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Abstract

Let P a projection and Qk defined from a self-adjoint operator Ak be
its canonical representation. We calculate the norm of the symmetrised
two-sided multiplication operator TPQk

E = PEQk + QkEP defined
on a C∗-algebra C∗(P,Qk, 1) generated by P and Qk where E is an
idempotent related to P and Qk.
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1 Introduction

The knowledge of structural properties of the underlying C∗-algebra is un-
doubtedly one of the cornerstones in solving the problem of norms of elemen-
tary operators. Equivalently the spectral theorem helps a great deal in under-
standing Hilbert space theory. The spectral theory gives the unitary invariants
of self-adjoint operator A on a Hilbert space H in terms of its multiplicity mea-
sure classes {μn} and provide unitarily equivalent model operators. Problems
concerning pairs of projections play a fundamental role in the theory of opera-
tor algebras. A theorem by Pedersen [8], shows that if P and Q are projections
then the C∗-algebra generated by P , Q has a concrete realisation as an algebra
of 2 × 2-matrix valued functions on [0, 1], so its representation theory is well
understood. Given two pair of projections P and Qk in terms of a generating
self adjoint operator Ak, the C∗-algebra A(E) generated by an idempotent E
is also generated by the range projections P , Qk of E respectively E∗. The
invariants of P , Qk are therefore unitary invariants as well. These to an extent



1736 F. O. Nyamwala

have been analysed also by [5]. In any C∗-algebra of operators say Ω, we can
define a symmetrised two-sided multiplication operator

X → TABX = AXB + BXA A, B, X ∈ M(Ω), (1.1)

where M(Ω) is the multiplier algebra of Ω. If Ω is a C∗-algebra of n × n ma-
trices, then M(Ω) = Ω. The problem of calculating the norm of this operator
TAB in equation (1.1) is still unresovled for a general Banach algebra. Sev-
eral attempts, however, by various authors have been made for example see
[3, 6, 7, 10, 11, 12]. The norm of this operator as revealed in many literatures
is in the range of 1 and 2, that is, ‖A‖‖B‖ ≤ ‖TAB : B(H)‖ ≤ 2‖A‖‖B‖. This
implies, with right normalisation, that the optimal norm is 2. However, this
maximal value has only been obtained in specific cases with certain restric-
tions. As our main result, we have obtain this maximal value in (1.1) for a
C∗-algebra A(P, Qk, 1). These results are outlined in section four. Therefore,
in this paper we have calculated the norm of the opearator TAB defined on C∗-
algebra A(P, Qk, 1) generated by 2×2 projection matrices P , Qk and 1, where
Qk are determined by various self-adjoint operators Ak. How Ak determines
the representation of Qk will become clear in sections 2 and 3. Thus, we have
shown that as Ak → 0, ‖TAB‖ → 2 for a particular case of A = P , B = Qk

and A = 1 − 2P , 1 − 2Qk. As usual in our workings, we will demand that
X be normalized. Although our results are not for a general Banach algebra,
it adds some results to the special cases where the optimal upper bound can
be obtained. The results are obtained by simple techniques. Our approach
rely on the calculation of spectral radius and finally the use of limits. In sec-
tion 2, we discussed the algebra of projections and section 3 the C∗-algebras
generated by projections and their canonical representations and also those
generated by idempotents. Section four contains our main results concerning
the norm and Hilbert schmidt norm estimates of operator TAB and also in the
same section, we have calculated the operator norm and the Hilbert-Schmidt
norm of TUVk

+TPQk
with U = 1−2P , Vk = 1−2Qk. A short discussion of the

Fredholm properties of TUVk
E, TPQk

E and TUVk
E + TPQk

E are done in sec-
tion 5. Thus, the conclusion in this section is that the Fredholm properties of
these operators purely depends on the Fredholm properties of Ak. The sections
of this paper are therefore organized as follows: section 1; Introduction, sec-
tion 2; Projections, section 3; C∗-algebras, section 4; Symmetrised Two-Sided
Multiplication Operators and finally section 5; Fredholm Properties.

