl, and today it is nicely collected in the book [HSto], almost the
whole book 1is necessary for the complete proof of A.1. Therefore a
non-structural proof of the equality IIUa(a*)II=HaII3 in A.1 would be
welcome. In this respect, it must be remarked that, although the
classical proof of the equality Ha*aﬂ="a"2 in the associative
Vidav-Palmer theorem is structural (see [BoDu; Section 381), a
non-structural proof of this fact can be' given by using the theory of the
so called "hermitian Banach algebras" [BoDu; Section 41]. It seems
therefore convenient to study "hermitian Jordan;Banach algebras" in
depth, but this will be considered more precisely in the next section.

Fortunately, the proof of A.2, although depending partially on A.1l,
doesn’t involve the equality HUé(a*)H=HaH3. Even, the Wright-Youngson
theorem on isometries of JB-algebras involved in this proof has been
reproved in a veryfsimpler way by C. H. Chu [Ch]. Consequently the proof
of A.2 can be completely given in around 150 pages, and in fact it is my
intention to write a short book on this topic, perhaps including also
Theorem A.7.

In spite of the naturality of the axiom llabll=llallllbll, absolute-valued
algebras have been considered only by a relatively- small number of
authors (see previous references together with [Al1], [Al2], [M1], [M2],
[M3], [M4], and [Ur2]), and the corresponding theory is far from being
finished. After the recent papers of Cuenca [Cue3] and Rodriguez [Rod12]
reviewed above, we hope this theory will . flourish. We expect
classification theorems or at least significant general results. Note
that all nontrivial known results on absolute-valued algebras involve
additional assumptions on such algebras, so they can be loocked on as
incomplete classification theorems. (The absolute-valued algebras not
satisfying the additional assumption under consideration remain unknown. )
An exception is the general result in [Rod12; Theorem 4] asserting that

homomorphisms from complete normed algebras into absolute-valued algebras
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are contractive, hence continuous. As examples of questions that can be
posed, consider the following problems.

A.11. Is the bidual of an absolute-valued algebra (endowed with the
Arens product) an absolute-valued algebra?

A.12. Let A be an absolute-valued algebra satisfying a nonzero
identity. Is A finite-dimensional? (compare with A.6, and sece [Rod12;
Remark 3(ii)]).

A.13. Describe the Banach spaces that are absolute-valued algebras
for some product.

For example, as a consequence of A.5, under the additional
assumption of finite dimension, they are only the Euclidean real spaces
of dimension 1, 2, 4, or 8, while all infinite-dimensional I -spaces are
in this class of Banach spaces. ’

After the Blecher-Ruan-Sinclair nonassociative characterization of
unital algebras of bounded linear operators on complex Hilbert spaces
(Theorem A.10), one 1is tempted to think that the question of
associativity of a general unital normed complex algebra can be settled
in a geometrical way. Let’s therefore conclude this section with an
adventurous conjecture.

Conjecture A.14. A unital normed complex algebra A is associative if
(and only if), for each natural number n, there exists an algebra norm
”'”n on the algebra Mn(A) satisfying conditions (i) and (ii) in Theorem
A.10.
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B. Nongeometric theory of normed Jordan algebras.

Now we shall consider the development of theltheory of normed Jordan
algebras concerning those aspects not involving additional geometric
requirements. The possibility of applying "spectral techniques” has
allowed a great parallelism with the theory of associative normed
algebras. In fact the Jordan épproach to normed algebras becomes a
natural generalization of the associative approach, because associative
normed algebras can be seen as normed Jordan algebras by symmetrizing
their associative products. Thus, when an associative result has been
extended to the Jordan setting, this means in particular that, in the
associative context, this result depends only on the Jordan structure of
the associative algebra under consideration. Some results for normed
Jordan algebras are simple specifications of more general ones on

nonassoclative normed algebras that we shall also review.
Summary of results until 1988.

After the eaﬁly work of M. Koecher [Kol] introducing Analysis in
finite-dimensional Jordan algebras over the real numbers (see also
[BrKol), the first paper we know dealing with normed Jordan algebras is
that of V. K. Balachandran énd P. S. Rema [BRe], where they showed the
uniqueness of the complete algebra norm topology in strongly semisimple
Jordan-Banach algebras. Today the main importance of that paper relies on
the observation they made that; for an element a in a complete normed

power—associative algebra A, the number r(a):=lim{ﬂanﬂl/n}

an
algebraic invariant, namely r(a) is the maximum of. the moduli of the
numbers in the spectrum of a relative to any maximal associative
subalgebra of A containing a. Using this observation, either the proof of
the main result in [BRe] or Rickart’s original associative argument (see
[Sin; Theorem 6.18]) can be adapted to obtain the following theorem (see
[Rod10; Theorem 7.3] for details).

B.1. Let A and B be complete normed power-associative algebras, and

assume that B is strongly semisimple. Then every dense range homomorphism

from A into B is continuous.
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Properly Jordan spectral theory in normed Jordan algebras was first
considered in the paper of C. Viola Devapakkiam [Viol]. Spectral methods
in Jordan algebras were possible thanks to the Jacobson-McCrimmon concept
of inverse in a Jordan algebra with a unit [Ja2], which we now recall. An
element x in a Jordan algebra J with a unit 1 is said to be invertible if
there exists y in J satisfying x.y=1 and x.y2=y, and, if this 1is the
case, the element y above is unique and it is called the inverse of x
(and denoted by x_l). From this concept of invertible element the
spectrum of an arbitrary element of a real or complex Jordan algebra is
defined as in the associative case [BoDu:; Definitions 5.1 and 13.6]. The
paper of Viola contains basic facts about the set of invertible elements
and the spectrum of arbitrary elements in a Jordan-Banach algebra with a
unit. In particular the fundamental Gelfand-Beurling formula is proved in
the Jordan setting. It follows that the Gelfand-Mazur theorem holds for
normed Jordan-division complex algebras, and this is the germ of the
subsequent description of normed Jordan-division real algebras.

Viola’s work was continued in the Thesis of J. Martinez [Martill]
(see also [Marti2] and ([Marti3]), who showed, as a first remarkable
result, that Jordan-Banach algebras are "locally spectrally” associative.
That means that every element in such an algebra J can be imbedded in a
closed associative'subalgebra J’ satisfying sp(J,x)=sp(J’,x) for all x iIn
J’ (where sp(.,.) denotes the spectrum of the second coordinate relative
to the first one). This theorem allows one to develop a holomorphic
functional calculus for a single element in a Jordan-Banach algebra.
Martinez’s Thesis contains also the following result, that become crucial
in Kaup’'s characterization of bounded symmetric domains in complex Banach
spaces [Kau3l: if x is an element in a Jordan-Banach algebra J, and if LX
denotes the operator of multiplication by b on J, then
sp(J,x)Qsp(BL(J),LX)Q%(Sp(J,x)+sp(J,x)) (where BL(J% denotes the Banach
algebra of all bounded linear operators on J). In the Thesis of A. Kaidi
[Kal] (see also [Ka2]) general nonassociative normed algebras were
considered, and most of the spectral results on Jordan-Banach algebras
mentioned above were extended to the setting of noncommutative
Jordan-Banach algebras (see [Mc2] for the concept of inverse in this
context), giving in this way an unified approach to the associative and
Jordan cases. The description given there of normed noncommutative

Jordan-division real algebras is remarkable, because it implies that
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normed (commutative) Jordan-division algebras are nothing but smooth
normed Jordan algebras (take A=0 in A.3) endowed with an arbitrary
algebra norm.

An interesting (and sometimes forgotten) paper on Jordan-Banach
algebras is that of P. S. Putter and B. Yood [PuY], where spectral theory
is further developed with the aim of making progress on the most
fundamental questions of the basic theory, such as automatic continuity,
uniqueness of norm, Shiraly-Ford and Ptadk theorems for hermitian
Jordan-Banach algebras, etc.. In fact the paper contains the Jordan
version of B.1, as well as weak forms (or particular cases) of the
results B.2 and B.4 below. The paper of Putter-Yood also reconsidered the
problem [Shi] of whether an associative algebra, which Dbecomes a
Jordan—Banachlalgebra using some norm and the Jordan product arising from
the original associative product, is:actually an associative Banach
algebra for an equivalent norm. The best positive answer we know about
this question is that this is so if the associative algebra under
consideration is semiprime (see [Rodé] or [Rod7; Proposition 3]).

A revolution in the theory of Jordan-Banach algebras arose when- B.
Aupetit jordanized the associative methods in his book [Aul] in order: to-
sclve several Jordan problems that seemed intractable by classical tools.
Thus in Aupetié’s paper [Au2], at the same time that a
Jacobson—representation—theory—frée proof of Johnson’s uniqueness-of-norm
theorem for Banach algebras was given, the following Jordan version of
this theorem was shown. \

B.2. If A and B are Jordan-Banach algebras, and we assume that B is-
semiprimitive, then every homomorphism from A onto B is-continuous. As a
éonsequence, semiprimitive Jordan-Banach algebras have a unique complete
algebra norm topology. A

We recall that, given a Jordan algebfa J, an element x in J 1is
called quasi-invertible if 1-x is invertible in the unital hull of J, and
that K. McCrimmon proved in [Mcl] the existence of a largest ideal of J
each element of which is quasi-inversible. This ideal is called the
Jacobson~McCrimmon radical of J and is denoted by Rad(J). The condition
Rad(J)=0 is equivalent to that of J being a subdirect product of Jordan
algebras which are "primitive" in a peculiar Jordan sense [HoMc], and,
when this is the case, J is therefore called semiprimitive. The reader is

referred also to [Mc2o] and [FeRodl] for the noncommutative versions of
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these ideas. The new tool in the proof of B.2 was the subharmonicity of
the spectral radius in Jordan-Banach algebras. This tool was improved in
the paper of B. Aupetit and A. Zraibi [AuZr], where the following theorem
was shown.

B.3. If f is a holomorphic mapping from an open subset Q of C into a
ssp(J,f(A)) is an

Jordan-Banach complex algebra J, then the mapping A
analytic multivalued function.

This theorem was applied in [AuZr] to prove that, if J is a
Jordan-Banach complex algebra, then the spectral radius is subadditive
and submultiplicative on J if and only if J/Rad(J) is associative.
Another nice application of Aupetit’s techniques was the clarification
(as well as the simplification of the proof) of an earlier result of H.
Behncke [Behl on hermitian Jordan-Banach algebras, made by Aupetit
himself and M. A. Youngson in [AuYo]. .A hermitian Jordan algebra is a
Jordan complex algebra J with a .conjugate-linear algebra involution *
satisfying sp(J,x)SR for every symmetric element x in J. The commented
result about hermitian Jordan-Banach algebras reads as follows.

B.4. For a Jordan-Banach complex algebra J with conjugate-linear
algebra Involution *, the following assertions are equivalent:

i) J is hermitian.

ii) The set of all symmetric elements in J having positive spectrum
iIs convex.

iii) x*.x has positive spectrum for all x in J.

Aupetit’s techniques were also useful for the beginning of the
development of a nongeometric theory of general nonassociative algebras.
This is the case of the paper [Rod5], where the so called "weak radical"
of an arbitrary nonassociative algebra was introduced, and, wusing
iassoclative! subharmonic methods in [Au2], the uniqueness of the
complete algebra norm topology for comﬁlete normed nonassociative
algebras with zero weak radical was proved. This result contains the part
of B.2 concerning uniqueness of norm, as well as its noncommutative
version, which actually arises in a greatly improved form. Thus, as an
example, the Banach-Lie algebra of all derivations on a C*-algebra has
zero weak vradical, hence a unique complete algebra norm topology
(although it is a noncommutative Jordan algebra agreeing with its
Jacobson-McCrimmon radical). This example shows how the

uniqueness-of-norm theorem in [Rod5] even gives a satisfactory answer to
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the corresponding problem for Banach-Lie algebras, posed in [Har2]. The
paper [Rod5] contains also a reasonable nonassociative extension of
Johnson’s theorem, on automatic continuity of surjective homomorphisms
into semiprimitive (associative) Banach algebras, implying also Aupetit’s
theorem (B.2), and that we shall lightly improve later. The weak radical
was also the appropriate tool for the statement and proof of a
nonassociative complete normed version of the first Wedderburn’s theorem
[FeRod3], implying in particular that, if J is a semiprimitive
Jordan-Banach algebra, and if the annihilator of every closed proper
ideal of J is nonzero, then J is the closure of the difect sum of its
minimal closed 1ideals, and these are topologically simple primitive
Jordan—-Banach algebras. .

It is well-known that under ‘certain assumptions (von-Neumann
regularity, finite spectrum and semiprimitiveness, algebraicness and
semiprimitiveness, semiprimeness <and agreement with the socle) an
associative Banach algebra is finite-dimensional. This is no longer: true
for Jordan-Banach algebras, but, under the above requirements (in- the
appropriate Jordan versions), Jordan-Banach algebras are finite direct
sums of simple ideals that are either finite-dimensional or quadratic.:
These results, and even their noncommutative versions, can be seen in the
papers of Benslimane—Kaidi [BensKa] and Benslimane-Fernandez-Kaidi
[BensFeKa]. One of the main tools in the proof of these facts is the
concept and basic theory of the socle of a nondegenerate Jordan algebra,
first introduced and developed in [OR] (see also [FeRodl] for the
noncommutative case). Among the several papers in which the theory of.the
socle for nondegenefate Jordan algebras was further developed (without
getting out of the purely algebraic setting), we cite the one of
Ferndndez-Rodriguez [FeRod2], where an apalytic incursion was made,
showing that the socle of a nondegenerateijordan—ﬁanach algebra agrees
with the largest von-Neumann regular ideal. -

In [Fel]l, A. Ferndndez introduced modular annihilator Jordan
algebras as those nondegenerate Jordan algebras J such that J/Soc(J) is
radical (where Soc(J) denotes the socle of J). After developing the basic
algebraic 4theory for such algebras, modular annihilator Jordan-Banach
algebras were considered, showing as main results that nondegenerate
compact Jordan-Banach complex algebras are modular annihilator, and that

JB-algebras are modular annihilator if and only if they are “dual"” in the
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sense of [Bull. (Recall that a normed Jordan algebra J is said to be
compact if, for every x in J, the operator Ux is compact.) In a
subsequent paper ([Fe2]), following the standard terminology in the
associative case, Fernandez introduced Jordan-Riesz algebras as those
Jordan-Banach algebras J such that, for every x in J, zero is the only
possible accumulation point of sp(J,x). It was proved that semiprimitive
Jordan-Riesz algebras are modular annihilator Jordan-Banach algebras, and
that the converse is true in several interesting particular cases. In the
same paper, it was shown that the socle of any normed nondegenerate
Jordan algebra is an algebraic ideal. Also the problem of the coincidence
of the socle and the largest algebraic ideal in the complete normed case

was considered, giving the first steps for an eventual future solution.
Advances since 1988.

A great part of the recent production on nongeometric aspects of
normed Jordan algebras has centered in a deeper understanding of the
behaviour of the socle of Jordan-Banach algebras. Thus Aupetit’s
techniques have been tested, by the first time in this field, by Aupetit
himself and L. Baribeau in [AuBa], where as the main result the following

theorem has been proved.

Theorem B.5. If J is a semiprimitive Jordan-Banach complex algebra,
and if the spectrum of every element in J is at most countable, then the

socle of J is nonzero.

The paper of Aupetit-Baribeau contains also a rather involved
structure theorem for separable Jordan-Banach complex algebras with the
property that the spectrum of every element®is at most countable, that,
roughly speaking, reduces their knowledge to that of modular annihilator
separable Jordan-Banach algebras [AuBa; Theorem 19]. The proof of this
structure theofem relies on Theorem B.5 and the spectral characterization
of modular annihilator Jordan-Banach algebras, provided almost at the
same time by M. Benslimane and A. Rodriguez [BensRod], and that concludes
in a first instance the already commented Fernandez’s work in [Fe2]. The
proof of this characterization consist of a Jordanization of Aupetit’s

associative methods in [Au3], and reads as follows.
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Theorem B.6. A semiprimitive Jordan-Banach algebra is modular

annihilator (if and) only if it is a Jordan-Riesz algebra.

In fact Theorem B.6 is proved in [BensRod] only for complex
algebras, but, as it was pointed out in [BensFeKa], the real case can be
easily derived from the complex one. Let’s mention the most significant
advance we know concerning the problem of the coincidence of the socle
and the largest algebraic ideal in Jordan-Banach algebras, provided in
the paper of M. Benslimane, 0. Jaa, and A. Kaidi [BensJKal, and that can

be stated as follous.

Theorem B.7. Let J be a semiprimitive Jordan—-Banach complex algebra,
and let I be a spectrum-finite Iinner- ideal of J (for instance, any
algebraic ideal of J). Then every element y in I can be written as y=s+x,

with s in the socle of J and x in J satisfying x°=0.

Important consequences of the theorem are that spectrum-finite -inner

ideals of semiprimitive Jordan-Banach complex algebras are algebraic, and’

the existence, in any (not necessarily semiprimitive) Jordan-Banach
algebra, of a larg%st spectrum-finite ideal. Let’s also comment the paper
[BensFeGarKal], improving earlier results in [BensKal], and showing that
normed noncommutative Jordan complex algebras with no nonzero nilpotent
elements, and with essential socle, are associative and commutative.

To conclude the review of recent advances in the Jordan-Banach
treatment of the socle, let’s explain the structure theory of prime
nondegenerate Jordan-Banach complex algebras with nonzero : socle,
developed in [PeRiRodVil. The fundamental ;esult there obtained is the

~..

following.

Theorem B.8. A Jordan-Banach complex algebra J is prime
nondegenerate with nonzero socle (if and) only if one of the following
statements holds: '

i) J is the exceptional Jordan algebra Mi(@) of all hermitian 3x3
matlrices over the complex octonions.

ii) J is simple quadratic over C.

iii) There are a prime associative Banach complex algebra A with
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nonzero socle, and a one-to-one continuous Jordan-homomorphism ¢ from J
into A, such that the range of ¢ contains the socle of A.

iv) There are a prime associative Banach complex algebra A with
nonzero socle, a linear algebra involution T on A, and a one-to-one
continuous Jordan-homomorphism ¢ from J into A, such that the range of ¢

Is contained in H(A,t) and contains H(Soc(A4),T).

Here, and in the rest of this survey, for an algebra A4 with linear
algebra involution T, H(A,T) denotes the set of all t-hermitian elements
in A. (Note that, for analysts, the symbol * wusually means a
conjugate-linear involution.) Simple quadratic Jordan-Banach complex
algebras can be constructed from the so called symmetric self-dual
complex Banach spaces. These are pairs (X,<.,.>), where X is a complex
Banach space, and <.,.> is a continuous, nondegenerate symmetric bilinear
form on X. The simple quadratic Jordan-Banach complex algebras are of the
form J(X,<.,.>), for such a symmetric self-dual complex Banach space with
dim(X)#1, where J(X,<.,.>) denotes the topological sum CeX with the
familiar Jordan product (A+x).(u+y):=[Au+<x,y>1+(Ax+uy). In order to
state the special version of Theorem B.8, also obtained in [PeRiRodVi],
under the additional assumption of minimality of norm topology, let’s
recall that a symmetric self-dual complex Banach space J(X,<.,.>) is
called regular if the natural continuous embedding of X in its dual space
determined by <.,.> is actually a topological embedding. Recall also that
a normed algebra (A4,ll.1) is said to have minimality of norm topology if
any algebra norm |.| on A4, minoring I.ll, i.e., | .|s«ll. Il for some a>o, is

actually equivalent to .1.

Theorem B.9. Up to bicontinuous isomorphisms, the prime
nondegenerate Jordan-Banach complex algebras with nonzero socle and
minimality of norm topology are the following:

i) The Jordan-Banach algebra Mg(@).

ii) The Jordan-Banach algebras of the form J(X,<.,.>), where
(X,<.,.>) is a regular symmetric self-dual complex Banach space with
dim(X)=z2.

iii) The closed Jordan subalgebras of any prime associative Banach
complex algebra A, with nonzero socle and minimality of norm topology,

containing the socle of A.
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iv) The closed Jordan subalgebras of any prime associative Banach
complex algebra A, with linear algebra involution T, nonzero socle, and
minimality of norm topology, contained in H(A,t) and containing

H(Soc(4),T).

Forgetting the socle for the moment, let’s refer to the solution of
Ostrovski’s problem in Jordan-Banach algebras, given by A. M. Slin’ko
[S1]. After the nice simple proof provided by B. Cuartero and J. E. Galé

[CuG], it can be stated as follows.

Theorem B.10. A complete normed algebraic power-associative algebra

1s of bounded degree.

Normed Jordan algebras whose seté*of quasi-invertible elements are
open were considered in the already quoted pioneering paper [Violl, and,
following standard associative terminology, we shall call them normed
Jordan Q-algebras. After the relatively recent answer ([P] and [BeOul) to
Wilansy’s conjecture [W] on normed associative Q-algebras, normed Jordan
Q-algebras have been reconsidered in [PeRiRod], answering as well "the!
Jordan version of Wilansky’s conjecture, and providing other interesting
characterizations 6f them. In order to state some of these results, let’s
recall that, given a Jordan algebfa J, a subalgebra of J is said to be a
full subalgebra of J if 1t contains the quasi-inverses of its elements

that are quasi-invertible in J.

