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THE NORM OF A SYMMETRIC ELEMENTARY OPERATOR

BOJAN MAGAJINA

(Communicated by Joseph A. Ball)

ABSTRACT. The norm of the operator = + a*zb +b*za on A = B(H) (or on
any prime C*-algebra A) is computed for all a,b € A and is shown to be equal
to the completely bounded norm. ‘

1. INTRODUCTION

Given a'C*—algebra A, an operator on A of the form

T:A—=A, Te=> azb; (z€A),
: i=1
where a;,b; € A are fixed, is called an elementary operator and the smallest n for
which T can be expressed in such a form is the length of T. Sometimes the norm of
such an operator is equal to the completely bounded norm, hence, to the Haagerup
norm of the corresponding tensor 3 a; ®b; (see [10] and [5]), but in general there is
no simple formula known for computing the norm of an elementary operator even
if A = B(H), the algebra of all bounded operators on a complex Hilbert space H

(see [8] for a survey): Although the case of generalized derivations (z — az + zb)

on B(H) was already settled by Stampfli [13] more than thirty years ago (see [2]
for more), a,slight'ly more general operator ‘

Tup: B(H) = B(H), Thsz = azb+ bza

still pres'ents'a:_problem. Contrary to what one might expect from automatic com-
plete positivity of positivé elementary operators of length two (see [14] and the
references there) by an analogy, the norm of T, can be different from the com-
pletely bounded norm. It was conjectured by Mathieu [7] that || T, 5]l > llali||b]| for
all a,b € B(H), and if a and b are selfadjoint, this was confirmed by Staché and
Zalar [12], but for general a, b this is still open and the best estimate known seems
to be the one in [11].

In this note we shall deduce a formula for the norm of the operator T, ; when a
and b are selfadjoint. (The restriction Top|B(H)sq is a special case of the Jacobson-
McCrimmon operator.) More generally, we shall prove the following.
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To simplify the notation, put e
p=tls+ D) == D) r= s+ )

and let B B

A={(p,qr)€ER®: p>0, >0, pr— 2=1}.

Note that the map (¢,8) — (p,q¢,7) from RT x R¥ on A is surjective (in fact

bijective). Furthermore, for each '

(2.5) A= (p,q,r) €A, let c\=pa*a+rb*b+ 2gIm(a*d).

Then from the above computatioa_a we have
(2.6) o SapB(H)sall = sup fof (036,
We note that ¢, is positive since
.q .q 1.

= —i=bY*(a —i=b) + =b"b.
en ex=pla=ilh)(a=ih)+
Moreover, denoting m = inf;eg ||a — itb||, (2.7) implies that

g

(2.8) fleall Zplla—%g,gbli2 > pm?.

Hence ||ca|| — oo as p (or, similarly, r) tends to oo if m 7 0. Since pr — @?=1
for all A = (p,¢,7) € A, it follows by a standard compactness argumen't that there
exists a A\g € A such that ||cx, || = infaea [ca| if @ and ib are linearly independent

over R. .
We shall use the usual notation w(a) for the numerical radius of an operator

a € B(H). It is well known that w(a) = |a|| if a is selfadjoint. The following'

lemma, implies that (at least if H is ﬁnit‘e dimensional) we may interchange “sup.”
and “inf,” in (2.6). C P

Lemma 2.3. Suppose that o and ib are linearly mdep{zndent over R qnd that H is
finite dimensional.. Then there ezist Ao = (po,g0,70) € A and a unit vector £ € H
such that : ~ — -

_ wlcy,) = wp == g\nei}%w(c,\), o
1 1 » 1
i||CL§||2 = Swo = —[|Bé|* and Im(b¢,at) = —5%0Wo-
70 2 Do T ‘

Moreover, infaep(cr&, &) = wo; hence

sup inf (can,m) = inf sup (can,)-

, Inll=1 A€ A€M Jg)l=1 _ .
Proof. We have already seen in the argument following (2.8) that there exists Ao =
(9o, g0, 70) € A satisfying w(cy,) = infaea w(A). Put co =cx,, s =po—p, t=¢—q
and write r = 1—"—;‘13 as the sum of the Taylor polynomial of degrge one (in s, t) plus
the remainder S

pot? + ros® + 2qots
r=rg +.T—,Os+2q—0t+R(s,t), where R(s,t) = .
Do Do Pop

Then by the definition (2.5) of ¢y we have
(2.9) ox = o + sd +te + R(s,1)b%b;