2 Projections

Let H be a Hilbert space and B(H) denote the C∗-algebra of all bounded
linear operators on H and F(H) ⊂ B(H) the ideal of all finite rank operators.
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A sublalgebra M ⊂ B(H) is called a standard operator algebra on H if it
contains F(H). It is now clear that F(H) ⊂ M, B(H). We can also define

Ms = {A ∈ M : A = A∗}.
As M contains all finite rank operators, the set Ms contains all finite rank
self adjoint operators. We can therefore define

Fs(H) = F(H) ∩Ms = F(H) ∩ Bs(H)

to be the set of all self adjoint finite rank operators on H . We can assume
that Ms = Fs(H) = Bs(H). Therefore an equivalence relation on Fs(H) is
defined as A ≡ B if and only if ImA ≡ ImB. Here Im denotes the image
set of the operator. In each equivalence class there exist a unique projection
P , which is the orthogonal projection on ImA. A projection of a finite rank
can be identified with a finite dimensional subspace of H . Let x, y ∈ H be
unit vectors and t, s, arbitrary non-zero real numbers. If xx∗ denotes rank one
projection onto the linear span of x, then it follows that (txx∗)(syy∗)(txx∗) = 0
if and only if x and y are orthogonal. Let two projections P and Q be defined
by

P =

[
1 0
0 0

]
, Q =

[
cos2θ cosθsinθ

cosθsinθ sin2θ

]
,

where θ ∈ (0, π
2
), then P and Q are rank one projections and as θ → π

2
, P

and Q tend to be orthogonal. We also mention in passing that every rank
one self adjoint operator is of the form txx∗ for some non zero real number
t and some unit vector x. It should be understood that this non zero real
number t depends on the operator itself. It is therefore straightforward to
see that for every rank one operator A ∈ Fs(H), there exists some bounded
linear operators T1, T2 ∈ B(H) such that T1AT2 = tA and T2AT1 = sA for
some non zero real numbers s and t depending on A. By the same argument,
it can be shown that there is some positive real number t such that for the
same bounded linear operators T1 and T2 we have T2T1AT2T1 = tA for every
A ∈ Fs(H). For any pair of operators A, B ∈ Fs(H), we can choose any finite
rank projection P such that PAP = A and PBP = B, then it will also follow
that PT1AT2P = T1AT2 and PT1BT2P = T1BT2. In this case one can easily
conclude that A and B are constant multiple of each other. It also follow
by the same arguments that T2PT1 = sP for some non zero real number s
depending on P . It is worth noting here that all these triple products are
possible because the C∗-algebras B(H) is closed under Jordan triple product.
Therefore, we can find some operator T ∈ B(H) such that for T ∗ ∈ B(H), we
have PTAT ∗P = sP and PTBT ∗P = tP for some constants s and t.
As an example let B(H) = M2(C) and choose P = diag(1, 0), A = diag(q, 0),
B = diag(a, 0), then if T = (rij), (i = 1, 2), a, q ∈ R and rij ∈ C we have
s =| r11 |2 q, t =| r11 |2 a and c = q

a
for A = cB.
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Now let u and v be real positive numbers. Then there exist unique positive
real numbers α and β ∈ (0, 1) such that u+v = α2, u = βα2 and v = (1−β)α2.
Therefore we can find rank one projections P , Q, and A such that PQ = QP =
0, APA = βA and AQA = (1 − β)A. If we denote R by R = P + Q, then
R becomes a rank two projection and T1RT2 = T1PT2 + T1QT2. To show this
claim, we only need to find 2×2 matrix projections of rank one as stated earlier
on that satisfy the above conditions and elementary matrix computations show
that A = diag(1, 0),

P =

[
β η
η 1 − β

]
, Q =

[
1 − β −η
−η β

]

where η = (β(1 − β))
1
2 . With the assumption that β = sin2Ak for some Ak ∈

(0, π
2
), then the matrices P and Q above can be computed explicitly in terms

of Ak. It is from this background, with this kind of understanding that we
develope the norm theory of symmetrised two-sided multiplication operators
defined on C∗-algebras generated by two projections and an idempotent all
depending on a self adjoint operator defined from the angle between RanP and
RanQk. In developing our C∗-algebra in the next section, we will therefore fix
the projection P and vary Qk over Ak.