Theorem B.11. For a normed Jordan algebra J, the following
assertions are equivalent:

i) J is a normed Jordan Q-algebra. _

1i) J is a full subalgebra of some Jordgh—Banac@ algebra.

iii) J is a full subalgebra of its completion.

iv) The maximal modular innef ideals of J (in the sense of [HM]) are

closed in J.
Normed Jordan Q-algebras can be involved in unusual automatic

continuity theorems, as the following one (see [PeRiRod] and
[PeRiRodVil).
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Theorem B.12. Let A be a normed Jordan complex Q-algebra, B a
Jordan-Banach complex algebra with minimality of norm topology, ¢: A——B
a homomorphism, and assume that either B is semiprimitive and ¢ is
sur jective or thal B is prime nondegenerate with nonzero socle and the

range of ¢ contains the socle of B. Then ¢ is continuous.

Let’s conclude our survey on recent advances on nongeometric theory
of normed Jordan algebras by reviewing the ones concerning the study of
the extended centroid of such algebras. The concept of extended centroid
was Introduced and developed first by W. S. Martindale ([Martl] and
[Mart2]) in the case of prime associative rings, and later this concept
was extended to the more general setting of prime (and even semiprime)
nonassociative algebras (see ({[ErMartO] and [BaxMart]). As its name
suggests, the extended centroid is a suitable enlargement of the centroid
of a semiprime nonassociative algebra, whose main interest is found in
the theory of structure and classification of prime algebras (see for
example [Fi] and [CoFe]). The elements in the extended centroid of a
nonassociative semiprime algebra A (denoted by C(4)) are the so called
"maximal essentially defined centralizers" on A. "Essentially defined
centralizer" means linear mapping f from an essential ideal of 4 (say
dom(f)) into A satisfying f(ab)=af(b) and f(ba)=f(b)a for all a in A and
b in dom(f), and "maximal" means that there are no nontrivial extensions
of f with the same properties as that of f. For each essentially defined
centralizer on A there 1is a wunique maximal essentially defined
centralizer on A which extends it, and C(4) is a von Neumann regular
associative and commutative ring if we take as sum (respectively,
product) of two elements in C(A) the unique maximal essentially defined
centralizer on A that extends the usual sum (respectively, composition)
of the given elements as partially defined oberators on A. Moreover, C(A4)
is a field 1f and only if A is prime. In the prime case, the eventual
fact that C(A) agrees with the base field has many interesting
consequences, and when this is the case it is said that the prime algebra
A is centrally closed.

The extended centroid C(4) of a semiprime algebra A contains the
usual centroid T'(4) of A, namely the ring of all everywhere defined
centralizers on A4, and clearly C(4)=T'(4) whenever 4 is simple. Thus

centrally closed simple algebras are nothing more than central simple
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algebras in the usual meaning. In this way it seems reasonable to ask, as
a first question on the extended centroid of normed algebras, if every
normed simple complex algebra is central. We give here the affirmative
answer to this question, that seems to be new even in the ‘associative

context, and that follows almost directly from the following lemma.

Lemma B.13. Let X be a normed space, B an algebra of continuous
linear operators on X, and assume that there exists a cyclic vector X,
for B (that is, an element X, in X such that BXO=X). Then an algebra norm
can be built on the algebra D of all (possibly discontinuous) linear

operators on X which commute with every element in B.

Proof. Defining for f in D |f|:=fooH, |.] becomes a norm on the
vector space of D. Since for any fixed element f in D there exists b in B
with bxo=fxo, for every g in D we havg

!gfI=Hgfx0H=HgbeH=HngOHSHbHngOH=HbHIgl
It follows that the mapping Tf:g——~egf is a bounded linear operator on
(D,|.1). It for f in D we define |Jff to be the operator norm of Tf—as a
bounded linear operator on (D,|.|), then |.|] becomes an algebra norm¥on
D, as required. =m

Let A be a normed prime cdmplex algebra with a minimal ideal P.
Then, taking in the above lemma X=P and B equal to the multiplication
algebra M(A) of A regarded as an algebra of operators on P (note that
every nénzero element in X is a cyclic vector for B), we obtain that D
can be provided with an algebra norm. Since in this case D is a complex
division ring, the Gelfand-Mazur theorem implies D=C. But also in this
case C(A) is isomorphic to D [CRodl; Theorem 2], hence we have the

~ea

following corollary.

Corollary B.14. Every normed prime complex algebra with a minimal
ideal 1is centrally closed. As a consequence, normed simple complex

algebras are central.
Under the additional assumption of completeness, the above corollary

was proved in the already used paper of M. Cabrera and A. Rodriguez

[CRod1]. Corollary B.14 also contains the result proved by A. Cobalea and
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A. Fernandez [CoFel] that normed prime nondegenerate noncommutative Jordan
complex algebras with nonzero socle are centrally closed. (Incidentally,
we note that this fact is the first one we know concerning the extended
centroid in normed associative or nonassociative algebras.) In fact Lemma
B.13 can be used together with the arguments in [CRodl] to avoid the
assumption of completeness in one of the main results in that paper
(namely [CRodl; Theorem 4]). In order to state here the definitive
version of this theorem, let’s recall that, given a normed algebra A, any
minimal B-invariant subspace of A for some algebra B of operétors on A
such that M(A)cBcs-clos(M(A)) (where s-clos denotes closure in BL(A) for
the strong operator topology) is called an atom of A. The easiest

examples of atoms are the minimal ideals.

Theorem B.15. Let A be a normed complex algebra with a family I of

mutually orthogonal atoms such that the annihilator of the sum Y P s
Pel

zero. Then A is semiprime and the extended centroid of A is CI. More
precisely: each element y={AP} in CI defines an essentially defined
centralizer fv on A with domain the fgm of the atoms in I and values
fy(z XP)=Z APXP , and the mapping y — f% (the unique maximal essen;ially
defined centralizer on A which extends fy) is an isomorphism from C  onto

the extended centroid of A.

Although the details of the proof are left to the reader, it is
convenient to note that Lemma B.13 not only improves the earlier complete
version of Theorem B.15 in [CRod1], but also allows to simplify the proof
by avoiding the use of the crucial Lemma 7 in that paper. This is not the
case for [CRodl; Remark 2] which, although remaiging true without
assumption of completeness, seems to need lemma 7 in [CRodl1]. The paper
[CRod1] contains also the following useful theorem félating the extended
centroid of normed semiprime algebras with that of some of their
essentlal ideals. The term "self-dense" for a subset N of a normed
algebra A4, involved in the statement of this result, means that N is
dense in A for the initial topology on A relative to the family of
mappings of the form a——ax and a——xa from 4 into (4,1.11), when x runs
through N.
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Theorem B.16. Let A be a semiprime normed algebra and U a
self-dense essential ideal of A. Then U is a semiprime algebra and the
extended centroid of U agrees with the extended centroid of A. More
precisely, every maximal essentially defined centralizer f ori U is an
essentially defined centralizer on A and the mapping f — f (the unique
maximal essentially defined centralizer on A which extends f) is an

isomorphism from C(U) onto C(A).

As we have pointed out before, even in the associative setting, the
extended centroid of normed semiprime (and even prime) algebras has been
not considered until recently. One of the first works dealing with this
topic is the one of M. Mathieu [Matl], showing that ultraprime normed
associative cémplex algebras are centrally closed. That a normed algebra
A is ultraprime means that there‘nexists a countably incomplete
ultrafilter U on a suitable set such that the corresponding normed

ultrapower A is a prime algebra. Mathieu’s proof relies on his

characterizat?@n of ultraprime normed associative algebras as those
normed associative algebras A for which there exists k>0 such that
I, lI=kilallibll for all a,b in A, where M, , denotes the operator ‘on 4
given by Mé}b(c):=acb. Although it remains unknown a so easy
characterization of ultraprimeness for nonassociative normed algebras, M.
Cabrera and A. Rodriguez have shown in [CRod2] that wultraprimeness
(strictly) implies a condition rather similar to Mathieu’s one, and then
they have derived the following "unassociativization" of Mathieu’s

theorem.

Theorem B.17. Every ultraprime normed complex algebra is centrally
closed.

Algebraic results in [Martl] and [Mart2], together with standard
theory of Banach algebras, impl&g that primitive Banach (associative)
complex algebras are centrally closed. In order to obtain the appropriate
“Jordan version of this result, general nonassociative methods have been

developed in [Rodl11l], providing as desired the following theorem.

Theorem B.18. Every primitive Jordan-Banach complex algebra is

centrally closed.
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Nonassociative methods giving rise to the above theorem are part of
what we call "elevator technique", that was also successfully exploited
in the already quoted papers [Rod5] and [FeRod3]. Roughly speaking,
elevator technique consists of an "ascent" from a complete normed
nonassociative algebra to a suitable "multiplication algebra", every time
that the original argument under unassociativization needs associativity,
and of a "descent" from the multiplication algebra to the given
nonassociative algebra, when the original argument needs completeness. In
the case under consideration an additional problem arises, namely: what
must mean the term "primitive" in the general nonassociative setting?.
But, as in earlier occasions, elevator technique itself is able to give
answer to this question.

Because there is no place here to .enter in the details of elevator
technique, we put the cart before. the horse, and we explain the meaning
of the nonassociative primitiveness without further comments. To this
end, consider a nonassociative algebra A, let B be any algebra of linear
operators on 4 with M(A)SB, and fix a (left or right) primitive ideal of
B (say P). Then the largest B-invariant subspace of A contained in
{ach : La,Rae?} (where La and Ra denote respectively the left and right
multiplication operators by a on 4) is a (two-sided) ideal of A. Ideals
arising in this way are called (left or right) B-primitive ideals of A4,
and 4 is said to be a B-primitive algebra if zero is a B-primitive ideal
of A. Now assume additionally that A is complex, and take B equal to the
“quasi-full multiplication algebra" of A, that is denoted by QFM(A), and
is defined as the subalgebra of the algebra L(A) (of all linear operators
on A) which is minimal among the subalgebras C of L(A4) subjected to the
conditions M(A)SC and sup{|A| : Aesp(C,c)}=sup{Ir] : Aesp(L(A),c)} for
every ¢ in C. If A becomes a B-primitive algebra fgr this choice of B,
then we say that 4 is a quasi-weakly primitive algebra. The main result
in [Rodll] asserts that every complete normed quasi-weakly primitive
complex algebra is centrally closed. It is also proved in [Rodl1l] that,
If a Jordan complex algebra is primitive (in the sense of
Hogben-McCrimmon [HoMcl), then it is quasi-weakly primitive, hence

Theorem B.18 follows.

Now that we know something about elevator technique, at least in
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what concerns terminology, it can be the appropriate time of clarifying
some previously cited results. If 4 is a nonassociative algebra and B is
any algebra of linear operators on 4 containing M(4), let’s define the
B-radical of A as the intersection of all left (equivalently, right)
B-primitive ideals of 4, and the ultra-B-radical of 4 as the sum of all
C-radicals when C runs over all algebras of operators on A contained in B
and containing M(A). The choice of B equal the "full multiplication
algebra” of A (the minimal full subalgebra of L(A) containing M(A4)) gives
rise to the so called in [Rod5] "weak" and “ultraweak" radicals of A4,
respectively,.while, for A complex, the B-radical and the ultra-B-radical
corresponding to the choice B=QFM(A) will be called respectively the
quasi-weak and ultra-quasi-weak radicals. It is easy to see that the weak
radical of a complex algebra is contained in the ultra-quasi-weak
radical, that in its turn is contained in the ultra-weak radical. Then,
minor changes on the proof of Theprem 3.3 in [Rod5] (whose details are
left to the reader) allows us' to obtain the following jcomplex!

improvement of that theorem.

Theorem B.19. Let A and B be complete normed nonassociative complex
algebras, and assume that the ultra-quasi-weak radical of B is zero. Then

every homomorphism: from A onto B is continuous.

An advantage of Theorem B.19 over its precedent in [Rod5] is that
now we have the following nice example in which our improved version can
be applied. The hints for the proof (whose details are also left to the
reader) are that every closed ideal of a normed complex algebra A is
invariant under QFM(A) (a consequence of the fact that, as any closed
subalgebra of a Banach algebra, the norm-closure of M(A) in BL(A) is a
quasi-full subalgebra of BL(A4), and hence-also of L(A) [Rod5; Remark
1.8]1), and arguments close to the ones in Pfopositi;n 7.2 and Lemma 7.1

in [Rod10].

Proposition B.20. Let A be a complete normed complex algebra, and
assume that the annihilator of the sum of the minimal ideals of A is
zero. Then A has zero ultra-quasi-weak radical. Therefore homomorphisms

from .complete normed complex algebras onto A are continuous.
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A comparison of Theorem B.15 with the above proposition suggests
that there may exist some relation between the well behaviour of the
extended centroid of a complete normed algebra and the well behaviour of
the algebra concerning automatic continuity. This idea has been
successfully taken in a recent nice work of A. R. Villena [Vi2], and has
been retaken in [Rodl14] following the Villena’s methods. Although both
papers are mainly devoted to obtain result on automatic continuity for
H*-algebras (and therefore they will be reviewed in Section E), we may

select here as an example the following nongeometric result in [Rod14].

Theorem B.21. Let A be a complete normed centrally closed prime
algebra, and assume there exists a continuous nondegenerate symmetric
associative bilinear form <,.,> on A. Then dense range homomorphisms from

complete normed algebras into A are continuous.
Problems and future directions.

After the above discussion about the development of the general
theory of normed Jordan algebras, we have the impression that "all"
results on normed associative algebras can be suitably :extended to the
Jordan context, dnd that "almost all" these results may even have
reascnable general nonassociative extensions. As we have seen before,
most of these extensions, when provided, have been far from being
trivial, and they have encouraged the development of new methods that
may even have enriched the associative theory of departure. Concerning
future directions of work, the positive side of this planning is that,
since the associative theory is very fully developed, many questions
concerning Jordan (or bnonassociative) normed algebras remain to be
considered and answered. It must however séid, as a (perhaps fortunate)
negative side of this project, that usually a new~technique in normed
Jordan (or nonassociative) algebras alone only is useful to solve a small
number of problems. As an example, the methods in the proofs of the
several above-mentioned results on Jordan (or nonassociative) automatic
continuity have been inefficient until now to solve the following problem
(Jordan version of Johnson-Sinclair theorem [JoSin]).

B.22. Prove that derivations of semiprimitive Jordan-Banach algebras

are continuous.
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We note that the noncommutative-Jordan version of Johnson-Sinclair
theorem would follow from the commutative one in view of [FR; Lemma 1617,
and that, for complete normed alternative algebras, Johnson-Sinclair
theorem is true [Vill].

Other problems that can be attacked, and that are related to
previously reviewed results, are the following.

B.23. Prove B.1 without the assumption of power-associativity,
and/or weaken the requirement of strong semisimplicity on the range
algebra in such a way that the result can be nontrivially applied to some
anticommutative algebras.

B.24. Prove that the socle of any semiprimitive Jordan-Banach
complex algebra agrees with the largest algebraic (equivalenily,
spectrum-finite) ideal.

After Theorem B.7, this is equivalent to show that the socle of a
semiprimitive Jordan-Banach complex algebra J is a semiprime ideal of J
(i.e.: J/Soc(J) is a semiprime algebra).

Let’s recall that, at the conclusion of Section A, we have talked

about the interest of the study of Hermitian Jordan-Banach algebras in

order to obtain a simplified complete proof of the nonassociative:

Vidav-Palmer theorem (A.1). Now, it seems we are in the appropriafe time
to explain this idea in more detail. The implication (i)=(iii) in B.4 is
a Jjordanized form of the Shirali-Ford theorem [BoDu; Theorem 41.5], but,
in our opinion, it is neither the only possible nor the suitable one for
the above-mentioned purpose. To see this, consider a hermitian Banach
associative algebfa A so that, by the classical Shirali-Ford theorem, for
every x in A we have that xx* and x*x have positive spectrum. Then, by

Gelfand’s theory, the operator Lxx*+R has positive spectrum relative

*
to the Banach algebra BL(A). It is eniuZh to observe that this operator
can be expressed in terms of the Jordan prodﬁct o of 4, namely,

(LXX*+RX*X)(y)=2[X.(X*.y)—x*.(X;y)+(xlx*),y]
for all y in A4, to feel invited to formulate the following conjecture.
Conjecture B.25. Let J be a hermitian Jordan-Banach algebra. Then,
for every x in J, the operator xox*:y——x.(x*.y)-x*.(x.y)+(x.x*).y has
positive spectrum.
Returning to the particular case J=A+, where A is a hermitian Banach
associative algebra, it is easily seen that, for x in 4, x*x and xox*

have the same spectral radius. Therefore, we would have a very good
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Jordan extension of Ptak’s theorem [BoDu; Theorem 41.71, if the following
conjecture was verified.
Conjecture B.26. Let J be a hermitian Jordan-Banach algebra. Then

1/2 . R .
from J into R is a JB*-seminorm on J.

the mapping x——[r(xox*)]

If Conjectures B.25 and B.26 are right (and if they can be proved
without structural methods), we are almost sure that the desired
non-structural complete proof of A.1 can be given.

Today, concerning results and methods, the fundamental difference
between noncommutative Jordan-Banach algebras and general nonassociative
complete normed algebras is the existence in the first case of the
spectral theory deriving from the Jacobson-McCrimmon concept of inverse.
Many years ago, we have affectively conjectured that this difference
could be shortened by introducing, for complete normed flexible
power-associative complex algebras with a unit, suitable definitions of
"invertible element" and of '"ipverse" of such an element. Minimum
requirements for these definitions are the following:

~These concepts must agree with that of Jacobson-McCrimmon, if the
algebra is actually a noncommutative Jordan algebra.

—These concepts must also agree with the usual ones, if the algebra
is fiinite-dimensional (see for example [BrKo] and {Spl).

-If x 1is "invertible" with "inverse" x—{ then we must have
xx '=x""x=1, and x ' must be "“invertible" with "inverse" x.

-The set of "invertible" elements must be open.

~Deriving in the natural way the corresponding concept of spectrum,
the Gelfand-Beurling formula must be true.

Unfortunately, we don’t know any definitive answer to the question
of the possibility of introducing such concepts in that context and with
the above requirements. We remain feeling that this possibility in fact
exists, hence we encourage the interested reader to 1look for the
appropriate definitions. The only hints we know are the observation
before B.l, and the interesting papers of H. Essannouni and A. Kaidi
[EsKal]l and [EsKa2] (see also [BouzKa] to be sure that no much more
conditions on the behaviour of the inverse can be required if we want to
go out the context of Jordan algebras).

To conclude this section, let’s recall one of the oldest problems in
nonassociative normed algebras. Precisely we refer to the question of the

nonassoclative extension of the Gelfand-Mazur theorem, namely if any
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normed division (nonassociative) algebra is finite-dimensional (which
would imply dimension 1 in the complex case, and 1, 2, 4, 8 in the real
one, by a theorem of R. Bott and J. Milnor [BotMil). This problem was
explicitly posed by F. B. Wright [Wrl in 1953, who in the samevpaper gave
the partial affirmative answer collected in A.5. Another folklore partial
positive result about this question is that one-sided division complete
normed complex algebras are isomorphic to the complex field (see [Kall).
However Wright’s problem remains unanswered, and we want to emphasize the
following two particular cases of it.

B.27. Is every (noncomplete) normed complex division algebra
. lsomorphic to C?

B.28. Is every complete normed real division algebra
finite-dimensional?

Problem B.27 has affirmative answer in the class of noncommutative
Jordan—-algebras. The reason is tha%, for noncqmmutative Jordan algebfas,
division implies Jordan-division (relative to the Jacobson-McCrimmon
concept of inverse), hence, the Jordan version of the complex
Gelfand-Mazur theorem applies. The same argument can be used, togéther
with the already cited description of normed (commutafi&éj
Jordan-division regl algebras in [Ka2], to obtain that the only nofmed
division Jordan real algebras are R and C. However, Problem B.28 remains
unsolved even in the class of noncommﬁtative Jordan algebras. To
understand the difficulty of the problem; note that the classification of
finite-dimensional division noncommutative Jordan real algebras has been

provided only very recently (see [KaRoc] and [Roc]).
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C. Jordan-Banach triple systems.

Jordan-Banach triple systems with additional geometric requirements,
but without restriction of finite dimension, arose in the literature by
the hand of W. Kaup [Kaul], and since then great progress has been made
in this field, some aspects of which will be reviewed in Section D. It is
however the aim of the present section to remain in the coordinates of
the previous one, and consequently to deal with the nongeometric theory
of Jordan-Banach triple systems, mainly due to A. Fernandez and his
coauthors. This theory 1is very recent (let’s cite as an isolated
precedent the paper [FeGarl] on strongly regular associative Banach
triple systems), so the customary subsection about results until 1988 has
no place in this case.

T

Recent results.

The easier examples of Jordan triple systems (in short, Jordan
triples) are the subspaces of Jordan algebras that are closed under the
“Jordan triple product" {xyz}:=(x.y).z+x.(y.z)-(x.2).y . Although not all
Jordan triple are of this form, the above examples can help us to enter
in the philosophy of general Jordan triples and the methods of work on
this field. To be more motivated, note that most of the relevant concepts
in Jordan algebras, such as that of von Neumann regularity,
nondegeneracy, inner ideal, socle, and Jacobson-McCrimmon radical (see
[Mc3]), can be expressed in terms of the Jordan triple product. In fact,
for a Jordan algebra with a unit, even the concept of invertible element
and of inverse of such an element can be }édiscovgred from the Jordan
triple product, and without involving the unit. But this last fact is not
relevant in the theory of Jordan triples because, if a Jordan triple has
such an "invertible" element, it is essentially nothing more than a
Jordan algebra endowed with its Jordan tripler product. This 1is an
intrinsic limitation of the theory that, until now, has prohibited the
development of a reasonably satisfactory spectral theory for Jordan

triples, even in the complete normed complex case. This limitation may
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have been the reason why, in the absence of a spectral theory, all known
nontrivial nongeometric results on Jordan-Banach triples involve in one
or another way the restriction of the existence of a "large" socle. As a
compensation, the results are very fine structure theorems. We must note
that there is a different approach based in the so called "grid theory"
[N1] which is promising.

