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Every separable L;-predual is complemented
in a C*-algebra

by

WOLFGANG LUsKyY (Paderborn)

. Abstract. We show that every separable complex Li-predual space X is contrac-
tively complemented in the CAR~algebra. As an application we deduce that the open unit
ball of X is a bounded homogeneous symmetric domain.

1. The main results. This paper is concerned with Li-predual spaces
(over C) and their connection to C*-algebras. Let X be a separable Banach
space (over C) such that X* is isometrically isomorphic to an L;-space.
For example, if K is a compact Hausdorff space then the Banach space
C(K) of all complex-valued continuous functions on K has a dual which is
isometrically isomorphic to an Li-space: However there are many examples
where X is not isomorphic to any complemented subspace of any C'(K)-space
([2]). On the other hand, a separable L;-predual is always isomorphic to a
quotient of a C(K)-space ([4]). ‘ '

C(K) is a commutative C*-algebra. H. P. Rosenthal conjectured that
the non-commutative situation might be different, i.e. that X might always
be complemented in a (non-commutative) C*-algebra. Furthermore there
might even be a universal C*-algebra containing all separable L;-preduals
a][sl complemented subspaces. The CAR-algebra .4 might be a candidate for
this.

The aim of the paper is to confirm Rosenthal’s conjecturé.

Fix a sequence of integers 0 < m1 < meo < ... Then we define the
C*-algebra Ay, as follows: For a Hilbert space H let L(H) be the space
of all linear and bounded operators on H. Moreover let M,, = L(IF) be the
space of all n x n-matrices (over C). Identify B € Mam, with
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104 W. Lusky

B 0 ... 0
(.) € Momnta.
: .0
0 ... 0 B

‘Via this identification Mam, becomes a x-subalgebra of Maoma11. Now, put
A(mn) = Un Mzmn .

If m, = n for all n then A is called the C(anonical) A(nti-commutation)
R(elations) algebra ([5]). It is easily seen that, for arbitrary (m.), the C*-
algebra A(n,,) is algebraically isometric to a unital contractively comple-
mented subalgebra of the CAR-algebra. We call A,y a natural subalgebra
of the CAR-algebra.

THEOREM. Let A be the CAR-algebra. Then every separable Li-predual
space X (over C) is isometrically isomorphic to a contractively comple-
mented subspace of A. ‘

Before we prove the theorem in Section 3, we discuss the following con-

sequence. Let U be an open connected subset of a complex Banach space X.
Recall that a map ¢ : U — X is called holomorphic if, for each 2z € U,
there is a sequence of homogeneous polynomials p, : X — X of degree n
such that ' ‘ ’

go(z) = an(z — 29) for all z € U.
k=0 .

(Here pn(2) = fa(z,...,2) for some continuous, symmetric, n-linear map
frn: X" — X.) : v

COROLLARY. Let X be a separable complex Li-predual space and U its
open unit ball. Then U is a bounded homogeneous symmetric domain. That
is, for each z € U there exists a bijective holomorphic map ¢, : U — U
such that o7 is holomorphic and we have ¢, (0) = z. Moreover, there is a
bijective holomorphic map o, ::U — U such that 0.(z) = z, o2 =idy and

ol(z) = —idx where ol,(z) is the Fréchet derivative of o, at z.

Proof. Since X is contractively complemented in a C*-algebra, it is a
JB*-triple ([3], 7], [13], for definitions see also [1], [14]). It follows that U
satisfies the assertion of the Corollary according to [6], [15] and [14]. =

Acknowledgements. I am grateful to G. Godefroy who called my at--

tention to JB*-triples and suggested the preceding Corollary.

2. L;-predual spaces. First we recall some basic facts concerning sep-
arable Li-preduals X.
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It is well known ([9], [8], [11]) that there are I -spaces &, such that
EiCéC... and X=U8n.

Let {e;n}; be the unit vector basis of &,. Then there are numbers a;
with > ; |asn| < 1 such that, for a suitable order of the indices ¢ of the
€in+1, We have :

€in = €in+l T Ginbnt+ln+tl; ’ i=1,...,n, n=12,... ([10])
Moreover, let $; € X* be the functional with

1, 1=17, o
¢j(€i,n)={0 it n=j573+1,...

Then ||P;]| =1 and Ppy1(€in) = Gin, i =1,...,7.