3 C∗-algebras

In this section we only highlight the results that the author and Behncke [2]
had obtained. These will be stated without proofs. The proofs can be obtained
from [2, 5] and the literature stated therein. The C∗-algebras generated by P ,
Qk and 1 will form underlying spaces on which the operator TPQk

will be
defined.
An operator A on a Hilbert space H will be called to be of type In, if A(A, 1)
only has irreducible representations of dimensions less than n, i.e. Â =n Â
[[4], ch. 3.6]. Selfadjoint operators are thus of type I1. In this case there is a
unitary map: U : H → ∑⊕Hi ⊗Ci so that A becomes the sum of its “simple”
multiplicity components

UAU−1 =
∑

⊕(Ai ⊗ 1i). (3.1)

Now let P and Qk be two orthogonal projections. Then it is well known that
A = A(P, Qk, 1) is of type I2, that is, irreducible representations of A are either
one or two dimensional. Moreover the generic two dimensional irreducible
representation has the form

P =

(
1 0
0 0

)
, Qk =

(
c2 sc
sc s2

)
, s = sinβ, c = cosβ, (3.2)
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where 0 < β < π
2
. From this the following result can easily be deduced by

standard C∗-algebra and von Neumann algebra techniques.

Theorem 3.1 Let P and Qk be two orthogonal projections on the Hilbert space
H. Then H has a unique decomposition H = H1 ⊕ (H2 ⊕H2) so that

(i) H1 = {x ∈ H|PQkx = QkPx} is a reducing subspace for P and Qk.

(ii) P = P1 + P2, Qk = Qk1 + Qk2 where P1 = P | H1, P2 = P | H⊥
1

Qk1 = Qk | H1 and Qk2 = Qk | H⊥
1 . H2 = P2 | H⊥

1 .

(iii) There exists a selfadjoint operator Ak on H2 with σ(Ak) ⊂ [
0, π

2

]
, and

0, π
2
�∈ σp(Ak) so that P and Qk are unitarily equivalent to

P2 =

(
1 0
0 0

)
and Qk2 =

(
c2 cs
cs s2

)
, c = cos Ak, s = sin Ak

(3.3)

(iv) The unitary invariants of P and Qk are those of A and the multiplicities

dim(H1 
 (P1 + Qk1 − P1Qk1)H1), dim(P1 − P1Qk1), (3.4)

dim(Qk1 − P1Qk1), dim(P1.Qk1).

In the remainder, Theorem 3.1 will be used systematically to obtain infor-
mation about operators Ak for which P and Qk are the range projections of
Ak respectively A∗

k. As a rule, statements about the commutative parts P1,
Qk1 tend to be trivial.

Let E be an idempotent on the Hilbert space H and let P and Qk be the
range projections of E respectively E∗, i.e. PEE∗ = EE∗P and QkE

∗E =
E∗EQk. Then ((1 − P )E)(I − P )E)∗ = 0 shows PE = E and by symmetry

PEQk = E (3.5)

As before write H = H1 ⊕ (H2 ⊕ H2) and P = P1 + P2, Qk = Qk1 + Qk2 for
the decomposition of H, P and Qk into its commutative and genuinely type I2

parts.

Theorem 3.2 a) A pair of projections P , Qk is the range projections of E
respectively E∗ iff P1Qk1 = P1 = Qk1 and if the operator Ak of Theorem
3.1 satisfies ||Ak|| < π

2
.

b) A(P, Qk, 1) = A(E, 1) and the unitary invariants of E are those of P, Qk,
i.e. dim P1Qk1, dim H1− dimP1Qk1 and those of Ak.
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c) Any idempotent E on H is unitarily equivalent to an operator of the form

E = 0 ⊕ 1 ⊕
(

1 tgAk

0 0

)
on (H10 ⊕H11) ⊕ (H2 ⊕H2) (3.6)

where H1 = H10 ⊕H11 and where Ak satisfies Ak = A∗
k, ||Ak|| < π

2
with

0 �∈ σp(Ak).