Because the definition of Jordan triples may be occasionally
forgotten even by the specialists, it seems convenient to recall it here.
A Jordan triple consists of a vector space J and a trilinear mapping
{...}:IxIxJ——>J (called the triple product of J) satisfying the
following two conditions:

{xyz}={zyx} A (1)
{uvixyz}r-{xy{uvz}}={{uvx}yz}-{x{vuylz} . (2)
An  important wvariant of this definition, fully Justified by the
applications to the Analysis, arises when the base field is C and the
triple product {...} is supposed to satisfy properties (1) and (2) above,
but, instead to be trilinear, it is assumed to be linear in the outer
variables and conjugate-linear in the middle variable. Then we say that J
is a complex Jordan *-triple. However, the terminology, as well as
results, can be unified in some way by noting that complex Jordan
*~triple are real'!Jordan triples. Thus, and unless explicit mention on
the contrary, all concepts and results on Jordan triples we shall review
apply (sometimes with minor changes) to complex Jordan'*—triples. .

As we have already pointed out, the theory of the socle in Jordan
triples has been the most important tool in the nongeometric study of the
structure of Jordan-Banach triples (real or complex Jordan triples with a
complete norm making the triple product continuous). It is an honour for
analysts that the development of this theory in its purely algebraic
setting has been motivated by Analysis. This has happenéd in the paper of
A. Fernandez, E. Garcia, and E. Sanchez [FeGarSal].:in spite of its title
"Von Neumann regular Jordan Banach triple systems", analytic methods are
only used in its relatively short concluding section and the remaining
part of the paper is devoted to algebraic tools for the proof of the
concluding analytic result. Let’s pay tribute to Algebra by collecting in
the next theorem most of the non-structural theory of the socle (defined
as the sum of the minimal inner"ideals) of a nondegenerate Jordan triple,

developed in [FeGarSall. We refer also to the paper of 0. Loos [Lo2],
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where further developments, as well as alternative proofs of some results
in [FeGarSall, are provided, and we emphasize that both papers contain
interesting new methods and concepts that even clarify the classical

theory of the socle for associative and Jordan algebras.

Theorem C.1. If J is a nondegenerate Jordan triple with nonzero
socle, then the socle of J (denoted as usual by Soc(J)) is a direct sum
of simple ideals each of which contains a minimal inner ideal. A
nondegenerate Jordan triple coincides with its socle if and only if it
satisfies the descending chain condition on principal inner ideals.
Moreover, the socle of any nondegenerate Jordan triple is von Neumann

regular.

The paper [FeGarSall also contains a very fine structure theorem for
the so called "reduced" simple Jordan triples over algebraically closed
fields, relying on Zel’manov’s general classification theorem for prime
nondegenerate Jordan triples [Ze2], as well as on earlier results in
[FeGar3] and [CueGaMarl] on prime associative triples with nonzero socle.
Extending the corresponding result for Jordan-Banach algebras, it is
proved that the socle of a nondegenerate Jordan-Banach triple agrees with
the largest von Neumann regular ideal. With the above-mentioned structure
theorem, the main result is then proved. In a summarized form (see

[FeGarSal; Theorem 6.4] for details) it reads as follows.

Theorem C.2. A von Neumann regular complex Jordan-Banach triple is a
direct sum of a finite number of closed simple ideals, each of which is
either (i) finite-dimensional, (ii) a Jordan triple coming from an
infinite-dimensional simple quadratic Jordan-Banach complex algebra, or
(iii) a Jordan triple associated to an inﬁinite—dimensional simple von

Neumann regular complex Banach associative triple of the second king.

Simple von Neumann regular complex Banach associative triples of the
first or second kind are also described [FeGarSal; Theorem 6.51.

Returning to the purely algebraic setting, recall that, by the
Zel’manov prime theorem [Ze2] (see also D’ Amour’s version [Amo]), a prime
nondegenerate Jordan triple J 1is either exceptional, quadratic, or

hermitian, and that in this last case J is trapped between the symmetric
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elements of a *-prime associative triple (of the first kind) T and those
of the quotient triple Q(T) [Mc5]. It has been proved in [FeGarSa2l that
if the prime nondegenerate hermitian Jordan triple J has nonzero socle,
then also T has nonzero socle, so the problem of classifying prime
nondegenerate Jordan triples with nonzero socle reduces to determining
the quotient triple of a *-prime associative triple of the first kind
with nonzero socle and their involutions. Such determinations have been
also provided in [FeGarSa2], involving the classical tool of "continuous"
o-linear operators between pairs of dual vector spaces over division
algebras.

The results we describe above have been the inspiration for the
paper of K. Bouhya and A. Ferndndez [BouFel on (complex) nondegenerate
Jordan-Banach *-triples with nonzero socle. It is proved there that
nonradical nondegenerate compact Jordan-Banach *-triples have nonzero
socle and, more precisely, that nondegenerate compact Jordan—-Banach
¥-triples are modular annihilator. (As the feader may have divined, a
nondegenerate Jordan (*-) triple J 1is called modular annihilator if

J/Soc(J) is radical, and a Jordan-Banach (-*) triple J is called compact

if, for every x in J, the operator y——{xyx} is compact.) The  main

result in the paper under review is a ciassification theorem for prime
Jordan—-Banach *-trfiiples with nonzero socle and with no nonzero nilpotent
elements. Instead of giving here its statement (which is rather long and
involves many additional terminology), 1let’s comment that it is the
parallel in its setting to Theorem B.8 in the context of Jordan-Banach
algebras. Moreover, because of the strong assumption of absence of
nilpotent elements in the cited version for triples, the classification
is improved, in the sense that the Banach pairings involved in the
treatment of the hermitian case are in fact Banach_ spaces that are
self-paired by means of a (continuous) innef‘producté Note that, when the
classical theory of prime associative Banach algebfés with nonzero socle
is applied to the associative Banach algebra A appearing in cases (1iii)
(respectively, (iv)) of Theorem B.8, the algebra A may be described in
terms of operators on Banach pairings (respectively, self-paired Banach
spaces) without any additional property.

The paper [BouFe]l contains also the specialization of the
above-mentioned structure theorem to the particular cases of prime

compact Jordan-Banach *-triples with no nonzero nilpotent elements, and
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prime JB*-triples with nonzero socle. We shall explain in some detail the

result concerning JB*-triples in the next section.
Problems and future directions.

In view of the above collected results, it seems convenient to
compare them with the ones in Section B 1involving the socle of
Jordan-Banach algebras. We have seen before that, for a Jordan-Banach
triple J, are equivalent: (i) J is von Neumann regular, (ii) J is
nondegenerate coinciding with its socle, and (iii) J has finite capacity
in the sense of Loos [Lo3]. But for Jordan-Banach algebras there are two
further equivalent conditions, namely, algebraicness together with
semiprimitiveness, and finite spectrum together with semiprimitiveness
again. Certainly, a suitable notion of)algebraicness for Jordan triples
can be given, by observing that odd (associative) powers of an element
are defined. Therefore, the following question can be raised.

C.3. Prove that semiprimitive Jordan-Banach triples are algebraic
(if and) only if they have finite capacity.

In spite of the absence of a spectrum for elements of Jordan
triples, in order to obtain a "finite-spectrum" condition characterizing
the finite capacity in the Banach case, we can introduce the following
definition. An element x in a Jordan triple J will be said to have
"properly finite spectrum" if x has finite spectrum relative to all
Jordan algebras of the form J(y) with y in J (where J(y) means the Jordan
algebra y-homotope of J, namely, the vector space as J with product
t.z:={tyz}). Now the problem can be posed as follows.

C.4. Prove that a semiprimitive Jordan-Banach triple J has finite
capacity if (and only if) each element in J pas properly finite spectrum.

Perhaps similar ideas involving homotopés can be useful to palliate
the lack of spectral theory in Jordan .triples. In particular a
Jordan-triple version of Theorem B.5, as well as a ‘"spectral"
characterization of semiprimitive modular annihilator Jordan-Banach
triples in the line of Theorem B.6, cannot be discarded. It seems also
reasonable to look for a Jordan-triple version of Theorem B.7, or, more
adventurously, to ask if the socle of a complex semiprimitive

Jordan-Banach triple J is the largest algebraic (or properly
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finite-spectrum) ideal of J (compare with B.24).

In relation with the paper [BouFe] reviewed above, we can pose the
following problem (compare with Theorem B.9).

C.5. Prove a structure theorem for prime Jordan-Banach *—tfiples
with nonzero socle, no nonzero nilpotent elements, and minimality of norm
topology.

We conjecture that, with such a theorem, it can be proved that the
Jordan-Banach *-triples considered are essentialiy’ nothing more than
prime JB*-triples with nonzero socle under equivalent renorming,

Let’s finally make a short comment about the possibility of
developing the nongeometric theory of Jordan-Banach triples without
involving the socle. In this respect we think that results like for
example B.2 (fespectively, B.19, that contains B.2) have easy extensions
for Jordan-Banach triples (respectiveiy, complete normed honassociative
ternary algebras), by simply applying the original techniques with
suitable minor changes. (If the extension of "B.2 for triples is deéired
without going over the extension of B.19, it is even enough to use the
original result B.2 together with the technique of homotopes we mentioned
above.) However, the suggested line of work has no special merit,‘and
therefore it must be only understood as.a possible point of departure‘for
further more intrinsic results on Jordan-Banach triples (respectively,

complete normed nonassociative tefnary algebras).
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*
D. Selected topics in JB -algebras and triples.

JB-algebras, JB*-algebras, and JB*-triples, as well as Vidav
nonassociative algebras reviewed in Section A, are four different
approaches to nonassociative generalizations of C*-algebras, giving
birth, at an advanced step of their respective theories, to almost the
same mathematical creature. This field has become without doubt the most
active one concerning Jordan structures in Analysis in the last fifteen
years, and therefore it seems to be almost impossible to make a complete
survey of results (even if we are interested only in the last four
years). Since the theory of JB-algebras can be considered reasonably
finished [HSto] (being therefore:recently not too much worked), and
Vidav’s nonassociative algebras have been already considered, we shall
mainly center the attention in JB*-algebras and JB*-triples. Even in this
case we shall only consider those aspects of the theory that are close to
the work of the Spanish school, expecting other surveys in this meeting
to give a more complete view of this so suggestive field.

Summary of results until 1988.

JB-algebras, first introduced and developed by E. Alfsen, F. Shultz,
and E. Stormer [AlfShuSto], are defined as those Jordan-Banach real
algebras J satisfying uxuzsux2+y2u for all x,y in J. Through the proof
that the bidual of a JB-algebra (endowed with the Arens product) is also
a JB-algebra, and the introduction of JBW-algebras (JB-algebras that are
dual Banach spaces) and JBW-factors (prime ij—algebras), the theory of
general JB-algebras is reduced to that of JBW-factors, and it is shown
that JBW-factors are either weakly-closed (prime) Jordan algebras of
symmetric bounded linear operators on complex Hilbert spaces, or the
Albert exceptional Jordan algebra Mz(R) of all 3x3 hermitian matrices
over the Cayley numbers. In a roughly summarized form, the above facts
constitute the outline of the structure theory for JB-algebras and
complete details are to be found in [HSto].

(Commutative) JB*-algebras were first considered by J. D. M. Wright
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[Wri], who used the structure theory of JB-algebras to prove that
JB-algebras are nothing but the self-adjoint parts of JB*-algebras. The
categorical one-to-one correspondence between JB-algebras and
JB*-algebras derived from Wright’s result completely reduces the *¥—theory
of JB*-algebras to the theory of JB-algebras. Even this correspondence
preserves the algebras which are dual Banach spaces (called JBW¥-algebras
in the JB*-case) [E2], as well as those that are prime, hence in
particular it maps JBW-factors onto JBW*-factors. From the above, it
follows that the interest of JB*—algebras centers in the following
points: )

' ~They become an alternative approach to JB-algebras, from which
sometimes the theory itself of JB-algebras has behefited (see for example
Theorem D.11 below and its corollaries).

—As we shall comment later, they have the advantage over JB-algebras
of being much more close to JB*-triples.

-There are intrinsic geometric and algebraic (non-*) aspects of
JB*-algebras which haveé ‘their own interest, for example the Russo-Dye
type theorem for unital JB*-algebras [WriYoll, or the factorization
theorem for non-* isomorphisms between JB*-algebras [PaPeRodl; Thédrem
2.9] (see also its precedent [Rod1]).

But, from our' point of view, the greatest relevance of JB*-algebras
is that their noncommutative natural generalizations, namely
noncommutative JB*-algebras, become the answer for the nonassociative
Vidav-Palmer theorem (Theorem A.1). (Incidenfally we note that the papers
dealing with the noncommutative approach to JB*-algebras are at this time
the most well-codified references for a JB-algebra-free treatment of
commutative JB*-algebras. Also note that noncommutative JB*-algebras are

not too much generalizations of commutative ones, because every

~noncommutative  JB*-algebra becomes a édmmutatiye one by simple

symmetrization of its product.) Let’s therefore return to noncommutative
JB*-algebras and review their structure theory developed in [PaPeRod1],
[PaPeRod2], [AlvJan], and [Brall. The planning in these papers is very
similar to the above-mentioned one for JB-algebras: noncommutative
JBW*~factors are introduced in a natural meaning, abundance of factor
representations for an arbitrary noncommutative JB*-algebra is assured,
and noncommutative JBW*-factors are classified. However, to be in

agreement with the finer structure theory for (commutative) JB*-algebras
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recently obtained in [FeGarRod], and that we shall explain in Section F,
we shall reformulate here the results in [PaPeRod1] and [PaPeRod2] in a
new equivalent way.

One of the main techniques in these two papers is that of M-ideals
on Banach spaces [ALfEf]. An M-ideal of a Banach space X is a closed
subspace (say M) of X for which there exists a subspace P of the dual
Banach space X* satisfying x*=popP and lif+gli=liflii+ligll for all f in ¥° and
g in P. An M-ideal M of the Banach space X is called "primitive" if there
is an extreme point ¢ of the closed unit ball of X* such that M it is the
largest M-ideal of X contained in the kernel of ¢. Closed ideals of
noncommutative JB*-algebras are nothing but M-ideals of their Banach
spaces [PaPeRodl; Theorem 4.3]. Let’s therefore say that a noncommutative
JB*-algebra is "geometrically primitive" if zero is a primitive M-ideal
of its Banach space (equivalently, if there exists an extreme point in
the closed unit ball of its dual space(whose kernel contains no nonzero
ideals of A). An easy consequencé of results by C. A. Akemann and B.
Russo [ARus], explicitly stated in [PaPeRod1], is that, for C*-algebras,
geometrical primitiveness agrees with primitiveness in the usual meaning.

Geometrically primitive noncommutative JB*-algebras are prime, and,
to reduce precisely the theory of noncommutative JB*-algebras to the
geometrically primitive case, let’s also consider the following

definition. Given a family {AiLEI of noncommutative JB*-algebras, any
1
1
closed self-adjoint subalgebra B of the noncommutative JB*-algebra ig?Ai

with the property that ni(B)=Ai for all i in I (where L denotes the
natural projection onto the i-th coordinate) will be called a subdirect
lw—sum of the given family {Ai%EI. Now we can state the first step in
the structure theory of noncommutative JB*-algebras.

D.1. Every noncommutative JB*-algebra is (totally isomorphic to) a
subdirect lw—sum of a suitable family “of geometrically primitive
noncommutative JB*-algebras.

The second step consists of the following classification theorem for
geometrically primitive noncommutative JB*-algebras.

D.2. The geometrically primitive noncommutative JB*-algebras are the
following:

i) the geometrically primitive (commutative) JB*-algebras,

ii) the simple quadratic noncommutative JB*-algebras, and
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iii) the noncommutative JB*-algebras obtained from primitive
associative C*-algebras by changing the associative product "ab" by
aob:=Aab+(1-A)ba, where A is a fixed real number with O=<A<].

The last step in the structure theory for noncommutative
JB*-algebras we are reviewing is the following description of simple
quadratic noncommutative JB*-algebras.

D.3. Given a nonzero real Hilbert space E of dimension #1 with a
bilinear anticommutative product A satisfying (xAylz)=(x|yAnz) and
Ixaylt=lixilliyll for all x,y,z in E, consider the real algebra B whose vector
space is R1eE and whose product is defined by

(al+x)(Bl+y):=[aB-(x|y)]1+ay+Bx+xAy.
Then the complexification of B, with the involution * defined by

lal+x+i(Bl+y)]1*:=al-x-i(B1-y),

and norm given by

Ib+ich®:=ibiP+nenZ+2 biici®-(b|c)?1*2
(where, in the right hand of the equality, the inner product and norms
refer to the natural hilbertian structure of B as lé—sum of R1 and E)l is
a simple quadratic noncommutative JB*-algebra. Moreover, all 51mple
quadratic noncommutative JB*-algebras can be constructed in this way.

It follows from D.1, D.2, and D.3 that, to have a complete structure
theory for noncommutative JB*-algebras, it only remains to describe the
geometrically primitive (commutative) JB*-algebras. As we have pointed
out above, such a description has been provided very recently, and it
will be reviewed in Section F.

Now ' let’s briefly comment on other interesting relatively old
results in the theory of JB*-algebras. Concerning structure under
additional assumptions, let’s refer to the description of noncommutative
JB*-algebras with reflexive (equivalently, hilbertizable) Banach space
[PaPeRod2; Theorem 3.5], as well as that of"noncom@utative JB*~algebras
that are ideals in their biduals (see [Rodi0; Cofollary 5.8] and I[L;
Theorem 14]). Concerning non-structural results, we first emphasize the
following "contractive projection" theorem (see [RoYo] and [Rod4]).

D 4. Let A be a unital noncommutative JB*-algebra, and P A——>A be a
unit-preserving positive linear projection. Then the Banach space P(A) is

*¥-invariant and, with the restriction of * and the product given by
xay:=P(xy), P(A) becomes a noncommutative JB*-algebra.

The proof of this result used the nonassociative Vidav-Palmer
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theorem (A.1), and that unit preserving linear operators on
noncommutalive JB¥-algebras are contractive if (and only if) they are
positive. This fact was derived in [Rod4] from a Gelfand-Naimark type
theorem asserting that, if A is a unital noncommutative JB*-algebra, then
there are a complex Hilbert space and a unit-preserving isometric linear
mapping from A into BL(H).

Before passing to present JB*-triples and some classical results
about them, let’s finally refer to the characterization of JB*-algebras
up to equivalent renorming (see [Yo2] and [AuYo]), and the papers of K.
Alvermann [Alvl], where an Araki-Elliot type theorem for JB*-algebras was
proven, and [Alv2], where an intrinsic characterization of closed
selfadjoint real subalgebras of JB*-algebras was obtained.

After the relevant works of M. Koecher ([Ko2] and [Ko3]) and O. Loos
[Lol] on the close dependence between bounded homogeneous circled domains
in finite-dimensional compleg vector spaces and certain
finite-dimensional (complex) Jordan *-triples, L. A. Harris ([Harr2], and
[Harr3]) observed, and exploited intensively his observation that the
good holomorphic behaviour of the open unit ball of C*-algebras is
inherited by the so called J*-algebras. J*-algebras are closed subspaces
of C*-algebras that are also closed (in the algebraic meaning) under the
natural Jordan *-triple product {xyz}:=%(xy*z+zy*x). Harris’s J*-algebras
are particular types and the most immediate precedents of JB*~triples.
These were introduced by W. Kaup in [Kaull], where he showed that the open
unit ball of a JB*-triple is a bounded symmetric domain, and obtained
some basic non-structural properties of JB*-triples. After classifying
bounded symmetric domains in complex Hilbert spaces of arbitrary
dimension [Kau2], Kaup’s work reached its god in [Kau3], where, using an
earlier result of J. P. Vigué [V], it was proved that every bounded
symmetric domain in a complex Banach space is biholomorphically
equivalent to the open unit ball of a JB*-triple. JB*:triples are defined
as those Jordan-Banach *-triples J such that, for every x in J, the
(bounded linear) operator P(x):y——{xxy} on J is hermitian (in the sense
of [BoDu; Definition 10.12]), has positive spectrum, and satisfies
IP(x)l=lxII®>. In order to stop us worrying about the norm of a given
JB*-triple, it is interesting to note that the norm of a JB*-triple J is
algebraically determined. Indeed, by Sinclair’s theorem [BoDu; Theorem

10.17], for x in J, IIP(x)ll is nothing but the spectral radius of P(x) in
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the Banach algebra BL(J), hence, by the Gelfand-Beurling formula and
Banach isomorphisms theorem (see [Rod5; Remark 1.8]), we have

xh®=sup{|A] : Aesp(L(J),P(x))}.
Here as elsewhere in this survey, L(J) denotes the algebra of all
(possibly discontinuous) linear operators on J.