It is well known that an Li-predual X is a simplex space, i.e. the space of
all continuous affine functions on a Choquet simplex, if and only if the unit
ball of X has an extreme point e ([8], [12]). This is equivalent to the fact
that X has a representation of the form X = [J&, as above where e; ; =e.
This implies that here the corresponding numbers a; ,, satisfy a;, > 0 and
Z?:l Qi = 1.

The following lemma, is due to Lazar and Lindenstrauss in the real case
([8]). To keep the paper self-contained we include a proof which also covers
the complex case.

LEMMA. For every separable Li-predual X there is a separable simplex
space Y O X and a contractive projection P.: Y — X..

Proof. Let

X=U<S’n, 81c...cl§o%’8ncgn;1c...-

as before. Using the preceding remarks we find &1,...,9, € X* such that

P1le,,- -, Pnle, are extreme points of the unit ball of £; and, by evaluation,
&, can be isometrically embedded into C(K,) where K,, = {6%; : j =
1,...,n, 0 €C, |8} =1}. For f € C(K,) put
. 27 - '
- 1 A . .
(Pnf)(9¢]) =5 S e—upf(eeup@j) d(P, j=1,...,n, |9| =1L

271'0

Then (P, f)(08;) = 6(Prf)(P;) and we see that P, is a contractive projec-
tion from C(K,) onto &y,.

Let ip : €, — En+1 be the canonical injection. We extend i, to an
isometry from C(K,,) into C(K,+1) as follows. Let.

n n '
Bnirle, = Y 0ibibile, + ) onsibnti(—Di)le,

3=1 i=1
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for some 0; € C with |6;| = 1 and a; > 0 with Zf’_ll a; =1. Let |#] =1 and
define, for f € C(K,),

(inf)(6Fpns1) Zaz F(60:9; +Zan+z F(—00,1:5;)

and (i, f)(09;) = f(69;) 1f j < n. This deﬁmtlon extends i, to an isometry
from C(K,) into C(Kp+1) with i1k, = 1k, ,. Moreover, we have i,0 P, =
P, .1 014y,. Thus, if we identify f € C(Kp) Wlth inf € C(Kp+1) then we can
define Y = J,, C(K,). Then Y is an L;-predual (see e.g. [9]) whose unit ball
has an extreme point, namely 1x, = 1k, = ..., and Y contains X=U,¢%n
The P, yield a contractive projection P: Y — X. m

3. Proof of the main result. In the following we consider a Hilbert
space H and an involutive isometry S : H — H. Take T' € L(H). Then we
define

Es(T) = %(T + STS).

Of course, we have EsEg(T) = Es(T). Moreover, Eg(T) = 0 if and only if
T =2"YT — STS) and Eg(T) =T if and only if ST =T'S.

We use the notion of isomorphism strictly in the category of Banach
spaces (i.e. as linear map). If we deal with invertible continuous multiplica-
tive linear maps then we speak of algebra isomorphisms.

Proof of the Theorem. We construct a Hilbert space H, a *-subalgebra A
of L(H) and an involutive isometry S : H — H such that X is isometrically
embedded in Es(A) and complemented in A + SAS. Moreover, A and S
are such that Eg|4 is an isometry. Hence X is isometrically isomorphic
to a contractively complemented subspace of A. It turns out that A is a
natural subalgebra of the CAR-algebra and hence A is complemented in the
CAR-algebra. This proves the Theorem.

In view of the Lemma in Section 2 it suﬁices to assume that X is a
simplex space. So, let a; , be such that

n
ain >0 and Zai'n =1
i=1 :
and such that these numbers, as indicated in the prehmmarles define the
isometric embeddings

(1) Tn:En 2L — lgo'*'l >E

where X = Ué&n- The &, will be recovered as certain subspaces of L(H) for
a suitable Hilbert space H.
First, we use induction to define finite-dimensional Hilbert spaces Hp,

and isometric embeddings tn : Hn, — Hpi1, 7n @ L(Hp) — L(Hng1)
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such that 7, is an isometric *-algebra isomorphism onto a x-subalgebra
of L(Hyp+1). Moreover we find isometric copies of &, (called &, again) in

L(H,) and contractive projections P, : L(Hy) — &, such that the following
relations hold:

(2) Ppi10omy =Ta0 P,
(3) ' i oT =mp(T) oty forall T € L(Hy), :
(4)  Por1(mn(T))(enh) = tnPa(T)h  for all T € L(Hy) and h € Hy.