One can thus show easily from (3.6) using spectral mapping theorem that

||E||2 = ||EE∗|| = ||1 + tg2Ak|| =
1

cos2‖Ak‖ (3.7)

and σ(Ak) ⊂ [0, β], β < π
2
. Theorem 3.2 thus shows that the idempotent E is

similar to the projection P1 +P2. By induction one can then show that a finite
family of orthogonal idempotents is similar to a finite family of orthogonal
projections.

Now fix P and vary Qk over Ak and define an idempotent E which is related
to P and Qk. A symmetrised two-sided multiplication operator can thus be
defined on the C∗-algebras A(P, Qk, 1) = A(E, 1). For simplicity let

P =

[
1 0
0 0

]
, Qk =

[
c2 cs
cs s2

]
, E =

[
1 s

c

0 0

]
.

4 Symmetrised Two-sided

Multiplication Operators

Now define a symmetrised two-sided multiplication operator TAB as in equation
(1.1), with A = P , B = Qk and without loss of generality take X = E since
X will be normalized in order to calculate ‖TP,Qk

‖. To normalize E, we will
tend Ak to zero. Since A(P, Qk, 1) = A(E, 1) from results of Theorem 3.2 and
A(P, Qk, 1) = M2(C), this algebra will be the same as its multiplier algebra.
Thus,

Theorem 4.1 Let TPQk
E = PEQk +QkEP be a symmetrised two-sided mul-

tiplication operator, then limAk→0 ‖TPQk
‖ = 2 and limAk→0 ‖TPQk

‖2 = 2

Proof A simple matrix computation show that

TPQk
(E) = PEQk + QkEP = E + QkP.

Thus the eigenvalues of TPQk
E are given by

λ1|2 =
1

2
{(1 + c2

k) ±
√

(1 + c2
k)

2 + 4s2
k}.
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As Ak → 0, (3.7) implies that ‖E‖ → 1 and by spectral radius formula, one
has

‖TPQk
‖ = sup

‖E‖→1

‖TPQk
(E)‖ ≥ sup

‖E‖→1

{| λi |: λi ∈ σ(TPQk
E)} = 2

With the right normalisation, it easy to show that ‖TPQk
‖ ≤ 2 as Ak → 0.

To prove the second claim, use the following explicit formula for calculating
Hilbert Schmidt norm

‖
[

a b
c 0

]
‖2 =

1

2
{| a |2 + | b |2 + | c |2 +

√
(| a |2 + | b |2 + | c |2)2}.

Thus one has

‖TPQk
(E)‖2

2 =
1 + 3c4

k

c2
k

.

The desired results now follow at once.
�

Corollary 4.2 Let P and Qk be projections with P = PQk = Qk, then there
exists a unitary operator Wk with WkPW−1

k = Qk and WkQkW
−1
k = P and

WkEW−1
k = E∗ for the idempotent E associated to P and Qk, then ‖TWkW ∗

k
‖ →

2 as Ak → 0.

Proof By functional calculus, it suffices to solve this on C2. Here Wk is just
the reflection on the line halving the angle between PH and QkH . Explicitly

Wk is given by Wk =

[ −c −s
−s c

]
. These are the main results of [1]. It follows

by direct matrix calculation that WkEW−1
k = WkEW ∗

k = E∗. The last claim
now follows from Theorem 4.1 and the fact that Wk = W−1

k = W ∗
k . �

Remark 4.3 The unitary equivalence problem for operators on a Hilbert
space has received a lot of attention over the years. The analogue problem
for operators on a Banach space, due to lack of an inner product structure,
requires different techniques directly related to the specific setting under con-
sideration. Therefore given a symmetric norm ideal � of B(H) which is differ-
ent from C2(H) and fixed elements An and Bn (n = 1, 2) in B(H), we can let
δn : � → � be defined by δn = AnEBn. Then δ1 is isommetrically equivalent
to δ2 if and only if there exist unitary operators W1, W2 ∈ B(H) such that for
some λ ∈ C we have

A2 = λW1A1W
∗
1 , B2 =

1

λ
W2B1W

∗
2 .