JB*~algebras are JB*-triples under the triple product
{xyzt:=x.(y*.z)-y*.(z.x)+z.(x.y*) (see [BraKauUp] and [Yo4]), and, as an
important consequence of the structure theory for JB*-triples which we
shall summarize below, every JB*-triple can be found as a JB*-subtriple
of a suitable JB*-algebra [FriRus2; Corollary 2]. Notebthat, in this
relation between JB*-algebras and JB*-triples, Harris’s J*-algebras are
nothing more than JB*-subtriples of the JB*-algebras obtained by
symmetrization of the products of C*—algebras.

The first crucial step for a structure theory for JB*-triples was
given by S. Dineen (see [Dil] and [Di2]), who, using an ultraproduct
version of the principle of local" reflexivity and the
contractive-projection Theorem (see [St] and [Kau4]), showed that' the
bidual of a JB*-triple is also a JB*-triple containing the given
JB*-triple as a JB*-subtriple. Dineen’s techniques were later refined® in-
the papers of T. Barton and R. M. Timoney [BarT] and G. Horn [Horll],
showing the uniquehess of the predual for JBW*-triples (JB*-triples that
are dual Banach spaces) and, consequently, the separate w¥-continuity of
the triple product of any JBW*-triple. The Barton-Timoney paper contains
also an almost verbatim translation of the M-ideal techniques in
[PaPeRodl] to the context of JB*-triples. Thus it is proved that closed
ideals of JB*-iriples are nothing but M-ideals of their Banach spaces,
and that primitive M-ideals of JB*-triples are kernels of (specially
well-behaved) factor representations, thus assuring .the abundance of
factorlrepresentations for an arbitrary JE*:Uipleﬁ Then a concept of
“geometrically primitive" JB*-triple can be given, énd a result similar
to D.1 holds in the context of JB*-triples. But, since, as far as we
know, the description of geometrically primitive JB*-triples is still
unknown (only certain JBW*-envelopes, called "type I" JBW*-factors, are
described), we prefer to explain the outline of the structure theory of
JB*-triples with its classical terminology.

Before we enter in this theory, let’s refer to the following resﬁlt

in [Horl], in which the ideas about M-ideals outlined above were
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based. Also it will be useful later.

D.5. For every w*-closed ideal P of a JBW*-triple J, there exists
1
another w*-closed ideal Q of J satisfying J=P® Q.

Type 1 JBW¥-factors are defined as those JBW*-factors (prime
JBW*-triples) containing minimal tripotents, and it can be deduced from
results of Y. Friedman and B. Russo in [FriRus1] that type I JBW*-factors
are precisely those JBW*¥-factors arising in the above-mentioned abundant
"well-behaved" factor representations, built by Barton and Timoney for an
arbitrary JB*-triple. Therefore every JB*-triple is isometrically
isomorphic to a w*-dense JB*-subtriple of the lm—sum of a suitable family
of type I JBW*-factors (see also [FriRus2]). Incidentally we note that
lw—sums of type I JBW*¥-factors are called "atomic JBW¥-triples" in the
literature. By the main result of G. Horn in his thesis (see the more
accessible reference [Hor3]), type I. JBW*-factors are the so called
“Cartan factors"”, namely, the classical finite-dimensional Cartan factors
Cs and Cs, plus the natural infinite-dimensional generalizations of
classical Cartan factors of types Cl, CZ, 03, and C4 (see for example
Section 1 of [FriRus2] for details). In this way the structure theory of
JB*-triples can be considered finished in a first instance.

A rather different approach to the structure of JB*-triples has been
made more recently, beginning with the Horn’s paper [Hor2] (involving the
theory of alternative C*-algebras reviewed in Section A), and concluding
with the papers of Horn [Hor3] and Horn-Neher [HorN], where a surprising
description of arbitrary JBW*-triples 1is provided. Of course, the
w¥-dense inclusion of a JB*-triple in its bidual finishes the structure
theory form this point of view.

Now let’s review some interesting non-structural results on
JB*-triples. We begin with the following consequence of [BarDaHor;
Proposition 6]. e .

D.6. Every JBW*-triple is (isometrically) isdhorphic to a w*-closed
ideal of its bidual.

The subsequent result we shall review, the so called "little
Grothendieck’s theorem" for JB*-triples, is deeper. It was proved by T.
J. Barton and Y. Friedman in [BarFrill as a consequence of more general
theorems also stated there (see also [ChILoul), and its formulation

itself relies on a nice idea translating to the context of JB*-triples
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the spirit of the prehilbertian seminorms associated to positive linear
forms on C*- and JB*-algebras. To explain this idea, consider a norm-one
bounded linear form f on a JB*-triple J, and chose a norm-one element z
in J** attaining its norm at f (note that, if J is actually a
JBW*-triple, and f is w*-continuous, then such an element z can be
selected in J). Then it was proved in [BarFril] that (x,y)——f({xyz}) is
a positive sesquilinear form on J not depending of the chosen supporting
element z in J**. The prehilbert seminorm ll.llf is then defined by the
equality IleIIZ,:=f({xxz}) for all x in J. Now little Grothendieck’s theoren
for JB*-triples reads as follows.

D.7. Let J be a JB*- (respectively, JBW*-) triple, H a complex
Hilbert space, and T be a bounded (respectively, w*-continuous) linear
mapping from J to H. Then there exists a norm-one bounded (respectively,
w¥*-continuous) linear form f on J such that ||T(X)||521/2”T|| ||X“f for all x
in J. N

Let’s conclude this subsection by referring to the work of H. J.
Zettl [Zet] on ternary  C*-rings. A ternary C*-ring is a complex
associative *-triple A of the second kind endowed with a complete . norm
.1l satisfying I{xyz}lU=lxllyllizl and ”{XXJ'{}“=||X”3 for all x,y,z in  A."
Natural examples of ternary C*-rings are the so called "ternary rings . of
operators", namely, norm-closed subspaces of bounded linear operators
between two complex Hilbert spaces that are (algebraically) closed under
the triple product RS*T. The main result in [Zet] asserts that every
ternary C*-ring is the direct lm—sum of two closed ideals each of which
is isomorphic (the second one up to multiplication of the triple product
by -1) to a ternary ring of operators. Note that ternary rings of
operator become J*-algebras (hence JB*-triples) by symmetriza{:ion of the

triple product in its outer variables.

Advances since 1998.

Because the structure theory of JB*-algebras and JB*-triples was
basically concluded before-1988, the recent advances in these field have
been essentially of non-structural type. Also there have been some
interesting applications of the theory of JB*-algebras to obtain new

results concerning the Jordan structure of C*-algebras, as for example
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the following result in [Rod7].

Theorem D.8. Let A be an associative complex algebra and assume that

+
the Jordan algebra A , obtained by symmetrization of the product of A, is
a JB¥*-algebra for suitable norm and involution. Then A with the same norm

and involution is a C*-algebra.

This result, together with the Dauns-Hofmann theorem, has been later
used in [Rod6] to prove that noncommutative JB*-algebras that are split
quasiassociative over their centroids are nothing but f-mutations of
C*-algebras, with f an element in the centroid of the C*-algebra under
consideration and satisfying O=sf=].

Centroids and extended centroids of JB*¥-algebras have been
considered in the paper of A. Rodriguez and A. R. Villena [RodVil. By
using that the centroid of a JB*—aggebra coincides with the "centralizer"”
of its Banach space [DiTl1] (see [Behr] for the concept of the
centralizer), a Dauns-Hofmann type theorem for JB*-algebras is proved,
the cores of maximal modular inner ideals (in the sense of [HoMcl)
playing the role of the primitive ideals in the original C*-case. With
the same philosophy, the recent Ara’s description of extended centroids
of C*-algebras [Arl] is generalized to the JB¥*-context. As a consequence,

the following result is obtained.

Proposition D.9. Every prime noncommutative JB*-algebra is centrally

closed.

The theory of normed Jordan Q-algebras developed in [PeRiRod], and
already commented in Section B, has been applied in the same paper
[PeRiRod] (see also [Ben2]) to obtain the JB*-extension of a relatively
old result of S. B. Cleveland [Cl] on the topoloéy of the norm of a
C*-algebra. The proof involves Theorem B.12, which in its turn follows
the pattern of the recent new proof given in [Rod8] (again relying on
Aupetit’s subharmonicity methods) of Cleveland’s result, and the precise

formulation is the following.

Theorem D.10. The topology of an arbitrary algebra norm on a

noncommutative JB¥-algebra is stronger than the topology of the JB*-norm.
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The minimality of norm topology contained in the above theorem has
been applied in [PeRiRodl, together with the nonassociative Vidav-Palmer
theorem (A.1) to obtain that noncommutative JB*-algebras have “minimality
of norm", namely, |.|=Il.l whenever |.| is any algebra norm satisfying
|.|=h.lIl. Also the minimality of norm topology (respectively, minimality
of norm) for JB*-algebras and Theorem D.8 have been used to show that the
normed associative complex algebras that are ranges of continuous
(respectively, contractive) Jordan homomorphisms from C*-algebras are
bicontinuously (respectively, isometrically isomorphic) to C*-algebras.
It has been also proved that weakly compact Jordan homomorphisms from
C*-algebras have finite rank, and a description of the ranges of weakly
compact homomorphisms from noncommutative JB*-algebras has been given
(see also [G]). .

Let’s conclude the survey on recent advances in JB*-algebras by
reviewing the paper of B. Iochum, G. Loupias, and A. Rodriguez [ILouRod]
on the JB*-extension of ‘the well-known theorem of Kaplansky asserting
that noncommutative C*-algebras have nonzero nilpotent elements. In fact
it has been proved in [ILouRod] that, if a noncommutative JB*—alge:B'z.r."‘a' J
has no nonzero nilpotent elements, then J is associative and commutative.
But, for (commutative) JB*-algebras, this result has even been nicely
refined in the same paper in the way we shall state in the next theorem.
Let 03 denote the three-dimensional (automatically simple) quadratic
JB*-algebra (take dim(E)=2 and A=0 in the construction D.3), and, for a
normed algebra A4, let @O([O,l],A) denote the algebra of all continuous
A-valued functions on the closed interval [0,1] of R vanishing at zero,

endowed with the supremum norm. Then we have:

Theorem D.11. A JB*-algebra is not assb'ciative;.(if and) only if it

contains (as a JB*-subalgebra) either Q3 or ‘Go'([O,l]',Q:;).

Theorem D.11 was obtained in [ILouRod] from the JB*-version of
Kaplansky’s result mentioned above and a C*-version of the theoren
itself, also provided in [ILouRod], and that seems to have been
previously unknown. This C*-version of Theorem D.11 asserts that 4
C*-algebra 1is not commutative (if and) only if it contains (as a

C*-subalgebra) either M2(03) or @O([O,I],MZ(E)). Theorem D.11 has the
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following more or less direct corollaries: (i) A JBW¥-algebra is not
associative if and only if it contains Q3, (ii) A JB-algebra is not
assocliative if and only if it contains either 53 or @o([O,I],Ss), where
S3 denotes the lhree-dimensional spin factor, and (iii) A JBW-algebra is
not associative if and only if it contains the three-dimensional spin

factor.

As a transition between JB*-algebras and JB*-triples, let’s refer to
a result in the paper of J. Arazy and B. Solel [AraSo] that, although
dealing with JB*-algebras, has been obtained from Jordan-triple-product
techniques closely related to Kaup’s holomorphic approach to JB*-triples
(see [KauUpl). The Arazy-Solel result was already announced by Arazy in

the 1988 Oberwolfach meeting on Jordan algebras, and reads as follows.

Theorem D.12. Let ¢ be a unit-preserving surjective linear isometry
between unital closed (not necessary self-adjoint) subalgebras of

suitable JB*-algebras. Then ¢ is an (algebra-) isomorphism.

Now, entering properly in recent advances in the theory of
JB*-triples, let’s first review the paper of T. J. Barton and Y. Friedman
[BarFri2], some results of which were also announced (by Barton) in the
1988 Oberwolfach meeting on Jordan algebras. Essentially the paper is
devoted to providing the following affirmative answers to two questions

raised by Upmeier in [Up2].

Theorem D.13. If the domain of a partially defined derivation D on a
JB*~triple J contains, with each of its elements y, also the only element
z In J satisfying y={zzz}, then D is closeable. As a consequence,

everywhere defined derivations on JB*-triplés. are continuous.

Theorem D.14. The set of inner derivations on a JB*-triple J is
dense in the set of all derivations on J with respect to the strong

operator topology.
To prove Theorem D.14, Barton and Friedman introduced a new and

powerful tool in the theory of JB*-triples, namely, the so called
"strong* topology" (in short, s*-topology) of a JBW*-triple. Using again
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the prehilbert seminorms 1.1l . associated to bounded linear forms f, built

by themselves in connectionfgith Grothendieck’s theorem for JB*-triples
(D.7), they defined the s*-topology of a JBW*-triple J (denoted by
s*(J,J,), when some confusion can occur) as the topology in J generated
by the family of seminorms H.Hf , when f runs over the norm-one elements
of the predual J, of J, and they proved the following theorem.

Theorem D.15. The s*-topology of a JBW*-triple J is compatible with
the standard duality (J,J,). Moreover, if J' is a w*-dense subtriple of
J, then the closed unit ball of J' is s*-dense in the closed unit ball

of J.

After showing that, for each fixed element x in an atomic
JBW*-triple J, the mapping y——{yyx} from J into J is s*xw* continuous’
on bounded sets, Barton and Friedpan asked if the triple product of any
JB*-triple is in fact Jjointly s*xs* continuous on bounded sets. The
answer to this question has been provided in [Rod9], where the following

result has been shown.

Theorem D.16. The triple product of a JBW*-triple is Jointly

s*~continuous on bbunded sets.

The proof of the above theorem given in [Rod9] consists of three
subsidiary results with have their own interest. First the JBW*-version
of the little Grothendieck theorem (D.7) is applied to “spacialize" the
s*-topology in the following way.

Proposition D.17. The s*-topology of a JBW*-triple J coincides with
the topology on J generated by the family of-seminorms x——IT(x)ll, when
T runs over all w*-continuous linear mappings from J into arbitrary

complex Hilbert spaces.

The above proposition and the Bishop-Phelps-Bollobas theorem are

then applied to obtain:

Proposition D.18. Let K be a JBW*-subtriple of a JBW*-triple J. Then
s*(J,J,) agrees with s*(K,K,) on bounded subsets of K.
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The third component of the proof of Theorem D.16 is the following.

Proposition D.19. The s*-topology of a JBW*-algebra (regarded as a

JBW*-triple) coincides with its usual algebra-s*-topology.

We recall that the algebra-s*-topology of a JBW*¥-algebra J is
defined as the topology on J generated by the family of seminorms
x———»(p(x*.x))l/z, when p runs over all w*-continuous positive linear
forms on J. The proof of Theorem D.16 follows easily from Propositions
D.18 and D.19 and the result (of folklore type at this time) that every
JBW*-triple can be regarded as a JBW¥-subtriple of a suitable
JBW*-algebra. Using intensively the earlier quoted structure theory for
JBW*-triples by Horn [Hor3l and Horn-Neher [HorN], C-H. Chu and B. Iochum
[ChI] have proved that every JBW*—?riple J can be regarded as a subtriple
of a suitable JBW*-algebra J’ in such a way that J is the range of a
contractive linear projection on J’. We think that a careful reading of
the proof of this fact given in [ChI] would show that the contractive
projection there built 1is actually w*-continuous, thus improving the
above cited folklore result. However, we prefer to start with the
Chu-Iochum result in its original form, and then to complete the proof of

the following theorem in a non-structural way.

Theorem D.20. Every JBW*-triple J can be regarded as a subtriple of
a suitable JBW*-algebra A in such a way that J is the range of a

w¥*-cont inuous contractive linear projection T on A.

Proof. By the Chu-Iochum theorem there are ‘a JB*-algebra B
containing J as a subtriple, and a contractive linear projection m on B
such that m(B)=J. Then the bipolar J of J in B** is a subtriple of the

JBW*~algebra B** and m** (B** )=, Identifying J% naturally with J**,
1
and applying D.6 and D.5, we obtain JOO=P©WQ, where P and Q are w*-closed

ideals of JOO, and P is a copy of J. To conclude the proof, take A equal
to B**, and M equal to the composition of w** with the projection from

1
Joo onto P deriving from the decomposition J=P®WQ. L]
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The above theorem will allow us to obtain here a new result for the
s*-topologies of JBW*-triples extending a well-known one of C. A. Akemann
[A] for W*-algebras. Recall that the Mackey topology m(X,X,) of a dual
Banach space X is defined as the largest locally convex topology on X

compatible with the standard duality (X,X,).

Theorem D.21. The strong* and Mackey topologies of a JBW*-triple J

agree on bounded subsets of J.

Proof. Accordingly to Theorem D.20, there exists a JBW*-algebra 4
containing J as a w*-complemented JBW*-triple. As a consequence m(J,J,)
is nothing but the restriction to J of m(4,4,). Now, since m(A, A,) agrees
with the algebra-s*-topology of A (equal to s*(4,4,) by Proposition D.19)
on bounded subsets of A [AlvJan; Theorem 5.13], and s*(4,4,) agrees with
s*(J,Jy) on bounded subsets of J (Proposition D.18), it follows that

m(J,J,) and s*(J,J,) agree on bounded subsets of J, as required. m
A direct consequence of Theorems D.16 and D.21 is the following.

Corollary D.22. The triple product of a JBW*-triple J is jointly

s*(J,J)xm(J,J,) cbntinuous on bounded sets.

Now let’s partially review the impressive work of L. J. Bunce and
C-H. Chu in [BuChl] and [BuCh2] concerning weakly compact JB*-triples,
together with some interesting complements to this work given in the
already commented paper of K. Bouhya and A. Fernandez [BouFel (see
Section C). Every Cartan factor is the bidual of a unique (perfectly
describable) JB*-triple [BuChl; Lemma 3.2]. These JB*-triples that are
unique double preduals of Cartan factbrs are,  called elementary
JB*~triples, and they can be characterized intrinsicélly in several other
ways that we collect in-the next proposition. Recall that a Jordan-Banach
(*-) triple J is called weakly compact if, for every x in J, P(x) is a

weakly compact operator on J.
Proposition D.23. A JUB*-triple is elementary if and only if it is

topologically simple and satisfies one of the following five conditions:

i) J is weakly compact.
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ii) J has nonzero socle.
iii) J is modular annihilator.
iv) J Is an inner ideal of its bidual.

v) J is an ideal of its bidual.

Actually Proposition D.23 is a direct consequence of the following
more general theorem (see [BuCh2; Lemma 3.3 and Theorem 3.4], together

with [BouFe; Theorem 171).

Theorem D.24. For a JB¥*-triple J, the following six assertions are
equivalent:

i) J is weakly compact.

ii) J has dense socle.

iii) J is modular annihilator. ’

iv) J is an inner ideal of its bidual.

v) J is an ideal of its bidual.

vi) J is the co—sum of a sulitable family of elementary JB*-triples.

A consequence of the theorem is that compact JB*-triples are those
weakly compact JB*-triples with no infinite-dimensional direct summands
of type c* (see [BuCh2; Theorem 3.6]). The Bunce-Chu papers contains many
other interésting ideas among which, in view of the line of our survey,
we emphasize the development of a peculiar concept of spectrum for
elements of JB*~triples providing the corresponding "spectral
characterization" of modular annihilator JB*-triples (see [BuCh2;
Proposition 4.5(ii)] and compare with Theorem B.6), as well as the
consideration of those JB*-triples on which the operators y——{xxy} are
(weakly) compact for all x [BuCh2; Theorems 3.4 and 3.7]. Let’s conclude
our review on this circle of 1ideas by. formulating the following
characterization of prime JB*-triples with nonzeré socle obtained in

[BouFel.
Theorem D.25. A JB*-triple J is prime and has nonzero socle (if and)
only 1if there exists an elementary JB*-triple E such that J is a

JB*-subtriple of E** containing E.

In several papers [E1], [ERul], ([ERu2] C. M. Edwards and G. T.
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Rittimann studied the facial structure of the closed unit balls in
JBW-algebras and their preduals and in JB-algebras and their duals. In
[ERG3] these authors went on to investigate the facial structure of the
unit ball in a JBW*-triple and its predual. ,

Let X be a Banach space with dual Banach space X*. As a basic tool
to study the facial structure of the unit ball in X and in X* they
introduced the following pair of polarities E—>E” and F——AFD between the
subsets of the closed unit balls X1 and X*lz
ED.-:{an*1 : a(x)=1 VxeE}, FD:={xeX1 : a(x)=1 YaeF}.

Let J be a JBW¥~triple and let U(J) be the set of tripotents in J.
Let U(J)" be the disjoint union of U(J) with a one point set {w} and
define a binary relation on U(J)" by writing usv if u and v lie in U(J)
and {uvu}=u or if u is an element in U(J)" and v equals w. It follows
that = is an order relation on U(J) .

Theorem D.26. Let J be a JBW*-triple and let J, be its predual
Banach space. Let J1 bg the unit ball in J and let J*1 the closed unit
ball in J,.

(i) The mapping u——e{u}D (where {w}D:=J*1) is an order isomorphism
from the partially ordered set U(J) defined above and the complete
lattice ?(J*l) of 'norm closed faces of J;l. The partially ordered set
U(J) 1is a complete lattice.

(ii) The mapping u——»({u}D)D is an anti-order isomorphism from the
complete lattice U(J)" onto the complete lattice ?w*(Jl) of weak* closed
faces of J&. If u lies in U(J) then ({u}D)D coincides with u+JO(u)1

(where Jo(u) denotes the Peirce O-subspace of J relative to u).