In particular the following diagrams commute:

L(Hp) = L(Hn1) Hy —"—>Hpi1 .
Pnl an+1 Tl lﬂ'n(T)
En — n+1 H, s Hn-l—l

It would be tempting to go over to the direct limits of the H, and
the £(H,) and then, using the P,, to build up a common projection P.
Unfortunately we do not have 7Tn1gn = 7, in general. Hence we cannot find

"an isometric copy of X as a subspace of the direct limit of the £(H,). This

is the reason why we bring Eg into the play with respect to some isometric
involution S. To this end we. construct, in addition, involutive isometries
S, : H, — H, such that

(5) tn © Sp = Snt1 O ln,

(6) Po(T) 0 Sp = Sp 0 Po(T)  for all T € L(Hy),
(1) P,(T) = Po.(SxTS,) forall T € L(Ha,),
(8) [ Es i (ma(T)1F = 1] for all T € L(Hn).

In particular, the diagram

H,—2> Hp
Snl lsn-pl
H — n+1

commutes and we obtain, by (6) with S2 =
&, C Es, (L(H,)) for each n.
On the other hand, we do not have 7, (S,) = Sp+1 in general.

(a) First we want to show how we can derive the essential part of the
Theorem from the preceding assumptions.
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CLAIM. Assume that (2)—(8) are satisfied. Then there is a Hilbert space H,
an involutive isometry S € L(H) and a x-subalgebra A C L(H) such that
Es| 4 is an isometry. Moreover, there is a contractive projection P EgA —
EsA such that P(Eg.A) is an isometric copy of X.

Proof. At first put
H =5pmm{(0,...,0,h, tn(h), tns1tn(h),...) : h € Hyyn=1,2,...}
n—1
CH19H®.. .)(oo)
(endowed with the norm ||(hg)|| = supy, [|h&l]). Moreover, define

N ={(h1,hs,..) € H: lim [|hn|| = 0}.

Put H=H /N. Then H is a Hilbert space with scalar product
((h) + N, (gx) + N) = Lim (h, k)
(recall that (hg, gx) = (tkhk, tkgx) since the ¢ are isometries). Identify h €

H,, with
H,—J

n—1

Then Hi CH2 C ... and H = H,.
Define, for T € L(H,),

(9)  T((0,...,0,h, tmh, Lmﬂ;m )+N)

m—1
=(0,...,0,("m—1 o...own)(T)h,Lm(ﬂm_lo..;own)(T)h,...)—i—N
m—1
=(0,...,0,(Tm—10...0mp) (D), (Tm 0 Tm-10...0 Wn)(T)Lmh,
m—1 .

(Tos1 0 - . 0 o) (T tmt1tmBs - --) + N

if h € Hy, and m > n (see (3)). Put

L(H,) ={T:T € L(Hn)}-
Then L(Hy) C L(H3) C ... Define
(10) A=UL(H,) C L(H),

which is a x-subalgebra of L(H) since all 7, are *-algebra isomorphisms.
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Moreover, put

S((O, .,0,h, tyh,...)+ N)
: n—1 .
=(0,...,0, 80k, Spt1tnh; Sataintitnh,...) + N
n—1 .
=(0,...,0,Snh, tnSnh; tnt1tnSnh, . ..) + N.
N - T : .
n—

This makes sense in view of (5). Then S is an involutive isometry on H.
Unfortunately, S is not an element of A (since Spi1 # Wn(Sn)). For T €
L(H,), h € Hy, we have ,

STS((0,...,0,h, tnh, tni1inh,...) + N)
%/—’
n—1
= (07 ey O, SnTth, Sn+17rn(T)Sn+1th,
e — ‘ .

n—1

Spt2(Tnt1 0 T ) (T)Sniatntitnh, . - )+ N.