THE NORM OF A SYMMETRIC ELEMENTARY OPERATOR 1751
where ,
7 -
(2.10) d=bb—0a*a and e=2Tpp+ 2Im(a*d).
© Po Do

By the minimality of wo (and since dim M < o), for each A = (p,g,7) € A there
exists a unit vector £y € H such that (c\é», €x) = wo; that is, ~

(211)  (cofa,60) + 8(dEx, £2) + Hefn, E) + R(s, DB > wo > (co, &),

where A depends on (s,t). For a fixed (u,v) € R?, we may replace in (2.11) (s,¢)

by (u/n,v/n) (n'€ N) to get a unit vector &, = Ex(u/nyo/m) Such that
(212) (cobmy€a) + 1 (s ) 1 (i ) + RO, )06 2w > (cobe, ).

By choosing a Sﬁbsequénce, we may assume that the vectors fnb converge tb some
unit vector &y, € M. From (2.12) we first conclude that lim({co&n, &n) = wo, hence

(213) P : . <¢0§u,‘ur§u,’u> = wp
and then (since R(s/n, t/n) converges to 0 as 1/n?) that
(2.14)‘ U<d§u,u, 6u,v> + U<€§u,’ua fu,v> > 0.

Denote by K the eigenépace of ¢y corresponding to the eigenvalue wg. Then it
follows from (2.13) that &, € K. Moreover, since the spatial numerical range
W of the compression of d + ie onto K is convex (see [3]) and compact (since
dim K < 00), it follows from (2.14) that there exists a unit vector ¢ € K such that
(2.15) (6,6 =0 and (e6,€) =0.

(Otherwise, for some linear functional w on the plane containing W we would
have that w(z,y) < 0 for all x + iy € W; but since w is necessarily of the form
w(z,y) = uz-+vy for some (u,v) € R?, this would contradict (2.14).) Now it follows
from-(2.15) and the definition (2.10) of d and e that’ s

(2.16) poljadl® = rollb&]|* and polm(b¢, af) = —golb¢]1*.

Since (co€,§) = wo and ¢o = poa*a + rob*b + 2goIm(a*b) by (2.5), we have that
polla | + rol[b&[1* + 2q0Im(b, ag) = wy,

from which we compute by using (2.16) and the identity PoTo ~gg=1 that '

(237) - fag]® = o, 1961° = Lo and Im{re,ag) = ~ L.

Finally, for each A= (p,g,7) € A we compute, using (2.9), (2.15) and Cdf = woé
" that D o o
(218) : R <C)\§: §> = wp + R(S, t)”bfnz 2 Wo,

since R(s,t) > 0. The inequality SUP,=1 infaea (can,7) < infaep SUP||pi=1(CAM: M)
is a tautology, while the reverse inequality follows from (2.18) since wp =
infaep w(en). . O

Proof of Theorem 1.1. First assume that ¢ and ib are linearly independent over R.
Since [[Sa,5[B(H)sall < [Sapll < [1Sapllcr and [|Saplics is equal to the Haagerup
norm of the tensor 7 := a* ® b+ b* ® a (see [10]), it suffices to prove that ||7| <
1Sa,5/B(H)sel- Put E = Sa,5|B(H)sq. Observe that for all o, 8, € R satisfying
ay— %=1 we can write 7 as " B B

7 =(—16a" +yb") ® (aa — i8b) + (™ +48b*) @ (iBa + yb).
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Hence (after a short computation),
I7[ln < [[(e® + 8%)a*a + (v* + %)b*b + 26(a + )Im(a" D).