It follows that every norm closed face of J*l is .norm exposed and
that every weak* closed face of Jl is weak* "semi;exposed” (i.e., the
intersection of a suitable family of weak* exposed faces).

These results are then applied to W*-algebras and weak* closed
J*-algebras. As a consequence, the set of partial isometries in a
W¥*-algebra A in the ordering usv e u=ﬁv*u and with greatest - element
adjoined forms a complete lattice and every non-empty weak* closed face
of the closed unit ball A1 of A is of the form

u + (l—uu*)J(l—u*u)1

for some unique partial isometry u.
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In connection with Theorem D.26, let’s refer to the paper by M.
Battaglia [Bat2], where, for a JBW¥-triple J, the lattice U(J)  is
studied in depth, and significant results concerning the structure and
classification of JBW¥-triples are derived. Let’s also comment that the
fact that norm closed faces of the closed unit ball of the predual of a
JBW*-triple are norm exposed has become one of the crucial results in the
project of Y. Friedman and B. Russo of characterizing intrinsically the
Banach spaces which are preduals of JBW¥-triples (see [FriRus3],

[FriRus4l, I[FriRus5], and [FriRusé6]).

The study of JB*-triples and JBW*-triples would not be complete
without some understanding of their ideal structure. In a series of
papers [ERU4], [ERU5], [ERU6], [ERiival]l and [ER{iva2] the same authors,
with later collaboration by S. Yu. Vasilowsky, investigated the structure
of the complete lattice J(J) of weak* closed inner ideals in a
JBW*-triple J. The first main result, provided in [ERii4] (see also
[Bu3l), served the program for a W*-algebra. A pair (e,f) of elements of
the complete lattice P(4) of projections in a W¥-algebra A is said to be
centrally equivalent if the central supports of e and f coincide. They
showed that the mapping (e,f)——eAf is an order isomorphism from the
complete latltice of centrally equivalent pairs of projections in A onto
JA).

In the paper [HorN] already quoted, G. Horn and E. Neher showed that
1
a continuous JBW*-triple J is isomorphic to one of the form pC @mH(B,r)

where B and C are continuous W*-algebras, p is a projection in C, T is a
*-involution on B (i.e., an involutive *-anti-automorphism of B), and
H(B,t) is the JBW*-algebra of elements of B invariant under T. The weak*
closed right ideal pC in C is an example of a weak* closed ternary
subalgebra of C. The weak* closed inner idéﬁls in such ternary algebras
were identified in [ERU5] as were those in H(B,t) in [ERiVa2] thereby

yielding the following structure theorem.

Theorem D.27. Let I be a weak* closed inner ideal in the continuous
1
JBW*~triple pC ©"H(B,T). Then there exist projections f and g in C with

fsp and a projection e in B such that
1
I=fCg @ eH(B,T)t(e).
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Quite naturally the structure of the norm closed inner ideals in a
JB*-triple are less readily identifiable that those in a JBW*-triple.
However, a recent remarkable result by Edwards and Rittimann [ERii7]' shows
that the norm closed inner ideals can be identified by a simple geometric
property. A subépace L of a Banach space X is said to have the unique
Hahn-Banach extension property'if every bounded linear functional on L

possesses a unique norm preserving linear extension to X.

Theorem D.28. Let B be a norm closed subtriple of a JB*-triple J.
Then B is an inner ideal in J if and only if B enjoys the unique

Hahn-Banach extension property.

When J is chosen to be a C*-algebra by using the results of [ERii6]

the following new piece of information ‘about C*-algebras is obtained.

Theorem D.29. Let B be a norm closed subtriple of a C*-algebra A.
Then B has the unique Hahn-Banach extension property if and only if it is
of the form eA**fnA where (e,f) is a centrally equivalent pair of- opén:
projections in the second dual A** of A.

Since we are writing this survey under the general aim of putting
special emphasis on those topics related to the work of the Spanish
school in Jordan structures in Analysis, we become pleasingly obliged to
review here the outline of the recent work of J. M. Isidro. To our
knowledge he 1is the only representative of the Spanish school in the
holomorphic approach to JB*-triples, and mainly his recent collaborations
with W. Kaup [IsKau]l and L. L. Sﬁaché ([StIsl, [Is3], .and [IsSt2]) seem
to have provided very interesting advances in this fjeid. Because we are
not specialists in holomorphy, we must apologize for:the possible lack of
enthusiasm in reviewing Fhese advances.

J. M. Isidro has provided some results on the nonholomorphic
approach to JB*-triples, for example the determination of all surjective
linear isometries of Cartan factors of type c* [HeIs]. But, as we have
pointed out above, his main contributions afe of holomorphic type. Thus
recall the fundamental result of Kaup stating that every bounded

symmetric domain in a complex Banach space is biholomorphically
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equivalent to the open unit ball B, of a JB*-~triple J. Also take into

J
account of the relevance (concerning the structure of the Lie group

Aut(BJ) of all biholomorphic automorphisms of BJ) of those one-parameter

subsemigroups of (biholomorphic) automorphisms of BJ given Dby

teR——exp(tX), where X is a complete holomorphic vector field on BJ of

I exp(tX)(x)

denotes the value at t of the unique solution y:R———eQJ of the initial

the form x >a-{xax} for some a in J, and, for x in B
value problem

y' (t)=X(y(t)), y(0)=x (*)
(see [KauUp] and [Aral]). (Perhaps it could be the suitable time to remark
that vector fields X of the form indicated above are the only complete

holomorphic vector fields on B, satisfying X’ (0)=0, and that this fact

becomes the nice determination~gf the triple product of a JB*-triple by
the geometry of its wunit ball.) It is therefore important, in the
treatment of bounded symmetric domains, to integrate the equation (*) as
well as to study in depth the subgroups of automorphisms mentioned above.
In this direction, Isidro has obtained a formula giving explicitly the
solution of (*) in the particular case of J being a J*-algebra [Isl]. But
the most original idea arises in his collaborations with Kaup and Stachod
which we have already mentioned, when the continuity of vector fields X
as above with respect to several topologies is considered and studied. To
summarize with some precision the results obtained, consider a
JBW*-triple J, let T be any locally convex topology on J such that w*=st=n
(n denoting the norm topology), denote by Contr(Bj) the subgroup of
Aut(BJ) consisting of those automorphisms that are Txt continuous on B.,
and by contT(J) the set of those elements a in J for which the mapping
x—>{xax} 1s Txt continuous on BJ. Then we have the following theorem.

Theorem D.30. The set contT(J) is -a norm-closed ideal of J.
Moreover, an element a in J lies in contT(J) if and only if, for every t
in R, exp(tX) belongs to ContT(BJ), where X denotes the vector field on
BJ given by X(x)=a-{xax}. Furthermore, if J is the lm—sum of a family
{JA}AGA of JBW*—triplis, then ]

[oe])

A

o]

contw*(J)=Ag A

cont .(J,) and contW(J)=Ag cont (J,) .

Other interesting results are that contw*(J)=O for every
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infinite-dimensional Cartan factor J of type C4, while, for Cartan
factors J of type Cl, Cz, and C° acting naturally on a complex Hilbert
space H, and Tt equal to either the w*- or the w-topology, the equality
contT(J)=JnK(H),holds, where K(H) denotes the ideal of compact operators
on H. This characterizes the compactness of an operator a in J in purely
structural terms, i.e., without any reference to the action of the
operator a on the space H. Indeed, this characterizes the property of
being compact in terms of the triple product (algebraic structure of J)
and w*- or w-continuity (topological structure of J).

To conclude the review of the recent work of J. M. Isidro, let’s
refer to his paper [Is4] devoted to the study of those subsets of the
unit sphere of a JB*-triple which completely determine the Lie group of

biholomorphic automorphisms of the open unit ball.

Before passing to the habitual subsection about problems and future
directions, we refer to some minor recent advances on Zettl’s ternary
C*-rings. These are the structure of compact ternary C*-rings obtained in
[FeGar2], and the application of Theorem D.13 made in [CMaMartiRod2] to
show that "generalized derivations" of ternary C*-rings are automatically

continuous.
Problems and future directions.

In the same way as we have commented in Section B that "all"
nongeometric results on associative normed algebras can be suitably
extended to the Jordan context, we may say here that "all" results on
C*-algebras must have a nonassociative version in some of the four sides
of the nonassociative C*~creature (JB—-algebras, JB*-algebras,
JB*-triples, and nonassociative V—algebras)%“lt seems élear that today,
and mainly concerning the Banach-space approach, zihe most appropriate
side is that of JB*-triples, as shown for example by the very partially
reviewed paper of Bunce-Chu [BuChl], where some Banach-space aspects of
C*-algebras have been not only "unassociativized" but also improved in
their original associative setting. As we have already commented, the
Bunce-Chu paper is also interesting from the algebraic point of view,
because of the development of the "spectral theory" in JB*-triples there

made. That would inspire similar techniques in the general nongeometric
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theory of Jordan-Banach (*-) triples reviewed in Section C. As an
example, let’s comment the result in [BuChl; Theorem 3.4] that the dual
J* of a JB*-triple J has the Radon-Nikodym property (a Banach-space
property for J) if and only if the "spectrum" of every element in J is at
most countable (an almost algebraic property for J). This result, as well
as [BuChl; Corollary 3.6], should be compared with the content of the
Aupetit-Baribeau paper [AuBa] partially reviewed in Theorem B.5. We think
such a comparison should inspire a new characterization (involving the
socle) of JB*-triples whose duals have the Radon-Nikodym property.

We hope also that the theory of the s*-topology on JBW*-triples will
have a flourishing development in the near future. Let’'s give here an
unorthodox project in this line. Proposition D.17 (that in the case of
assoclative W*-algebras, after Pisier’s associative precedent of D.7, can
be considered as folklore) suggests the possibility of introducing the
s*-topology of any dual Banach space X with (not necessarily unique, but
fixed) predual X,. This would be the topology on X generated by the
family of seminorms x——IT(x)ll, when T runs over all w*-continuous
linear mappings from X into arbitrary Hilbert spaces. It is easy to see
that the s*-topology defined in this way (and denoted, as in the case of
JB*-triples, by s(X,X,)) is compatible with the standard duality (X,X,)
(compare with the first assertion in Theorem D.15), a fact that can also
be derived more transparently from the folklore (?) characterization of
the Mackey topology m(X,X,) as the topology on X generated by the family
of seminorms x——IT(x)ll, when T runs over all w*-continuous linear
mappings from X into arbitrary reflexive Banach spaces. The project of
work would consist of a systematic treatment of the s*-topology of a dual
Banach space X, perhaps under some (or all) additional conditions that
are known to be true in the case of JBW¥*-triples, such as the uniqueness
of the predual, coincidence of the Mackey and s*-topologies on bounded
subsets, or the fact that X, is an L-summand of X* [BarT] (note also
that, in the case of X being a JBW¥~triple all conditions above are
inherited by the bidual of X and also by all even duals). This project
involves as a first question the one of the eventual dependence among
these purely Banach-space automatic properties of JBW*-triples, but, in
any case, we think it will clarify several aspects of the theory of
JB*-triples. Thus, for example, the agreement of Mackey and strong*

topologies on bounded subsets of a given dual Banach space X is easily
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seen to be equivalent to the following condition:

—For every w*-continuous linear mapping F from X into a reflexive
Banach space, there exists a w*-continuous linear mapping G from X into a
Hilbert space such that IF(x)I=sIG(x)I+ixlt for all x in X.

But, with a little more of effort, it can be shown that the above
condition is also equivalent to the following one:

~-For every w*-continuous linear mapping F from X into a reflexive
Banach space, there exist a w*-continuous linear mapping G from X into a
Hilbert space and a mapping N:(0,0)——(0,») such that
IF(x)U=N(e)NG(x)l+ellxll for all x in X and € in (0,w). Indeed, for each n
in N, there are a Hilbert space Hn and a w*-continuous linear mapping
Gn:X———eHn such that anF(X)HSHGn(x)H+HXH foz all x in X, and it is

2

enough to consider the Hilbert space H:= o H , the (w*-continuous
neN'n N

G (x)} from X into H, and the mapping

linear) mapping G:x——{
n
niG "

N:s———eHGn(e)H (where n(e) denotes the smallest natural number satisfying
nzzé), to obtain IF(x)I=N(e)liG(x)l+elixll for all x in X and € in (0, )

From Theorem D.21 and the above observations, most of results in
[ChI], as well as their associative precedents due to H. Jarchow, foliow
easily.

Now, let’s cénclude this section with another project of research
that, among other things, shows the advantage of the several sides of the
nonassociative C*¥-creature. Recall that an associative algebra 4 with an
involution * is said to be a Rickart *-algebra if, for each x in A4, the
right annihilator ran(x) is generated by a projection, i.e., ran(x)=eA
for some e=e’=e* in A. The reader is referred to Berberian’s book [Ber]
for general results on Rickart *-algebras. Examples of these algebras are
W¥-algebras and *-regular algebras with a unit. It is not difficult to
prove that, if A is a Rickart *-algebra then: the Jordan algebra J of all
symmetric elements in 4 has the following propert§: for every x in J,
annj(x)=Ue(JJ for some idempotent e in J, where annJ(X) denotes the
Zelmanov annihilator of x (see [Fe4] for general results on annihilators
in Jordan algebras). This suggests to say that a Jordan algebra J is a
"Rickart Jordan algebra" if the annihilator of every element in J is
generated (as an inner ideal) by an idempotent. With this definition,
JBW-algebras and strongly ‘regular Jordan algebras with a unit become

examples of Rickart Jordan algebras (see [Batl; Theorem 5.6] and
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[FeGarSaSil; Theorem 6], together with [Fe4; 2.111).

Now consider some associative precedents that, through the concept
Just introduced, gives rise to corresponding Jordan questions.
D. Handelman [Ha] constructed for a "finite" (xx*=I=ax*x=1) Rickart
C*-algebra A, a *-regular ring R containing A and containing no new
projections. Later P. Ara and P. Menal [ArMe] showed that the Handelman's
ring R is nothing but the classical ring of quotients of A. Moreover they
proved that every *-regular ring is finite. In fact some jordanizations
of these results were shown in the paper of P. Jiménez and A. Rodriguez
[JiRod], where it was shown that every "finite" (in a peculiar JB-sense)
JBW-algebra J is contained in a von Neumann regular Jordan algebra K
containing no new idempotents (see also [Ayl]l), and that K 1is the
(unique) total ring of quotients of J. But the complete jordanizations of
the associative results cited above remain as unanswered questions and we
state them with some precision here.

Question D.31. Is every strongly regular Jordan algebra with a unit
finite? (for a suitable notion of finitess to be specified).

Question D.32. Has every finite Rickart JB~algebra a classical ring

of quotients (in the sense of Zelmanov [Ze3]) which is strongly regular?
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%
E. Results in H -theory.

The reasonably well-behaved coexistence of a binary or ternary
product and a Hilbert space is the essence of the concept of an H¥-thing.
Since the pioneering paper of W. Ambrose [Am] considering the associative
binary side of this concept, the H¥*-theory has shown to be the
appropriate medium to extend almost verbatim (only minor topological
variants should be involved) the Wedderburn’'s type finite-dimensional
structure theorems to the infinite-dimensional case. We shall review here
this suggestive field from a general nonaésociative perspective, but
putting speclal emphasis in those more familiar nonassociative cases
closely related to Jordan structures.

S

Summary of results until 1988.

Beginning with binary H*-things (more usually known by the name of
H*-algebras), let’s present here their precise definition. An H*-algebra
is a real or complex algebra A, with an algebra involution * (that is
linear in the real' case, conjugate-linear in the cohpleX'one, and in any
case is called the H*-algebra involution of A), which is a Hilbert space
relative to an innér product (.[.) satisfying

(xylz)=(x|zy*)=(ylx*z) (H*)
for all x, y, z in A. The theory of general nonassociative H*¥*-algebras
begins with the papers of J.A. Cuenca and A. Rédriguez [CueRodl] and
[CueRod2] (see also [Cuel]). An elemental but important result is the
following.

E.1. The product of every H*-algebra 1s~ continuous.

Hence, by changing the inner product by a suitaEle positive multiple
if necessary, every H*-algebra becomes a (complete) normed algebra in the
usual sense that the norm is submultiplicative. An elementary but
powerful tool in the structure theory of H*-algebras is that, if B is an
ideal of an H*-algebra A, by axiom (H*) its orthogonél complement BT is a
closed ideal,of A. As a consequence, thanks to the orthogonal projection
theorem for Hilbert spaces,. every closed ideal of A is a direct summand.

This result applies in particular to obtain the following improved
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version of "Wedderburn’s principal theorem".
E.2. Every H*-algebra A is the orthogonal sum of two closed ideals
A=BeAnn(4) ,
where Ann(A) denotes the annihilator of A given by
Ann(A):={xeA : xA=0}={xeA : Ax=0} .

Clearly Ann(A) is *-invariant (so an H*-algebra with zero product}),
while, although the closed ideal B in E.2 need not be *-invariant because
of the eventual discontinuity of the H*-algebra involution of A4, a
suitable involution can be defined on B with which B becomes an
H*-algebra with zero annihilator in itself (see [BoDu; Theorem 34.10],
where A is assumed to be associative and complex, but these assumptions
are not used). Moreover, by (H*), B is the closure of the linear hull of
the set {xy : x,yed}. These facts reduce the theory of H*-algebras to the
consideration of H*-algebras with zero annihilator, giving even the
following characterization. .

E.3. An H*-algebra A has zero annihilator if and only if it is the
closure of the linear hull of the set {xy : x,ye€A}.

The H*-algebra involution of any H*-algebra A with zero annihilator
is isometric [CueRod2; Proposition 2(ix)]. Moreover, the topology of the
Hilbert norm on A is the unique complete normable topology on A making
its product continuous (a consequence of the nonassociative
uniqueness-of-norm theorem in [Rod5] quoted in Section B, although a more
direct proof for this particular H*-case can be given [Cuell). As a
consequence, isomorphisms and antiisomorphisms between H*-algebras with
zero annihilator are automatically continuous. Also we enjoy the
following well behaviour of closed ideals.

E.4. Closed ideals of an H*-algebra A with zero annihilator are
automatically *-invariant (so new H¥*-algebras) [CueRodZ; Proposition
2(v)]. Moreover, for B and C closed ideals of A, BnC=0 if and only if B
and C are mutually orthogonal (with respect to the»ihner product) [CuR2;
Proposition 2(vii)].

Until now, the proofs of all commented results on (nonassociative)
H*-algebras are more or less easy adaptations of the original associative
arguments. This is not the case for the next theorem, first proved in
[CueRod2] by geometric methods, and that today can also be obtained from
the nonassociative Wedderburn theorem in [FeRod3] quoted in Section B

(together with E.4). We note that, although the original proof of this
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theorem 1is given only for the complex case, it works also without
problems in the real context.

E.5. Every H*-algebra with zero annihilator is the closure of the
orthogonal sum of its minimal closed ideals, and these are topologically
simple H*-algebras.

Since topologically simple H*-algebras have zero annihilator, the
result above reduces the theory of general H*-algebras with zero
annihilator to the particular case of topologically simple H*-algebras.
This reduction is involved in the proof of most of the results we will
review in what follows. Note also that, if A is an H*-algebra with zero
annihilator and {AA}AEA denotes the family of its minimal closed ideals
(regarded as topologically simple H*-algebras), then A can be totally
reconstructed from the knowledge of this family in the suggestive way

1
= a2 Ay
The subsequent significant résult'on H*-algebras is the "essential

>

A

uniqueness of the H*-structure" on topologically simple H*-algebras,
given by the following theorem. It was proved in [CueRodl] for the
complex case and later it was extended to the real context in
[CMartiRod2] . R

E.6. Isomorphic H*-algebras with zero annihilator are in fact
*-isomorphic. Moreéver isomorphic topologically simple H*-algebras are,
up to multiplication of the inner prod&ct by a suitable positive number,
totally isomorphic.

As it is wusual, by isomorphism between given H¥-algebras we mean
isomorphism of algebras without any reference to the H*-algebra
structure, while by *-isomorphism we mean an isomorphism preserving
H*-algebra involutions. A *-isomorphism . preserving also the norm
(equivalently, the inner product) will be called a total isomorphism. The
last result we shall review concerning relafzbely old results on general
nonassociative H*-algebras is the following -one (see [CMartiRod2]),
relating real with complex H*-algebras in the topologically simple case.
Recall that a linear algebra involution 7 on a complex algebra A with
conjugéte—linear involution * is said to be a *—involution if = éommutes
with *.

E.7. Let A be a topologically simple real H*¥-algebra. Then either A

i1s a topologically simple complex H*-algebra regarded as a real algebra,
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or there exists a topologically simple complex H*-algebra B with
¥-involution t such that A={beB : T(b)=b*}.

The theory of H*-algebras began with the work of W. Ambrose [Am] on
associative complex H*-algebras. Ambrose’s paper has inspired the
subsequent study of H*¥-algebras in the most familiar classes of
nonassociative algebras and even the treatment of general nonassociative
H*-algebras commented aboye. In fact Ambrose proved the associative
complex version of E.5 and determined all topologically simple complex
associative H*-algebras. In an equivalent formulation more suitable for
our purposes, this determination reads as follows.