In this setting, the summands of TPQk
E can be split such that δ1(E) = PEQk

and δ2(E) = QkEP . With idempotent E being symmetric and making the
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right substitutions, we have W1 =

[ −c −s
−s c

]
and W2 =

[
c s
s −c

]
and

λ = 1. Note that as Ak → 0, not only is δ1 and δ2 isometrically equivalent but
they also tend to be unitarily equivalent.

Theorem 4.4 Let U = 1 − 2P and Vk = 1 − 2Qk be unitaries of order 2. As
Ak → 0, we have ‖TUVk

‖ → 2 and also ‖TUVk
‖2 → 2.

Proof A quick check shows that QkE = Qk, EQk = E, PE = E, EP = P
and therefore

TUVk
(E) = UEVk + VkEU = 2E − 2P − 2Qk + 4QkP.

The proofs follow immediately from Theorem 4.1. �

Now define an operator

TA1B1(X) + TA2B2(X) =

2∑
i=1

AiXBi + BiXAi, (4.1)

where A2, B2 somehow are related to A1 and B1 respectively in the underlying
C∗-algebra. For the sake of this study, call the operator in (4.1) a double
symmetrised two-sided multiplication operator. Define the operator in (4.1)
with the following assumptions: A1 = P , B1 = Qk, A2 = 1−2P , B2 = 1−2Qk

and X = E. Then (4.1) reduces to

(TUVk
+ TPQk

)(E) = UEVk + VkEU + PEQk + QkEP. (4.2)

Theorem 4.5 Assume (4.2) holds, then

(i) limAk→0 ‖TUVk
+ TPQk

‖ = 4

(ii) limAk→0 ‖TUVk
+ TPQk

‖2 = 4.

Proof

(i) It follows that (TUVk
+ TPQk

)(E) = 3E − 2P − 2Qk and the eigenvalues
of (TUVk

+ TPQk
)(E) are given by

λ1 =
1

2
{γ + (γ2 − β)

1
2}, λ2 =

1

2
{γ − (γ2 − β)

1
2},

where γ = 4c2 − s2, β = 8s2. As before we obtain

‖TUVk
+ TPQk

‖ ≥ 1

2
sup

‖E‖→1

{| γ + (γ2 − β)
1
2 |, | γ − (γ2 − β)

1
2 |}.

Similar arguments to those of Theorem 4.1 clears the proof.
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(ii) Given any operator A, its Hilbert-Schmidt norm ‖A‖2 is defined by

‖A‖2 = (tr | A |2) 1
2 . This is easily calculated from eigenvalues. There-

fore, with the results in part (i), we have

‖(TUVk
+ TPQk

)(E)‖2 = {(
2∑

i=1

| λi |2) 1
2 | ‖E‖) = 1} =

1√
2
{2γ2 − β} 1

2

and thus limAk→0 ‖TUVk
+ TPQk

‖2 = 4.

�

5 Fredholm Properties

Theorem 5.1 The operators TPQk
E, TUVk

(E), and (TUVk
+ TPQk

)(E) are
Fredholm iff Ak is.

Proof To show that TPQk
E is Fredholm, we need to show that the matrix

representation of TPQk
E is invertible and this is so if and only if −sin2Ak is

invertible, that is, if Ak is invertible. Therefore TPQk
E is Fredholm if and only

if Ak is. Similarly TUVk
(E) is invertible if and only if −2sin2Ak is invertible,

that is, if Ak is invertible. Hence the implication. Finally (TUVk
+ TPQk

)(E)
is invertible iff −11sin2Ak is invertible implying that only if Ak is invertible.
This completes the proof and hence it becomes clear that the Fredholmness of
these operators depends on that of Ak. �

Remark 5.2 As proposed in [12] an application of essential numerical range
can provide an alternative proof for Theorem 4.1 provided Wm,e(P

∗, Q∗
k) ∩

Wm,e(P, Qk) �= ∅. With the assumption that this holds one has ‖TPQk
‖cb =

‖TPQk
‖ = ‖PP ∗‖+‖Q∗

kQk‖ where the subscript cb denotes completely bounded
norm. As Ak → 0, note that ‖P‖ = ‖Qk‖ = 1.
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