Observe that for all (p,q,7) as in Theorem 1.1 (that is, (p,q,7) € A) we can find
@, 3,7 so that a? + 32 = p, B2 +~2 = r and ﬂ(a-i—'y) = ¢. (To show this, the reader
may assume, by replacing o and b with ta and b for a suitable ¢, that 7 = p, which
31mphﬁes the computation:) It follows that
(2.19) |I7lln £ < inf  sup (pa™a + rb*b + 2gIm(a*b)¢,§) = inf sup (cr§,§).
(Pam)€A Jig=1 AEA Jgl=1
If H is finite dimensional, Lemma 2.3 implies that we can interchange the “inf”
and “sup” in (2.19), and then the right side of (2.19) commdes with the rlght side
of (2.6). Thus [[7||, = || E| if H is finite dimensional.
* If H is infinite dimensional, choose an increasing net of finite rank projections
P, converging to the identity. ‘We shall continue to use the notation cy:and
wo = infyep wlcy) from the proof of Lemma 2.3. Since for v > vy we have that
[tP,bP, || > ||tP,,bP,,| — oo as |t| — oo if vy is large enough, and similarly for
a in place of b, we may assume (replacing the net by the subnet v > 1) that for
some positive constant x we have :

inf |P,(a —ith)P,|| > k and inf{ P, (b—1ita)P,|| > «
teR ‘ : T teR N

for all v. Then by the same reasoning as that. leading to (2.8),. We have that
w(P,exP,) > max{p,r}x? for all v and A € A. Hence (since pr — q = 1) there
exists a compact subset 2 of A such that

(Pc,\P)>wo‘

for allvif ) € A\Q For each v let A, be such that w(P,cx; P,) = infaca w(PyexPy)-
Since w(P,cx, P,) < wo, all ), are in €. Hence, by compactness and choosing a
subnet, we may assume that the net (),) converges to some. Ao € 2. Then from
(2.19), '

(220) Irlla g jaf w(e) S;w(ckvo ) = lim o _

But lim ||cy, || = lim || P,ca, B || since the net (cy, ) converges in norm and (P,) con-
verges strongly to the identity. Moreover, by the already proved finite-dimensional
case and the choice of \, we have that |P,cy, P, || = | E,||; where E, is the opera-
tor on B(P,H) defined by E,(z) = P,a*P,zP,bP, + P,b*P,zP,aP,. Since clearly
(23 < ||E|| for each v, we finally conclude from (2.20) that |||, < || E].

It remains to con51der the case when a and 4b are linearly dependent over R, say
b = tia for some t € R. Then S, =0 and the theorem reduces to the identity

inf{lp + 2r + 2qt| : p,q,r €R, p,7 >0, pr— q2 = 1} =0.

To verify this identity, just put ¢ = —rt, p=7~1(1 4+ 7%2?) and let r — co.
. g

‘Remark 2.4. By an application of the Kaplansky density theorem, the conclusions
of Theorem 1.1 can be extended to the operator S, acting on any irreducible
C*-subalgebra of B(%). In fact, the theorem can be extended to any prime C*-
algebra A since each separable subalgebra of A is contained in a separable prime C*-
subalgebra Ag of A and Ay has a faithful irreducible representation. It is not known
to the author, however, to what kind of more general C*-algebras can Theorem
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1.1 be extended if scalars are replaced by central elements of the correspondmg
multiplier algebras.

Since the formula in Theorem 1.1 may not be easy to apply in practlcal compu-
tations, we now give a simple estimate for the norm of Sap. -

Let us denote by ~, the minimal modulus of an operator.a € B(H) that i is, the
smallest point in the spectrum of |a]. :

Corollary 2.5. For all a,b € B(H) the estimate

max{”a” 1nf ]Ib — tial|, ||bH 1nf lla — tzb“} < HSa o] < 2\/||aH2HbH2 'yIm(a*b) |
holds.

Proof. The inequality [|S, ] < 2\/ llal|2]jb]2 — ylm(a*b) follows 1mmed1ately from

Theorem 1.1 and the identity (2.3). To prove the other inequality, note that from
(2.7) we have for each ¢ € H (denotmg t=gq/p),

(221) - (cAf,ﬁ)v=p_||(a—.tlb)£ll2 I|b§I|2>2H(a-tlb)§HIIb€H

Now observe that sup¢ - [|c€|l[[dé| > Lllc]|||d]| for all ¢,d € B(H). (By the polar
decomposition it suffices to prove this for positive ¢ and d with norm 1. Then, if
H is finite dimensional, choose a unit vector ¢ such that the projections of £ to
the eigenspaces of ¢ and d corresponding to the eigenvalue 1 both have lengths at
least 1/+/2 and note that llc€lllld€ll > 1/2. If H is infinite dimensional, use an
approximate version of this argument.) Applying this to (2.21) we get

sup (eaé,€) > [la — tibl| 1]
li€l=1

hence by Theorem 11,
Sa — - ) . ) _ .
15all = inf n?nlgl(c'\g’ §) 2 inf [la — tablf[b].
Since we can iriterchange the roles of @ and b, this conclﬁdes the proof. ' O

Theorem 1.1 shows that [[Ses/lcb = [Sa,5/B(H)sall, but to compute the norm it
is usually more convement to use the formula (2.3) from Theorem 2.2.