E.8. Up to a positive multiple of the inner product, every
topologically simple associative complex H*-algebra is totally isomorphic
to the H*-algebra HY¥(H) of all Hilbert-Schmidt operators on a suitable
complex Hilbert space H. '

The corresponding description of topologically simple associative
real H*-algebras was obtained by I. Kaplansky [Kap] in analogous terms
that of E.8, but involving real, complex, or quaternionic Hilbert spaces.
This result has been rediscovered several times (see [BSwl, [CMartiRod3],
and [CueS]), and in fact it follows from E.7 and E.8, once the
*-involutions on HP(H) (for H a complex Hilbert space) are determined.
Because such a determination will be useful for a simplified statement of
structure theorems for Jordan and Lie complex H*-algebras, we formulate
it here (see [CMartiRod3]).

E.9. (Given a complex Hilbert space H, the *-involutions on the
topologically simple associative H¥-algebra H¥(H) are the mappings of the
form F——»J'F*‘*J'_1 for a suitable conjugation or anticonjugation J on H.

We recall that a conjugation (respectively, anticonjugation) on the
complex Hilbert space H is a conjugate-linear isometry J from H to H with
J%=1 (respectively, JP=-1). Conjugations  always exist, while
anticonjugations exist if and only if the dimensioﬁ of H is either an
even number or infinite. In any case, when they exist, they are
essentially unique [HSto; Lemma 7.5.6].

Topologically simple alternative H*-algebras that are not
assoclative are easily determined using that the algebra of complex
octonions can be regarded (in an essentially unique way, in view of E.6)
as a complex H*-algebra (see for example [Per]), together with Slater’s

theorem on prime alternative algebras [ZhS1ShShir; Theorem 9 in p. 194],
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and the fact that the centroid of a topologically simple complex
H*-algebra is C [CueRod1l] (for the real case use also E.7). As it can be
expected, the topologically simple alternative nonassociative H*-algebras
are: the algebra of complex octonions, in the complex case; and the same
algebra regarded as a real algebra, together with the two real octonions
algebras, in the real case.

Jordan complex H*-algebras were studied' first by C. Viola
Devapakkiam and P. S. Rema in [Vio2] and [VioRel. They proved that every
semisimple finite-dimensional Jordan complex algebra (hence in particular
the simple exceptional Jordan algebra Mg(@)) can be structured as an
H*-algebra. Moreover they showed that Jordan complex H*-algebras with
zero annihilator have dense socle and gave the first steps for the
classification of separable topologically simple Jordan complex
H*-algebras. The results in these papers laid the foundations for the
definitive classification of topologically simple Jordan complex
H*-algebras later obtained by J. A. Cueﬁca and A. Rodriguez in [CueRod2].

In order to formulate this classification theorem in a nice way,

let’s introduce some natural concepts and facts that will be also useful

in other contexts. Given an algebra A, we will denote by A+, A—, and~A°

the algebras with the same vector space that of 4, and products given
respectively by !

(X,y)——éx.y:=%(xy+yx)

(x,y)—>x,y]:=xy-yx

(x,y)—yx .
If A is an H*-algebra, A+, A_, and A° can and will be seen also as
H*-algebras under the same inner product and H*-algebra involution that
of A. If 7 is a linear (algebra) involution on an algebra 4, we will
denote by H(A,t) and S(A,T) the sets of all t-hermitian and T-skew
elements of A, respectively. That is: - .
H(A,©)={acA : t(a)=a} , S(4,T)={sed : t(s)=-s}

H(A,T) and S(A,T) are subalgebras of A+ and A;, respectively. In case A
is an H*-algebra, it is clear that, for a continuous *-involution on the
H*-algebra A, H(A,t) and S(4,t) are *-invariant closed subalgebras of the
H*-algebras A+ and 4 , respectively, and in this way they will be
considered as new H*-algebras. Note that, if A has zero annihilator, then
the assumption of continuity of T is superfluous. Every isometric linear

algebra involution on an H*-algebra with =zero annihilator is a
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¥-involution (see for example [CMartiRod4; Proposition 1.7]), and the
converse is true if the H*-algebra is topologically simple (a consequence
of E.6). By a topologically t-simple H*-algebra we mean an H*-algebra
with linear algebra involution 7, nonzero product, and no nonzero proper
T-invariant closed ideals. Of course, topologically t-simple H*-algebras
have zero annihilator, and every topologically simple H*-algebra is
topologically t-simple for every linear involution 7. Moreover, we have
the following easy result (see for example [CMartiRod4;Theorem 1.5]).
E.10. Let (A,t) be a topologically <t-simple H*-algebra with
isometric linear involution, and assume that A is not topologically

simple. Then
1
4 =B o8,

for a suitable topologically simple H*-algebra B, and Tt is the exchange
involution.
In this case we have natural isomorphisms
H(A,©)=B" and S(4,7)=B .

Given a complex Hilbert space H with a conjugation o, the Hilbert
1
space C @2H , With Jordan product

(A+E). () :=(Ap+(E[n7)) + (An+pg)
and H*-algebra involution (A+E)*:=X+€D , is a Jordan H*-algebra called
the Jordan H*-algebra of the involutive Hilbert space (H,m), and denoted
by J(H,o).

Now we can state the classification theorem for topologically simple

Jordan complex H*-algebras [CueRod2] as follows.

| E.11. Up to a positive multiple of the inner product, the
topologically simple Jordan complex H*-algebras are Pé(@), the Jordan
H*-algebras J(H,n) of an involutive Hilbert space (H,n) with dim(H)z2,
and the Jordan H*-algebras H(A,t) of all;‘I—hermitién elements in a
topologically =tT-simple associative H*—algebra A with isometric linear
involution T.

The paper [CueRod2] contains also a classification theorem for
topologically simple noncommutative Jordan complex H*-algebras asserting
that these are either anticommutative, commutative (cf. E.11), simple
quadratic, or real mutations of topologically simple associative complex
H*-algebras (cf. E.8). The (nonassociative) quadratic complex H*-algebras

are relatively well-described (see [Cue2] and [CMartiRodll), they are
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automatically noncommutative Jordan algebras, and, except for the
nonsimple two-dimensional case, they are very similar to simple quadratic
noncommutative JB*-algebras constructed in D.3 (it is enough to relax
there the assumption lixAyli=lixlillyll to the simple continuity of ‘A, and take
as concluding norm in the construction the natural Hilbert norm on a
complexification of a real Hilbert space). '

The papers of J. R. Schue [Schl] and [Sch2] on Lie H*-algebras
became: the first incursions in the study of H*-algebras from a
nonassociative point of view. It was proved in [Schl] the particular Lie
version of E.5, and it was also shown there the following result.

E.12. Every finite-dimensional Lie complex algebra can be structured
as an H*-algebra.

Schue’s papers contain also the classification of separable
topologically simple Lie complex H*—algébras, as well as a fine Cartan
decomposition for an arbitrary, Lie complex H*-algebra with zero
annihilator. Schue’'s work has becomé the "key tool for the recent
classification theorem of topologically simple Lie H¥-algebras, obtained
" in [CueGaMar2] (see also [N21), and that will be reviewed in the suitable
place. Since Schue’s paper [Schl] until 1972, there was a great activity
in the field of Lie H*-algebras (see [Har2] and references therein). We
only cite here the' almost simultanecus papers of V. K. Balachandran [B2],
P. de la Harpe [Harl], and I. Unsain [U] (where, in the spirit of E.7,
the classification of real topologically simple Lie H¥*-algebras is
reduced to that of complex ones), and the following reformulated version
of results in Sections 3 and 4 of Balachandran’s paper [B1]. '

E.13. If (A,T) is an infinite-dimensional topologically t-simple
associative complex H¥-algebra with isometric linear algebra involution,
then the Lie complex H*-algebra S(A,t) is topologically simple.

Schue’s Cartan decomposition for Lie;H*—algebraé has become also
useful in the treatment of Malcev H*—algebrasr-(see [CMartiRod1]),
allowing to show that every topologically simple Malcev complex
H*-algebra 1is either a Lie algebra or the Malcev H*-algebra of all
trace-zero elements in the alternative H*-algebra of complek octonions.
Topologically simple Malcev non-Lie real H*—algebras are then easily
obtained by applying E.7.

There are several options for the treatment of nonassociative

ternary H*-things. Because the first ternary H*-things arising in the
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literature are particular Hilbert versions of (complex) Jordan—Banach
*-triples already considered in this survey since Section C, we begin by
considering their natural nonassociative counterparts and by introducing
the appropriate terminology. A (nonassociative complex) "*-triple" will
be a complex vector space A ‘together with a triple product
{...}:AxAxA——>A that 1is linear in the outer variables and conjugate
linear in the middle variable, while an "H*-triple" will be a *-triple A4
endowed with a complete inner product (.|.) satisfying
({xyzt iw)=(x|{wzy})=(z|{yxw})

for all x,y,z,w in A. With more or less effort, the adequate variants for
H*-triples of E.1, E.2, E.3, and even of the crucial result E.5, can be
shown, thus centering the interest in the topologically simple case.

As we have pointed out before, the only ternary H*-things arisen in
the literature until 1988 are the particular Jordan cases of the
H*-triples defined above. These Jordan H*-triples were introduced (under
the name of Hilbert triple systems) and studied in detail by W. Kaup in
his already quoted work [Kau2] on the classification of bounded symmetric
domains in complex Hilbert spaces. He proved the peculiar variants of E.2
and E.5 in his context, and gave the following description of
topologically simple Jordan H*-triples (see also [N1], where concepts and
results are also suitably extended to the case of real Jordan triples).

E.14. Up to a positive multiple of the inner product and up to a
multiplication of the triple product by *1, topologically simple Jordan
H¥-triples are the "Hilbert variants" of Cartan factors, namely, the
(JBW*~-) Cartan factors of type C4,Cs, and 06 (with their equivalent
natural Hilbert norms), and the Jordan H¥*-triples of the form H¥(H,K),
{xeHP(H) : Jx*J=-x}, and {xeHP(H) : Jx*J=x}, where H and K are complex
Hilbert spaces, H¥ denotes Hilbert-Schmidt operators, and J is a
conjugation on H. ..

We note that Jordan complex H*-algebras become Jordan H*-triples
under the triple product {xyz}:=x.(y*.z)-y*.(z.x)+z.(x.y*), and that the
above Kaup’s theorem shows ostensibly that every topologically simple
"positive” Jordan H*-triple can be seen as a closed *-subtriple of a
suitable Jordan complex H*-algebra. With a little care in using Kaup’s
theorem and the ternary versions of E.2 and E.5, it can be shown that
actually every positive Jordan H*-triple can be seen as a closed

*-subtriple of a Jordan complex H*-algebra.
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Advances since 1988.

Perhaps we cannot hide our predilection for those aspects of the
matter under review that do not involve any assumption on identities (to
which we are referring as "general nonassociative" aspects). Thus we
begin our survey on recent results on H*-theory by reviewing the few but
important advances in these line concerning H*-algebras. The first one
has been provided by M. Cabrera and A. Rodriguez in the already quoted
paper [CRodl] on the extended centroid of normed algebfas. It is a

consequence of E.5 and (the complete version of) Theorem B.15.

Theorem E.15. The extended centroid of a complex H*-algebra A with
zero annihilator is @I, where I denotes the cardinal number of the family
of all minimal closed ideals of A. Hence topologically simple complex

H*-algebras are centrally closed.

Much more recently, the fact that topologically simple complex
H*-algebras are centrally closed (that has been reproved 1in a‘' more
transparent way in [CRod2]) has unexpectedly become a fundamental tool in
automatic continuity theory for H*-algebras. This has happened by the
hand of A. R. Villena [Vi2], who, looking at a Jacobson density type
theorem for centrally closed prime algebras in [ErMartO], has begun by

proving the following purely algebraic lemma.

Lemma E.16. Let A be a centrally closed prime algebra such that
dim(T(A))>1 for all nonzero T in the unital multiplication algebra M(A)
of A. Then there exist sequences {an} in A and {Tn} in M(A) such that
T..-Ta#0 and T T...Ta=0 for all n in N 4

With this lemma, E.5, Theorem E.15, and standard arguments in
automatic continuity, Villena has built a clever proof of the following

theorem (compare with problem B.22).

Theorem E.17. Derivations on (real or complex) H*-algebras with zero

annihilator are continuous.
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Later Villena’s techniques have been adapted in [Rodl4] to obtain

Theorem B.21, from which the following result follows easily.

Theorem E.18. Let A be a complete normed algebra, B an H*-algebra
with zero annihilator, and ® be a homomorphism from A into B with dense

range. Then & is continuous.

With an earlier result in [CueRodl], Theorem E.18 implies easily the
next corollary, asserting as a consequence that no dense subalgebra of a
topologically simple H*-algebra, other than the whole algebra, can be

structured as an H*-algebra.

Corollary E.19. Let A and B be real or complex H*-algebras, and
assume that B is topologically simple. Then every dense range

homomorphism from A into B is sur jective.

Particular versions of Theorem E.17 for alternative, Jordan, and
Malcev algebras have been shown almost at the same time by B. Zalar ([Z3]
and [Z1]), while the associative version of Theorem E.18 can be
considered as folklore (see for example [AlbD; Theorem 3.2]). It must be
remarked at this respect that the problem of the automatic continuity of
dense range homomorphisms from (associative) Banach algebras into
semliprimitive Banach algebras seems to be still open, even in the

particular case of C*-algebras.

Now, passing to review recent structural results on H*-algebras, in
our opinion the most important one is without doubt the following
definitive classification of topologically simple Lie complex H*-algebras
(take into account of E.12 and E.13), obtained by J. A. Cuenca, A.
Garcia, and C. Martin [CueGaMar2], and reproved later by E. Neher [N2]

using different methods.

Theorem E.20. Every infinite-dimensional topologically simple Lie
complex H*-algebra is of the form S(A,t) for some topologically t-simple
assoclative complex H*-algebra A with isometric linear algebra involution

T (cf. E.8, E.9, and E.10).
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The Cuenca-Garcia-Martin proof of this theorem has introduced a new
interesting tool in the field of H*-structures, namely the algebraic
ultrafilter method, that has shown its usefulness in dealing with the
problem of ‘“approximating" an infinite-dimensional H*-algebra by a
"growing" net of separable H*-subalgebras whose structure was previously
known. The ultrafilter methods can be applied in many different context
within H*¥-structures, because the sort of defining identities (Jordan,
Lie, etc.) or the aridity of the structure (binary or ternary) is
irrelevant to the ultrafilter technic.

Another interesting work on H*-algebras satisfying more or less
familiar identities is that of M. Cabrera, J. Martinez, and A. Rodriguez
[CMartiRod4] on "structurable" complex H*-algebras, that was already
announced by Rodriguez in the 1988 Oberwolfach meeting on Jordan
algebras. A structurable algebra is an algebra A with a linear algebra
involution T satisfying .

1) (s,x,y)=-(x,s5,y)=(x,y,s)

ii) (a,b,c)-(c,a,b)=(b,a,c)-(c,b,a)

111) 212" al,b]=(b, 2% a)-(b,a,a")
for all x,y in 4, s in S(A,r), and a,b,c in H(A,t), where (.,.,.) denotes
the associator on A. Structurable algebras were introduced by B. N.
Allison in [Alll}, who provided a fine classification theorem for
finite-dimensional structurable algebras that are simple with respect to
the linear algebra involution (see also [Sm]). Examples of structurable
algebras are alternative algebras with any linear algebra involution and
Jordan algebras with the idéntity operator as involution. The main
interest of structurable algebras relies on the fact that, in the
finite-dimensional case, they give, by means of an extended
Kantor-Koecher-Tits construction, all isotropic simple Lie algebras
[A112]. The Cabrera-Martinez-Rodriguez paper begin§ ﬁith_ a systematic
study of nonassociative complex H*-algebras with- a linear (algebra)
involution T. After showing the appropriate version of E.5 in their
context (thus reducing the general case of algebras with zero annihilator
to the particular topologically t-simple one), they prove that every
complex H*-algebra with =zero annihilator and linear involution is
(bicontinuously) isomorphic, as algebra with linear involution, to an
H*-algebra with (zero annihilator and) isometric (hence *-) linear

involution. Moreover the essential uniqueness of the H*-structure on
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topologically <t-simple complex H*-algebras with isometric linear
involution T is obtained. As a consequence, the theory of structurable
complex H¥-algebras reduces to that of topologically T-simple ones with <t
an isometric linear involution. Then they prove the following theorem
(see also [AllF], where the part of the theorem concerning the so called

“Smirnov’s structurable algebra" is reproved in a simpler way).

Theorem E.21. Every finite-dimensional t-simple structurable complex
algebra (A,T) can be seen as an H*-algebra in such a way that T becomes

isometric.

Now, with the Allison-Smirnov classification of finite~dimensional
T-simple structurable algebras, the interest must be centered in the
infinite-dimensional case. Certainly we already know the examples
provided by the cases (A,T), where, either A is a topologically T-simple
associative complex H*-algebra with isometric linear involution T (cf.
again E.8, E.9, and E.10), or 4 is a topologically simple Jordan complex
H*-algebra (cf. E.11) and T is the identity operator on A. In order to
build further infinite-dimensional examples, the relatively forgotten
Saworotnow’s theory of Hilbert modules over associative complex
H*-algebras with =zero annihilator (see [Sawll], [Gi], and [Smi]) is
recaptured in the paper we are reviewing. If we wanted to state with some
precision the construction made in [CMartiRod4] of certain structurable
H*-algebras from some Hilbert modules, then we would give a quite long
list of concepts and result, a fact that seems unsuitable for the
philosophy of this survey. It 1is therefore better to appeal to the
imagination and, consequently, to think that:

~Hilbert modules are the natural generalizations of complex Hilbert
spaces when the base field C is replaced-by an associative complex
H*-algebra with zero annihilator,

-"Involutive Hilbert modules" over associative complex H*-algebras
wWwith zero annihilator and an isometric linear involution, introduced in
[CMartiRod4], are then reasonable noncommutative variants of involutive
complex Hilbert spaces (note that the 6nly linear involution on C is the
identity), and

-Structurable complex H*-algebras constructed in [CMartiRod4] from

involutive Hilbert modules correspond in this setting to Jordan complex
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H*-algebras of an involutive complex Hilbert space (see definition before
E.11).

Now, with the lack of precision accepted above, and with minor
improvements provided in [CMaMartiRodl], the main result in [CMartiRod4]

can be formulated as follows.

Theorem E.22. If (A,t) is a topologically t-simple structurable
complex H*-algebra, and if T is isometric on A, then one of the following
assertions holds:

i) A is finite dimensional (cf. Theorem E.21).

ii) A is associative (cf. E.8, E.9, and E.10).

iii) A is a Jordan algebra and Tt is the identity on A (cf. E.11).

iv) (A,Tt) is a structurable H*-algebra constructed from an
involutive Hilbert module over a topologically <t-simple associative

complex H*-algebra & with isometrig linear involution <.

Involutive Hilbert modules arising in case (iv) of the theorem. are
also precisely described in [CMartiRod4].

Theorem E.22, together with nice ideas in Schafer’s paper [Sc2l;.has
become the key tool for the proof in [CMaMartiRodl] of the following
infinite—dimensional version of the Allison-Kantor-Koecher-Tits

construction.

Theorem E.23. There is a "natural” correspondence (A,Tt)——K(A,<)
from the category ¥ of structurable complex H*-algebras with zero
annihilator and isometric linear involution onto the category ¥ of Lie
complex H*-algebras with zero annihilator. Moreover, for (A,r) in ¥, this
correspondence induces an order-isomorphism from the complete lattice of
all T-invariant closed ideals of A onto that~.of closed ideals of K(A4,7t).
As a consequence, for (A,t) in ¥, A is topologicallyrt—simple if and only

if K(4,T) is topologically simple.

The procf of the above theorem has needed (and hence encouraged)
further developments of the theory of Hilbert modules (over associative
complex H*-algebras with zero annihilator). These have been provided in
[CMartiRod6], where the notion of an orthonormal basis for a Hilbert

module has been introduced, orthonormal bases have been characterized
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among "orthonormal systems" by means of “Parseval’s equality" or
"Fourier’s expansion", and the existence of orthonormal bases, as well as
the coincidence of the cardinal numbers of all these bases, has been
proved. Then, as needed for the proof of Theorem E.23, a satisfactory
theory of operators of Hilbert-Schmidt type on Hilbert modules has been
developed.

In the same line of developing further the theory of Hilbert
modules, the paper [CMartiRod5] provides a non-structural proof of the
existence of a natural categorical one-to-one correspondence between
Hilbert modules and associative H*-triples (of the second kind) with zero
annihilator, obtaining as a consequence the structure of topologically
simple associative H*-triples, becoming these in essence of the form
HP(H,K), for H and K complex Hilbert spaces (see also [Z2] for a more
direct proof of this last result).

By Theorem E.22, every nontrivial problem in structurable complex
H*-algebras reduces in essence to the consideration of the problem in
structurable H*¥-algebras constructed from involutive Hilbert modules. In
this line, derivations of such structurable H*-algebras commuting with
the linear involution have been studied in [CMaMartiRod2], showing the
existence of a natural bicontinuous Lie-algebra isomorphism from the
Banach-Lie algebra of these derivations onto some (perfectly determined)
Banach-Lie algebra of bounded “differential operators" on the
parameterizing Hilbert module. The notion of a differential operator
arising in this result is the natural version for modules of that
appearing for vector spaces over division algebras in the study of
derivations on prime associative algebras with nonzero socle (see [Jall]).
The proof of the result above turns again over the correspondence between
Hilbert-modules and associative H*-triples with zero annihilator, through
which bounded differential operators turn iﬁ-(automaﬁically continuous)
"generalized derivations", that are fully describea. We remark that,
thanks to [CMaMartiRod2; Proposition 2.2], generalized derivations of
associative H*-triples with zero annihilator can be seen as "“derivation
pairs" in the sense of [Z24], and then we refer to this last paper for
further information about the automatic continuity of derivation pairs on
alternative and Jordan H*-triples.

Talking about H*-triples, we encourage the reader to look at the

paper of B. Zalar [Z2], where, thorough many nice concepts, and providing
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elegant complete proofs, the most part of the theory of general
nonassociative H*-algebras is translated to the setting of nonassociative
H*-triples. Let’s also cite the characterization up to equivalent
renorming of Jordan H*-triples having finite capacity (or “"finite rank",
in a more familiar terminology in our context) in the sense of [Lo3].
This characterization has been provided recently in [FeGarSasi2], and
contains an earlier result in [DiT2] extending in its turn one in [Harri;

Theorem 6.2].

Theorem E.24. A Jordan-Banach *-triple is bicontinuously isomorphic
to a Jordan H*-triple of finite rank if and only if it is strongly

regular and the set of its division generalized tripotents is bounded.

In reviewing recent results on binary H*-structures, we have arrived
without premeditation to H*—triple§ (in ‘the sense of the definition given
before E.14) by the hand of Hilber£ modules needed for the classification
of structurable H*-algebras. Even we have reviewed all the few recent

more or less relevant advances on H*-triples we know at this time. Before

passing to the consideration of other ternary H*-structures introduced

and feverishly studied by J. A. Cuenca and his coauthors in the last
years, let’s return to H*-algebras to complement their review and, in its
turn, to motivate such new ternary H*-structures.

J. A. Cuenca and A. Sanchez [CueS] have recently classified
topologically ‘simple Jordan real H*-algebras. Although this
classification can be reduced, via E.7, to the determination of
*—in&olutions on topologically simple Jordan complex H*-algebras
described in E.11, such a determination is very hard, and they have opted
for a more direct argument leading to a very precise complete list of
possible cases, most of which are described in tﬁrmé of lz—summable
infinite matrices in agreement with the original statements of Ambrose
and Kaplansky classification theorems for complex and real (respectively)
topologically simple associative H*-algebras. In a less precise form, the

Cuenca-Sanchez theorem can be stated as follows.
Theorem E.25. Topologically simple Jordan real H¥-algebras fall into

one of the following cases:

i) The Jordan H*-algebra obtained by symmetrization of the product
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of a topologically simple associative real H*-algebra.

ii) The Jordan H*-algebra H(A,t) of hermitian elements of a
topologically simple associative real H*-algebra A with respect to a
¥-involution t on A.

iii) A simple Jordan H*-algebra of quadratic type over R or C.

iv) A (finite-dimensional) simple exceptional Jordan real
H*-algebra.

Moreover, the *-involutions Tt in (ii) are determined.

The Cuenca-Sanchez paper contains also a classification of
topologically simple noncommutative Jordan real H*-algebras, whose
statement is an almost verbatim translation to the real case of that
commented for the complex case after E.11 (only some care should be taken
in accepting in the real case quadratic algebras over R or C). The
transition from H*-algebras to certain ternary H*-structures, different
from the H*-triples considered above, can be ‘made through the study of
two-graded H*-algebras provided by J. A. Cuenca and C. Martin in
[CueMar]. Two graded H*-algebras are H*-algebras A which splits into an
orthogonal direct sum A=AO®A1 of self-adjoint (closed) subspaces Ai
(i=0,1) such that AiAngi+j (sum in module two). The study of two-graded
H*-algebras may be Teduced to the study of the topologically simple ones
(in a graded sense) in a similar way as it is done for ungraded
H*-algebras. It is easy to prove that the only topologically simple two
graded associative H*¥-algebras over K (=R or C) are of one (and only one)

of the following two types:
1
i) B ®2B, with B a topologically simple associative H*-algebra over

K, the product given by (x,y)(u,v):=(xu+yv,xv+yu), H¥-algebra involution
(x,y)*:=(x*,y*), even part Be{0}, and odd part {0}eB.

ii) An (a priori ungraded) topoloéically -simple associative
H*-algebra A over K, with even part the hermitian elements relative to an
involutive *-automorphism o of A, and odd part the skew-hermitian
elements.

Furthermore the grading involutive *-automorphisms o can be
precisely determined, arising a number of nonisomorphic H*-algebras which
are not worth to describe here. The interesting matter here is that the

odd part of any two-graded topologically simple associative H*-algebra is
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a topologically simple associative "ternary H*-algebra”" (of the first
kind), and moreover any topologically simple associative “ternary
H*-algebra" arises in this way (up to the sign of the "ternary H*-algebra
involution") (see [CaCusMar] for the ©precise classification of
topologically simple associative "ternary H*-algebras"). In this way
binary methods can be used to deal with ternary structures in an
assoclative context, and this idea can be also exploited in a Jordan
setting. In a purely algebraic context, the same link appears between
prime associative two-graded algebras with nonzero socle and prime
aséociative ternary algebras with nonzero socle {see [CueGaMarl] and
[CueGaMar3]). Now let’s formulate in a condensed form the classification
of topologically simple two-graded Jordan H*-algebras obtained in
[CueMar].

Theorem E.26. Topologically ,simple two-graded Jordan H*-algebras

over K (=R or €) are of one of the following types:
1
i) J ®2J, with J a topologically simple H*-algebra over K, the

prodﬁct given by (x,y).(u,v):=(x.u+y.v,x.v+y.u), H*-algebra involution
(x,y)*:=(x*,y*), even part Je{0}, and odd part {0}eJ.

. ii) The two-graded Jordan H*-algebra obtained by symmetrization of
the product of aftwo—graded associative H*-algebra A over K that is
topologically simple without reference to the grading of A.

i1ii) The Jordan H*-algebra obtained by symmetrization of the product

of a topologically simple associative H*-algebra A over K with a
*¥-involution T, with even part H(A,tT), and odd part S(A,t).

iv) The Jordan two-graded H*-algebra H(A,t), where A is as in (ii),

and T is a *-involution on A preserving the grading of A.

v) A two-graded Jordan H*-algebra of quadratic type.

vi) A two-graded Jordan H*¥-algebra of ei&eption@l type.

Since associative "ternary H*-algebras" (of the first kind) have
already arisen in our recent comments, and even we have outlined their
structure theory, it seems suitable to formulate the concept of a ternary
H*-algebra with some precision, allowing it to work also outside the
associative environment. Let’s therefore say that a (nonassociative)

ternary H*-algebra is a real or complex Hilbert space 4 together with a
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trilinear triple product {...}:Ax4AxA——A4, and an involutive mapping
A~i»A, which is linear in the real case, conjugate-linear in the complex
case, and satisfies {xyz}*={y*z*x*} and

for all x,y,z,w in A. Jordan ternary H*-algebras (i.e., Jordan triples
that are ternary H*-algebras) have been first considered and studied by
A. Castellén and J. A. Cuenca in [CaCuel]. Later, a complete structure
theory of Jordan ternary H*-algebras has been achieved by A. Castelldn,
J. A. Cuenca and C. Martin, and it will appear in a forthcoming joint
paper. We can announce here this theory in a very condensed forn, leaving
to the imagination of the reader the technical notion, involved in the
statement, of a "polarized" topologically (*-) simple Jordan ternary

H*-algebra.

Theorem E.27. Every real unpolarized topologically simple Jordan
ternary H*-algebra, that is neither finite-dimensional nor of quadratic
type, Is, up to a positive factor of the inner product, and up the sign
of the involution and the triple product, isometrically *-isomorphic to
the odd part of a real topologically simple two-graded Jordan H*-algebra
(cf. Theorem E.26). Moreover, the simple finite-dimensional Jordan
ternary H*-algebras$, as well as those of quadratic type, are fully

described.

J. A. Cuenca and his coauthors have considered another type of a
ternary H*-structure, by imposing on a Hilbert space A with a trilinear
triple product {...} and an involutive mapping * (linear in the real
case, and conjugate-linear in the complex one), the axioms
{xyz}*={x*y*z*} and .

({xyz}lw)=(x|[{wz*y*})=(z[{y*x*w})=(y | {x*wx*})
for every x,y,z in A (see also [Z5], and note that, if the triple product
is symmetric in the outer variables -as it fortunately happens in the
Jordan case-, then nothing but particular ternary H*-algebras arise). In
this setting they have proved the essential uniqueness (up to the sign of
the involution) of the "H*-structure" in the topologically simple case
[CaCue4], and have shown fine classification theorems in the associative
(of the second kind) and alternative context. The interested reader is

referred to the Castellén-Cuenca papers [CaCue2] and [CaCue3] for the

82



precise versions of these classification theorems, as well as for further

information about these topics.

Concerning results, let’s conclude this section with a .new one on
general nonassoclative H*-algebras. The proof consists of an adaptation
of the arguments in the proof of Theorem 1.3 in the already commented
paper [CMartiRod4].

Theorem E.28..Llet A be a real algebra with zero annihilator and
assume that its complexification A(D can be structured as an H*-algebra.

Then A can also be structured as an H¥-algebra.

Proof.  Consider the mapping T:X+iy——>x-1y which is a
conjugate-linear automorphism of A®=A@iA. Denoting by A(DD the H*-algebra

having the same structure of A(D” except for the product by complex

numbers (defined by Aox:=ix) and the inner product (defined by
(le)u:=(ylx)), and regarding Tt as a (linear) isomorphism from A(D onto

A we can apply [CueRodl; Theorem 3.3]1 to obtain the existence of a

o
C 3
unique conjugate-linear *-automorphism T of A(D and a unique (linear)
automorphism ¢ of A, such that T=Ty, (W )*=y, and Sp(([I)CR+. Since t=t ",
we have T=y T '=f(Ty 'T™!), and clearly T ' is a conjugate-linear

C and Txp_lT_1 is an automorphism of A(D with the same

properties of Y (note that [R+ is invariant under the mappings z—sz " and

*¥-automorphism of A4

z—>z). From the uniqueness of the decomposition for T we obtain T=T "
(so T is actually an involutive conjugate-linear *-automorphism of A(D)
and ¢ =TYT '. Now the mapping :F—>TFT © is a conjugate-linear
automorphism of the complex algebra BL(A(D), hence, for any F in BL(A(D),
the equality sp(®(F))=sp(F) hblds, and, for any complex valued rational
function with poles outside sp(F), we have @TR(F))=Rﬁ(@(F)), where, for a

complex valued holomorphic mapping f on an opén subset Q of C, f# denotes

the (holomorphic) function on @ given by z—-f(Z). Since ¥ '=d(y), it
follows that R#(l,[l_l)T=TR(l/I) for every rational function R with poles
outside sp(y). Therefore, by Runge’s theorem and [BoDu; Lemma 7.2 and
Theorem 7.4(iii)], for every holomorphic function f on an open subset Q
of € containing sp(y) we have f#(l,ll—l)T=Tf(Lb). Taking in particular §2=(D\IR;

and f the principal determination of the square root on Q, and writing
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8:=f(Y), since faf e obtain © 'T=T®. Therefore T=TY=T9°=(T9)9=0"'To.
Since ¢ is an automorphism of AC (see [CueRod1; Corollary 2.4]), from the
equality T=0""To we deduce that the real algebras {aec4 T(a)=a} and

{aeA

(D M
c T(w)=a} are isomorphic. The proof is concluded by observing that
A={aeA® : t(a)=a}, while {aeAE : T(a)=a} is a closed *-invariant real

subalgebra of the complex H*-algebra AC’ hence a real H*-algebra. m
Problems and future directions.

The powerful classical methods of Hilbert spaces, as well as that of
operators in these spaces, have allowed to prove very relevant results on
general nonassociative H*-algebras (see E.5, E.6, E.15, E.17, E.18, and
E.19), and, wunless the appearance of a new revolutionary idea like
Villena’s one in their proof of Theorem E.17, not much more can be
expected concerning the development of this general nonassociative point
of view. Even the extensions made until now of most of these result to
general nonassociative ternary H*-structures, although sometimes nice,
have provided no essentially new techniques in this field. On the other
hand, the classification of topologically simple binary or ternary
H*-structures has been achieved in all familiar classes of binary or
ternary algebras defined by identities (see E.8, E.11, E.14, E.20, E.22,
E.25, E.26, and E.27). Therefore, in our opinion, after the advances made
in the last years, the H*-theory can be considered finished and,
consequently, we do not enthusiastically encourage any people to work in
it.

In spite of our adventurous opinion, it remains to provide a
reasonably available unified codification of results in H*-theory. While
general nonassociative aspects have already arisen relatively enough
well-ordered in the original papers, this- is not the case for the
particular aspects of familiar binary or ternary structures defined by
identities, each one requiring its peculiar algebraic and analytic
treatment. As an example, it would be interesting to obtain a proof of
the Allison-Kantor-Koecher-Tits construction for Lie H*-algebras (Theorem
E.23) not involving the structure of such algebras (Theorem E.20). If
such a proof was provided, then, since Theorem E.20 can be obtained with
minor difficulties from Theorems E.22 and E.23, the theory of Lie

H*-algebras would be liberated from its very peculiar isolation.
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In any case, if some people insist in working in H*-theory, we
recommend mainly its general nonassociative aspect. Questions as, 1if
every topologically simple H*-algebra has a minimal ideal, or, more
ambiguously, if a "nonassociative socle" can be defined in such a way
that H*-algebras with zero annihilator have dense "socle", would be
points of departure for future interesting developments. Another almost
unexplored side of nonassociative H¥-algebras is the suitable
nonassociative translation of the Saworotnow-Friedell theory of
trace-class in associative H*-algebras ([SawFrl and [Saw2]). In this

direction, the paper [Marti4] seems to be promising.
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F. Looking for normed versions of Zel’manov prime theorem.

Zel’manov prime theorem for Jordan algebras, though received
enthusiastically by algebraists since its appearance, has taken a
relatively long time to be assimilated by analysts in order to obtain new
structure theorems for normed prime nondegenerate Jordan algebras,
results that cannot be attacked by the familiar technique of the
existence of a nonzero socle or by duality methods in JBW- and
JBW*-theory. The reason could be (as we have commented earlier in other
places) that the formulation of Zel’ manov prime theorem, in order to
attains a nice simple form, perhaps conceals some crucial information
that is needed in the applications. This means for the analyst the
necessity of finding out the deep and very difficult proof of Zel’manov
theorem, and of course this takes time. Fortunately this time has been
already taken, and we may present in this last section of our survey
relevant examples of the application of Zel’manov theorem to the
structure of normed Jordan algebras that, in the case of JB- and
JB*-algebras, refine in a very nontrivial way the classical theory
reviewed in Section D. Since, as far as we know, Zelmanovian methods in
normed Jordan algebras have been applied only very recently, the habitual

summary of results until 1988 has no place in this case.
Recent results.

We began this survey giving birth to the binary Jordan identity, via
the nonassociative Vidav-Palmer theorem (A.1). Later, in Section D, we
have reviewed the structure theory of noncommutative JB*-algebras, built
by that theorem, in a deliberately reformulated way so that it became
incomplete. Certainly the description of an arbitrary noncommutative (or
even commutative) JB*-algebra J as a subdirect lm—sum of geometrically
primitive noncommutative JB*-algebras (D.1) is in a trivial way
structurally better than the classical embedding of J in an lw-sum of

type I noncommutative JBW*-factors, because the coordinate projections
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acting on J are surjective in the first case, while in the second case
they only have w*-dense range. But noncommutative type I JBW*-factors
were well-known many years ago, while this was not the case for
geometrically primitive noncommutative JB*-algebras. After D.2 and D.3,
the problem centers in the familiar commutative case, and then it was
known only that geometrically primitive JB*-algebras are prime and, even
more, that they are primitive in the sense of Hogben-McCrimmon (and, of
course, that they are the JB*-algebras having a faithful type I factor
representation, so each ocne of them is w*-dense in a suitable type 1
JBW*-factor). But, if not much was known about prime JB*-algebras, not
much more information was provided about primitive JB*-algebras (nor even
for the ranges of type I factor representations). Then it is tempting to

appeal to Zelmanov’s prime theorem [Zel]ﬂ which we recall here.

Theorem F.1. The prime nondegénerate Jordan algebras over a field K
are the following: ‘

i) Central orders in a central simple 27-dimensional exceptional
Jordan algebra over a field extension of K.

ii) Central orders in a simple quadratic Jordan algebra over a field
extension of K.

1ii) Jordan subalgebras of Q(A) containing A as an ideal, where A is
a prime associative algebra over K, and Q(A) denotes the symmetric
Martindale ring of quotients for A.

iv) Jordan subalgebras of Q(A) contained in H(Q(A),T) and containing
H(A,T) as ‘an ideal, where A is a prime associative algebra over K with a

linear algebra involution T.

Since prime JB*-algebras are central (they are actually centrally
closed, D.9), in the case of prime JB*—algebf;é, cases (i) and (ii) above
lead directly to Mi(@) and to simple quadratic JB*-algebras (take A=0 in
the construction D.3), respectively. Things don’t behave so nicely in
cases (iii) and (iv) of Zel’ manov theoren, and, as we have commented
before, it has been necessary to delve (lightly in this case) into the
proof of the theorem, extracting some arguments that can be summarized in

the following proposition (see also [McZel).

Proposition F.2. Let B be an associative algebra with a linear
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algebra involution T, J a prime nondegenerate Jordan subalgebra of B
contained in H(B,t), and assume that J is not a central order in a simple
quadratic Jordan algebra. Then there exists a T-invariant subalgebra A of

B such that H(A,T) is a nonzero ideal of J.

Now, if the prime JB*-algebra J is not in cases (i) and (ii) of
Zel’manov theorem, we may appeal to the classical theory of JB*-algebras
in order to select a specially well-behaved associative envelope B for J,
to which Proposition F.2 will be applied. The contribution of the
classical JB*-theory is the following (at this time folklore)

Proposition.

Proposition F.3. For every special JB*-algebra J, there exists a
C*-algebra B with *-involution T such that J is a closed *-invariant

Jordan subalgebra of B contained in H(B,<t).

The arguments we are reviewing are nothing but the first
observations in the paper by A. Fernandez, E. Garcia, and A. Rodriguez
[FeGarRod], where a fine JB*-version of the Zel’ manov prime theorem has
been provided. In the search for this result they have been inspired by a
recent one of P. Ara. He showed in [Ar2] that, for a prime C*-algebra A4,
the symmetric Martindale ring of quotients Q(4) coincides with the
“symmetric algebra of bounded quotients" Qb(A). Since Qb(A) is a
pre-C*-algebra, its completion Qb(A)” became affectively an ideal
candidate for playing the role of Q(4) in a JB*-version of Zel’manov’s
theorem in cases (iii) and (iv) of the original formulation. In fact,
Fernandez, Garcia, and Rodriguez have been able to replace Qb(A)“ by the
smaller and more familiar C*-algebra Mult(A4) of multipliers on A. Recall
that, for a semiprime associative algebra .4, the symmetric Martindale
ring of quotients Q(4) (of all ‘“"maximal essentiélly defined double
centralizers") contains the subring of multipliers Mult(4) (of all
"everywhere defined double centralizers"), which in its turn contains 4
as an ideal. Recall also that, in the case of 4 being a C*-algebra,
Mult(A) is in a natural way a C*-algebra containing 4 as a C*-subalgebra
(in fact Mult(4) can be recognized as the largest C*-subalgebra of the
C*-algebra A** containing A as an ideal). For the proof of Zel’manov’s

prime theorem for JB*-algebras some advances in the classical JB*~theory
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have been made in [FeGarRod] concerning JB*-algebras that contain closed
essential 1ideals of classical type. We state these results in the

following two propositions.

Proposition F.4. Let J be a JB*-algebra containing a closed
essential ideal that, regarded as a JB*-algebra, is of the form A+ for a
suitable C*-algebra A. Then J can be viewed as a closed *-invariant

Jordan subalgebra of the C*-algebra Mult(A) containing A.

Proposition F.5. Let J be a JB*-algebra containing a closed
essential ideal of the form H(A,t) for a suitable C*-algebra A with
*~involution T, and assume A is generated as a C*-algebra by H(A,t). Then
J can be regarded as a closed *-invariant Jordan subalgebra of Mult(A)
contained in H(Mult(A),t) and containing.H(A,T).

% .

When all above ingredients are put in the cocktail shaker, and the

cocktail shaker is suitably shaken, the cocktail is awaited. Let’s taste

it.

Theorem F.6. The prime JB*-algebras are the following:

Domee).

ii) The simple quadratic JB*-algebras.

1i1) The closed *-invariant Jordan subalgebras of Mult(A) containing
A, where A is a prime C*-algebra.

iv) The closed *-invariant Jordan subalgebras of Mult(A) contained
in H(Mult(A),t) and containing H(A,T), where A is a prime C*-algebra with

*_involution T.

Fasy consequences of the theorem are;“the next corollaries (see

[FeGarRod] for details).

Corollary F.7. The prime JB-algebras are the following:

i) The Albert algebra H.(R).

ii) The spin factors.

iii) The closed Jordan subalgebras of Mult(R) contained in the
self-adjoint part of Mult(R) and containing the self-adjoint part of R,
where R is a REAL C*-algebra.
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Corollary F.8. The topologically simple JB*-algebras are the
following:

i) me).

ii) The simple quadratic JB*-algebras.

iii) The JB*-algebras of the form A+, where A is a topologically
simple C*-algebra.

iv) The JB*-algebras of the form H(A,T), where A is a topologically

simple C*-algebra with *-involution <.