- Example 2.6. If v and v are isometries, then

1w,

(VA 712m(u*v) )

hence, if in addition u or v is a unitary, ||Sy,.|| = 2|Re(w*v)]|.

Indeed, the first equality follows immediately from (2.3) and Theorem 1.1. I,
say, u is a unitary, then w = u*v is an isometry. If w contains the unilateral shift
as a direct summand, then the spectra of Im(w) and Re(w) are [-1,1]. Hence
Ym(w) = 0 and [[Sy,| = 2 = 2|[Re(w)||. On the other hand, if w does not contain
the unilateral shift as a direct summand, then w is a unitary (see [3]) and the
functional calculus shows that /1 — 72 = [[Re(w)].

Note that Su,.(1) = 2Re(u*v); hence Sy, attains its norm at the identity oper-
ator if u and v are unitaries.
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It may also be interesting to observe that in the case of isometries the upper
bound in Corollary 2.5 agrees with the norm of Sy, while the lower bound is
L||Su,vll (after a short calculation). There are, however, examples showing that
the lower bound cannot be improved in general. Take, for instance, two non-
zero orthogonal projections e, f with ef = 0; using (2.3) one can compute that
[|Se,£|l = 1, which in this case agrees with the lower bound in Corollary 2.5.

Note. After this paper was submitted for publication, we received two preprints
from Richard M. Timoney, Trinity College Dublin, in which the relation between the
completely bounded norm and the k-norms of elementary operators is investigated;
his results also show that [|[Sqslcb = [|Sapll-

Note added in proof. Mathieu’s conjecture mentioned in the introduction has
been recently confirmed by Blanco, Boumazgour and Ransford and mdependently
by Timoney.
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BACKWARD UNIQUENESS FOR SOLUTIONS
OF LINEAR PARABOLIC EQUATIONS"

IGOR KUKAVICA

(Communicated by David S. Tartakoff)

ABSTRACT. We address the backward uniqueness property for the equation

— Au = w;85u + vu in R™ X (Tp,0]. We show that under rather general
conditions on v and w, ult=0 = O implies that u vanishes to infinite order for
all points (z,0). It follows that the backward uniqueness holds if w = 0 and
v € L*°([0, To], LP(R™)) when p > n/2. The borderline case p = n/2 is.also
covered with an additional continuity and smallness assumption.

1. INTRODUCTION

- A question of a solution semlgroup of an equation on R“
— Au+ flz,u, Vu) =0,

being one-to-ons is clearly reduced to the following problem If a solutlon U of
(1.1) Au—!—wj@u—l—'uu—o '

on R™ x (—Tp, 0} vanishes for t = 0, does it necessarily vanish for £ < 07 This
question of backward uniqueness was raised by Lax [L] and addressed by various
authors ([L], [P], [LP], [G], [AN1], [AN2]). The approach by weighted inequalities,
resembhng the Carleman inequality method has been employed by Lees and Protter

[P], [LP].” In particular, the backward uniqueness property was proved for the

differential inequality

(uy — Au)? < Ou + C[Vu|2

When comparing with the equation (1 1) this covers the case v € L°°((Tg, 0y,
P (R™)) and w € L*®((Tp,0), LP2(R™)) when py > n and py = co. The logarith-
mic convexity approach, introduced by Agmeon and Nirenberg [AN1], [AN2] and
used in [A}, [BT], [G], is a lot simpler. However, it leads to the same range of expo-
nents p1,p2 (cf. [G]). Based on forward uniqueness results, it seems that backward
uniqueness should hold when p; > n/ 2 and py > n with sufficiently small norms
when p; = n/2 and p; = n.

Recently, Escauriaza and Vega (cf. [E], [EV]) showed that if u, a solution of

(1.1), vanishes of infinite order in space-time at (z,t) = (0,0), and if w = 0 and
v € L*®((Tp,0), LP* (R™)) where p; > n/2 (with sufficiently small norm when p; =
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