Theorem F.6 has been used in [FeGarRod], together with results by M.
Mathieu in [Mat2], to show that prime JB*-algebras are ultraprime in the
strong sense that ALL normed ultrapowers of a prime JB*-algebra are prime
(JB*-algebras), thus obtaining in view of Theorem B.27 a new proof of
Proposition D.9. Since geometrically primitive JB*-algebras are prinme,
Theorem F.6 suggests the possibility of describing geometrically
primitive JB*-algebras by selecting carefully, among the prime
JB*-algebras there listed, those that are geometrically primitive. This
careful selection has been also made in the paper under review (see
[FeGarRod; Theorem 4.2]), thus completing the structure theory of
noncommutative JB*-algebras in the finer way we have told in Section D.
But, if Theorem 4.2 in [FeGarRod] is regarded under the light of the very
recent work by J. A. Anquela, F. Montaner, and T. Cortés [AnMoCor] on
zelmanovian treatment of Hogben-McCrimmon primitiveness, then it also
gives us as a free gift an affirmative answer to an old question (that
the reader can easily imagine). Let’s therefore formulate this theorem in

its definitive version.

Theorem F.9. For a JB*-algebra J, the following three assertions are
equivalent: »
1) J is geometrically primitive (i.e., J has a faithful type I
factor representation).
2) J is of one of the following types:
i) J=(e),
ii) J is a simple quadratic JB*-algebra,
iii) there exists a primitive C*-algebra A such that J is a

closed *-invariant Jordan subalgebra of Mult(A) containing A,
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iv) there exists a primitive C*-algebra A generated as a
C*-algebra by H(A,T), for some *-involution T on A, such that J
is a closed *-invariant Jordan subalgebra of Mult(A) contained
in H(Mult(A),t) and containing H(A,T).

3) J is primitive (in the sense of Hogben-McCrimmon).

With the well-known result of Dixmier that separable prime
C*-algebras are primitive, the above theorem implies easily that
separable prime JB*-algebras are primitive. Much more interesting is the
next corollary, many years expected. Recall that the maximal modular
inner ideals of a noncommutative Jordan algebra J are defined as the
maximal modular inner ideals of the Jordan algebra J+, and that the core
of a maximal modular inner ideal M of J is defined as the largest ideal
of J contained in M. Recall also the notion of a "primitive M-ideal" of a

Banach space (see before D.1). .

Corollary F.10. For an arbitrary noncommutative JB*-algebra J, the
cores of maximal modular Iinner ideals of‘ J agree with the primitive

M-ideals of the Banach space of J.

The JB-versions of the equivalence (1)&(2) in Theorem F.9 and of
Corollary F.10, although not explicitly given in the literature, can be
considered folklore in the classical nonzelmanovian theory of JB-algebras
(see [Bull and [Bu2]). The points of difficulty in the case of a
JB*-algebra J are that primitive M-ideals of the Banach space of J depend
on the complex geometry of J and it is not obvious how this dependence
reduces to the self-adjoint part of J (a fact already overcome in the
classical theory [PaPeRod2]), and mainly that modular maximal inner

~ .

ideals of J need not be *-invariant.

The subsequent Zel’manov type theorem for normed Jordan algebras we
shall review involves very strong algebraic requirements, namely, the
simplicity of the algebra and the existence of a unit element, but no
additional assumptions should be made (even completeness is not assumed).
This theorem has been proved by M. Cabrera and A. Rodriguez [CRod4], and

reads as follows,
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Theorem F.11. Up to bicontinuous isomorphisms, the simple (complete)
normed complex Jordan algebras with a unit are the following:

i) H3(®®),

ii) the Jordan algebras J(X,f) of a continuous nondegenerate
symmetric bilinear form f on a (complete) normed complex space X of
dimension z2,

iii) the Jordan algebras of the form A+, where A is a simple
(complete) normed associative complex algebra with a unit, and

iv) the Jordan algebras of the form H(A,T), where A is a simple
(complete) normed associative complex algebra with a unit and T is an

Isometric linear algebra involution on A.

In connection with future developments of zelmanovian techniques in
normed Jordan algebras without additional geometric requirements, the
proof of this Theorem is more instructive than that of Theorem F.6. In
fact, looking at the original version of Zel’ manov theorem (Theorem F.1),
applying that normed simple complex algebras with a unit are central (use
the Gelfand—Mazur theorem, and compare with the much more general result
B.14), and taking into account that, under the assumption of simplicity,
cases (1ii) and (iv) there can be unified by saying that the simple
algebra J in such cases is of the form H(A,t) for some T-simple
associative algebra A with linear algebra involution =T, the main
difficulty to be overcome to arrive to Theorem F.11 is the so called “the
norm-extension problem". That is, if the topology of the norm of J can be
obtained by restricting to J the topology of a suitable algebra norm on
A. Concerning the proof of Theorem F.11, this problem has been solved in
[CRod4] by means of the next lemma. Recall that, given an associative
algebra A with a linear (algebra) involution T, (4,T) is said to be a
T-tight envelope of a Jordan subalgebra JSH(A4,T) if“A is generated by J
and every nonzero t-invariant ideal of A meets J. Also we refer to [McZe]
for the concept of the ideal I5 (the largest ideal consisting of
"imbedded pentad eaters") in the free special Jordan algebra in a
countable set of generators, as well as for the meaning of the symbol

IS(J) for a given special Jordan algebra J.

Lemma F.12. Let A be a real or complex associative algebra with a

unit an a linear involution T, let J denotes the Jordan algebra H(A,T),
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and assume IS(J)=J and that (A,t) is a t-tight envelope of J. Then, for
any algebra norm Il.l on J, there exists an algebra norm on A making the

involution T isometric and whose restriction to J is equivalent to Il.I.

The norm-extension problem has been reconsidered in the paper of A.
Rodriguez, A. Slin’ko, and E. Zel’manov [RodS1Zel], where the arguments in
the proof of Lemma F.12 have been systematically exploited and
significantly improved. As a first remarkable result they obtain the
following relevant sufficient (and of course necessary) condition for the

solution of the norm-extension problem.

Theorem F.13. Let A be a real or complex associative algebra with a
linear involution T, let J denote the Jordan algebra H(A,t), assume that
(A,t) is a t-tight envelope of J, and let N.I be an algebra norm on J.
Then there exists an algebra norm on A making the involution T isometric
and whose restriction to J is equivalent to ll.Il if (and only if) the
“tetrad mapping” (h,k,1l,m)——hklm+mlkh from JxJxJxJ into J is continuous

for the topology of the norm I. 1.

It is proved in [RodSlZe] the automatic continuity of the tetrad
mapping under reasonable algebraic and topological conditions. Then,
using Theorem F.13 and parodying some arguments in the proof of Theorem
F.11 for the complete normed case (see [CRod4; Theorem 2]), the following
theorem is shown. This theorem answers a never explicitly posed old
problem (compare with the result in [Rod2], already commented in Section
B, that, if A is an associative real or complex semiprime algebra such

that A+ is a Jordan-Banach algebra, then A itself is a Banach algebra).

Theorem F.14. Let A be a real or compléx associative algebra with a
linear involution T, let J denote the Jordan algebra H(A,T), and assume
that (A,t) is a t-tight envelope of J and that J is semiprime. Then, for
any complete algebra norm .l on J, there exists -an algebra norm I.I on A
making T isometric and satisfying the following properties:

i) The restriction of §.| to J is equivalent to I.I.

ii) If A" denotes the completion of (A,}.|), and if t° stands for
the only continuous (automatically isometric) involution on A" that

extends T, then J=H(A",T").
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1ii) Every nonzero t"-invariant ideal of A" meets J.

Let’s note that the assumption of completeness for (J,ll.ll) in the
theorem cannot be dropped in general because, without completeness of
Il.Il, counter-examples to the norm-extension problem are given in
[RodSlZe] even if (4,t) is a t-tight envelope of J (=H(A,t)) and J is
semisimple. The paper we are reviewing contains also other interesting

positive results about the norm-extension problem, as the following.

Proposition F.15. Let A be a real or complex associative algebra
with a linear involution T, let J denote the Jordan algebra H(A,t), and
assume that (A,t) is a T-tight envelope of J, and that J has been endowed
with an algebra norm W.ll in such a way that there is a positive number K
satisfying IISZIISKIIDSIIZ for those s in S(A,t) for which the mapping
Ds:h——e[s,h] from J into J is contjnuous. Then Ds is continuous for all s
in S(A,t), and there exists a positive number p (depending only on K)
such that, by defining for h in J and s in S(A,T) |h+s|:=p(HhH+HDSH), 1-1
is an algebra norm on A. Clearly fa*|s}a] for all a in 4, and the

restriction of |. | to J is pl.I.

To conclude the review on Zel’manov’s type theorems for normed
Jordan algebras, let’s finally refer to the work of M. Cabrera and A.
Rodriguez [CRod6é] on Zel’manov’s treatment of nondegenerately ultraprime
Jordan-Banach algebras. A normed Jordan algebra J 1is said to be
nondegenerately wultraprime if there exists a countably incomplete
ultrafilter U on a suitable set such that the corresponding normed

ultrapower J is prime and nondegenerate. Examples of nondegenerately

ultraprime Jiﬁdan Banach algebras are all prime JB*-algebras. With the
Beidar-Mikhalev-Slin’ko characterization of*'prime nondegenerate Jordan
algebras [BeiMikSl], it can be proved easily that a normed Jordan algebra
J is nondegenerately ultraprime if and only if there exists k>0 such that
HUX’yHZKHXHHyH for all x,y in J (hence all normed ultrapowers of a
nondegenerately ultraprime normed Jordan algebra are prime and
nondegenerate). Following ideas by M. Mathieu ([Matl] and [Mat3]),
Cabrera and Rodriguez introduce “ultra-t-prime" normed associative
algebras with continuous linear involution T, that can be characterized

without any reference to ultrapowers as those normed associative algebras
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A with continuous linear involution T sétisfying
MaX{HMa,bH,HMT(a)JbH}ZkHaHHbH

for some fixed k>o and all a,b in A, where Ma,b(c):=acb (so that the
completion (A”,t) of an ultra-t-prime normed associative algebra (4,7t) is
an ultra-t-prime Banach algebra). For such an ultra-t-prime normed
associative algebra (4,t), a large t-invariant subalgebra Qb(A) of its
symmetric Martindale ring of quotients (the one of "bounded maximal
essentially defined double centralizers") can be converted in an
ultra-t-prime normed algebra in such a way that the natural embedding
AC———eQb(A) becomes a topological embedding. Then Jordan subalgebras of
Qb(A) contained in H(Qb(A),r) and containing H(A,t) as an ideal are

examples of nondegenerately ultraprime normed Jordan algebras. The main

result in [CRod6] is the following.

Theorem F.16. Up to biconiinqous isomorphisms, the nondegenerately
ultraprime Jordan;Banach coﬁplex algebras are the following:

i) H3(®®).

ii) The Jordan-Banach algebras of the form J(X,<.,.>), where
(X,<.,.>) is a regularv symmetric self-dual complex Banach space with
dim(X)z2 (see definitions before Theorem B.9).

iii) The <closed Jordan subalgebras of Qb(A)‘ contained in
H(Qb(A)“,T) and containing H(A,Tt) as an lideal, where A 1is an

ultra-t-prime complex Banach algebra with continuous linear involution <T.

The proof of this theorem is very long and difficult. Among the
results already referred, it uses Theorems B.17 and F.1, Proposition
F.15, and also in its concluding steps, either the proof of Theorem F.11
in the complete normed case, or better Theorem F.14. It uses also the
result in [CRod3] asserting that the centre- of a nondegenerate Jordan
algebra J coincides with the set {xeJ : 2Ux.y=Uny+byUX , for all y In
J}. (This was proved in [CRod3] by strong structural methods but,
accordingly to a private communication of Y. A. Medvedev, the proof can
be considerably liberated of its structural nature). The proof of theorem

F.16 involves also new results which have their own interest, and that. we

state here.

Proposition F.17. Let X, Y, and Z be real or complex normed spaces,
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and F:X——Y, G:X——>Z be bounded linear operators. Then

Sup{IIF(x)ING(x)I : HxHSZ}Efzg:EHFHHGH

Proposition F.18. Let A be a prime (associative) Banach complex
algebra with a unit 1 and a (not necessarily continuous) Ilinear
involution t. Then for every s in S(A,T) satisfying 11-s°1<1 we have

My o g M= (1-1-s"1)12)2,

Some other minor results in the paper [CRod6] we are reviewing are
that nondegenerately ultraprime Jordan-Banach complex algebras with
nonzero socle are nothing but prime nondegenerate Jordan-Banach complex
algebras with nonzero socle and minimality of norm topology (see Theorem
B.9), thus extending the corresponding associative theorem in [ArMat] and
[PeRiRodVi], and that the normed ultrapréduct of any ultrafiltered family
of prime JB*-algebras is a prime jB*—algebra. Equivalently reformulated:
there exists a universal constant G such that, for every prime

JB*-algebra J and for every x,y in J, we have HUX yHEG!leHlyII

s

Problems and future directions.

We have the conviction that the above reviewed results on
zelmanovian treatment of prime nondegenerate normed Jordan algebras,
although relevant, are only the first steps of a flourishing theory that
should be developed in the next years. Several reasons plead on behalf of
this conviction. The first one is that prime nondegenerate normed Jordan
algebras subjected until now to a zelmanovian treatment (see Theorems
F.6, F.11, and F.16) have the common very restrictive property of being
centrally closed (see D.9, B.14, and B.17, respectively), a fact that
makes easy the study of cases (i) and (ii) in Zel’manov’s theorem, and
that perhaps should be taken as an additional natural assumption for
future more general results in the line we are reviewing. In a positive
direction, since primitive Jordan-Banach complex algebras are centrally
closed (Theorem B.18), the observation above encourages to provide a
Zel’manov theorem for such algebras, the formulation of which should be
close to the following conjecture.

Conjecture F.19. A Jordan-Banach complex algebra J is primitive (if
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and) only if one of the following statements holds:

i) J=Hé(®®).

ii) J is the Jordan algebra J(X,f) of a continuous nondegenerate
symmetric bilinear form f on a complex Banach space X of dimension =2.

iii) There are a primitive associative Banach complex algebra A, and
a one-to-one continuous Jordan-homomorphism ¢ from J into some suitably
normed subalgebra of Q(A), such that the range of ¢ contains A as an
ideal.

iv) There are a primitive associative Banach complex algebra A with
a continuous linear involution =, and a one-to-one continuous
Jordan—-homomorphism ¢ from J into some suitably normed <tT-invariant
subalgebra of Q(A), such that the range of ¢ is contained in H(Q(A),<T)
and contains H(A,t) as an ideal.

The reader may have told that the conjecture above is much less
adventurous than what would be  expected from the positive results
referred below. But, even undef the additional assumption of the
existence of a nonzero socle, not much more is known (see Theorem B.S8,
and note that, with nonzero socle, primeness is equivalent to
primitiveness [FeRodl]). Another reason why we should accept “light"
normed versions of Zel’manov prime theorem, like the one in Conjecture
F.19, is that, conecerning positive results, JB*-algebras have minimality
of norm topology (see Theorem D.10), and it is strongly conjectured that
ultraprime associative Banach complex algebras, as well as
nondegenerately ultraprime Jordan-Banach complex algebras, must also have
minimality of norm topology. Then, loocking at the comparison of Theorem
B.8 with Theorem B.9, it can be expected that, unless for the case of
simple algebras with a unit that has a peculiar treatment, "strong"
normed versions of Zel’manov prime theorem may exist only for centrally
closed prime nondegenerate Jordan-Banach complex algebras with minimality
of norm topology. Even, in this case, when we ha&e the Jordan-Banach
algebra J sandwiched in the form

H(A,t)<|JSH(Q(A),T)
for a T-prime associative algebra A with 1linear involution =T, the
following two problems arise:

i) to extend the norm from H(4,t) to A (note that Theorem F.14 is
not relevant in this situation because the ideal H(A,t) needs not be

closed in J), and
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ii) to extend the norm from A to a large enough <t-invariant
subalgebra of Q(A) in such a way that the topology of this extended norm
agrees on J with the topology of the given norm on J.

We think it is more promising for the moment to look for "light"
normed versions of Zel’manov’s theorenm, by finding reasonable conditions
on associative normed algebras implying the existence of large enough
"symmetric algebras of bounded quotients", and by weakening the
norm-extension problem in the following way.

Conjecture F.20. Let A be a t-prime complex algebra with a linear
involution T, let J denote the Jordan algebra H(A,t), and assume Z(J)=J
(Z denoting the tetrad-eater zelmanovian ideal), and that (A,T) is a
t~tight envelope of J. Then, for every algebra norm .l on J such that J
Is an ideal in the completion of (J,I.Il), there exists an algebra norm
l- | on 4 making continuous the inclusion (J, 1.1 ——(4,]. ).

As a hint for an eventual proof of this conjecture, we note that,
under the above assumptions, the tetrad mapping of J enjoys a strong
separate continuity with respect to the topology of any algebra norm on J
(compare with Theorem F.13).

Thinking in "light" normed versions of Zel’manov prime theorem, a
problem to be not forgotten is that of the description of Jordan-Banach
complex algebras in cases (i) or (ii) of the original theorem. The tensor
product D@M:(C), where D denotes the disk algebra, becomes an example of
an algebra in such a situation.

Now, let center the attention on a problem concerning Theorem F. 16,
namely, if the algebras arising in case (iii) of this theorem fall in one
of the following two cases:

(1) The closed Jordan subalgebras of Qb(A)A containing A as an
ideal, where A is an ultraprime complex Banach algebra (and Qb(A) denotes
the Mathieu’s symmetric algebra of bounded quotients_[Mat3]).

(2) The closed Jordan subalgebras of Qb(A)‘ contained in H(Qb(A)‘,t)
and containing H(A,t) as an ideal, where A is an ultraprime complex
Banach algebra with continuous linear involution <.

This problem seems to be an essentially associative problem, namely,
if every prime ultra-t-~prime complex Banach algebra A, with continuous
linear involution T, is ultraprime. More precisely we pose the following
question.

F.21. Is there a simple ultra-t-prime complex Banach algebra, with
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continuous linear ihvolution T, that is not ultraprime?

Let’s finally comment about the possibility of working on normed
versions of Zel’manov prime theorem for Jordan triples [Ze2]. Because of
the analogy with the binary case, no further considerations seem to be
convenient, and we conclude with the natural conjecture about its
JB*-version.

Conjecture F.22. The prime JB*-triples are the following:

i) The Cartan factors of types C4, CS, and 06.

ii) The JB*-subtriples of Mult(A) containing A, where A is a prime
C*-algebra.

iii) The JB*-subtriples of Mult(A) contained in H(Mult(A),t) and
containing H(A,t), where A is a prime C¥-algebra with *-involution <.

iv) The JB*-subtriples of Mult(A) contained in S(Mult(A),t) and

containing S(A,T), where A is a prime C*-algebra with *-involution <.

&
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G. Addendum after the 1992 Oberwolfach Conference on Jordan algebras.

This survey was basically written immediately before the 1992
Oberwolfach Conference on Jordan algebras, and a summary of it was
presented in an address at that Conference. After these events, 0. Loos
[LoS] have provided answers to some questions early raised in this paper,
and we become pleasingly obliged to review them here in some detail.

In analogy with the notion of a "properly finite spectrum" element
of a Jordan triple considered in Section C (which was actually suggested
to us by A. Fernandez), 0. Loos have introduced the concept of a
"properly algebraic" element. Properly algebraic elements of a Jordan
triple are defined as those elements that are algebraic in every Jordan

algebra homotope. Then he has proved the following theorem.

Theorem G.1. For a semiprimitive complex Jordan-Banach triple, the
socle, the set of properly algebraic elements, the largest properly
spectrum-finite ideal, and the largest von Neumann regular ideal all
coincide.

In fact Theorem G.1 is a direct consequence of an analogous result
also proved in [Lo5] for Jordan-Banach pairs (see [Hes] for a systematic
study of Jordan-Banach pairs). The method of proof makes use of Jordan
pairs which are only "half-Banach", only one of the spaces is complete
but both are normed. The main tools are structural transformations {Lo2]
and subquotients [LoN].

Theorem G.1, together with Theorem C.2, provides affirmative answers
to question C.4 and to natural variants of~Questions C.3 and B.24. In
fact it is an almost direct consequence of Theorem G.1 and the
Benslimane-Jaa-Kaidi theorem (Theorem B.7) that Question B.24 (in its
original formulation) also has an affirmative answer. Indeed, as we have
commented after B.24, Theorem B.7 reduces the problem to prove that the
socle of a semiprimitive Jordan-Banach complex algebra J is a semiprime
ideal of J. But it is easily seen that the largest properly algebraic
ideal of an arbitrary Jordan algebra J (the existence of which is

guaranteed by [Lo5; Theorem 2.9]) is a semiprime ideal of J. Hence
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Theorem G.1 leads to the affirmative answer of B.24, that we precisely

state here.

Corollary G.2. The socle of a semiprimitive Jordan-Banach complex
algebra agrees with the largest algebraic (equivalently, spectrum-finite)

ideal.

However, Questions such as C.3 in its original formulation, or the
more general one if the socle of a complex semiprimitive Jordan-Banach
triple is the largest algebraic ideal, remain unanswered. For other

related problems we refer to [Lo5}.
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