This implies
Es(T)((0,---,0, b, tah,...) + N)
H/—-/

n—1
=(0,...,0,Es, (T)h, Es, ., (mn(T))tnh, Es, ., (Trt10mn(T))tnt1inh, .. )+
n—1 ‘ ‘ v
Hence, by (8), Es : A — L(H) is an isometry.
For T € L(H,) and h € H, define
P(T)((0,...,0,h, th tntitnh, . ..) + N)
ARG
n-—1 ‘ _
=(0,...,0, Po(T)h, Pos1(mn(T))tnh, Pri2(Tnt1 © Tn(T))int1tnh, .. J+N
n—1 .
= (0,...,0, Pa(T)h, tn Pu(T)hy tnt1tnPa(T)h, .. ) + N
n—1"

(see (4)). Hence P is well defined on A and, in view of (7), even on A+SAS.
So P can be regarded as a contractive operator on A+ S.AS. Condition (6)
implies that

¥

PA=P(A+ SAS)C EsAC A+ SAS.
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Hence PA is contractively complemented in Eg.A and EgA is isometrically
isomorphic to A. : :

Finally, by the definition of P, in view of (1), (3) and (2), we have, if
T e L(H,) and h € Hy,

P(f)((ov IREE' 07 h; th’y Ln+1l«nh, .. ) -+ N)

n—1
= (0,...,0, Po(T)h, taPu(T)h, tri1tn Pa(T)By .. ) + N
: n—1
‘ n—1

tniatnal Por1(mn(T))tnh,...) + N

=(0,...,0, Po(T)h, Tn Po(T)tnhy tns1Ta Pr(T)inh, .. .) + N
e’

n—1

=(0,...,0, 70 Pu(T)tnh, tns1TnPr(T)inh,...) + N.
——

n

The last equality follows from the definition of V.

This means that &, = PL(H,) and &, is identified with the subspace
Tnn Of Eny1 =2 PL(Hp+1). Hence PA = X. This completes the proof of
Claim (a). = '

(b) Now we show that we can realize (2)—(8). Consider the isometries
T I 2 &y — Epyr I of (1).

CLAIM. There are Hy, tpn, Sn, ™n and P, satisfying (2)—(8).

Proof. We construct Hy, Ly, Sn, Tn, P by induction. Let Hi be a one-
dimensional Hilbert space, S1 = idg, and P; = identity on L£(H;).

Assume next that we already have finite-dimensional Hilbert spaces

Hy,...,H,, involutive isometries Si,..., Sy, isometric embeddings ¢1, ...
..eylpn—1, iSometric *-algebra isomorphisms 7y,...,7,—1 and projections
P, ..., P, satisfying the relations corresponding to (2)—(8) for the indices
1,...,n. Moreover, we assume that T;, € L(Hp), ¢t = 1,...,n, are the el-
ements of the unit vector basis of £, = 7 and that there are h; € Hj,
j=1,...,n k=1,...,m;, for some m;, which form an ON-system in H,
and satisfy Sphjr = hjx for all j and &k and
hjx ifl=7,
Tz,nhj,k-—{o 15, k=1,...,m;
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Finally suppose that there are §;,; > 0 such that

m;
(11) B =Y Birhix ® hjk
k=1

regarded as a linear functional on L(H,) satisfies

B =1 and B;(Tin) =4 =1
(12) I =1 and T = {2
By (11) we mean the functional with
O;(T) = Bin(Thik hik) for all T € L(Hp).
k=1

The h; ; may not span Hy, . They are only needed to define the functionals ®;.
(The values T}, (h) are irrelevant if / is not in the span of the elements hik
as long as we know that ||Tj || =1.)

Our hypothesis includes further that P, is defined by

n
(13) Po(T) = ZQSJ(T)TJ}N’ T € L(Hn).
—
For the next step of the induction put
. n
(14) Mup1 = m; and M =2m~Fh
=1

Hence M - 2> mpy1. Let »
| Hop1 = (Ha© ... @ Ho)y)
A

M times

be endowed with the norm

1Ry« han) | = ) e 1Rl

inh=(h,0,...,0) € Hpy1.
Moreover, for T' € L(H,) put

Define, for h € H,,

T 0 ... O
) m@=|" | e L),
6 ... 0 T

Then 7, is an isometric x-algebra isomorphism onto a x-subalgebra of
L(Hp11). Clearly, tn 0 T = mn(T') 0 tp, for all T € L(Hy), which proves (3).
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Now, with the given numbers a;,, > 0 describing 7, (see (1)) we define
the following elements in Hy1q:

(16)  hnt1y
_Zzw/aj,nﬁjkexp< (qu-i—k)) 55 0,Ri%,0,...),
7j=1 k=1 g=1 l

b=1,..., M. (Recall that mp1 <M —2.)
Smce >ondy Bik =P;(Tjn) =1 and 375, ajn = 1 we deduce that

{Ln jk}j 1,...,m, k=1,...,m; U{hn—i-ll}l o

is an ON-system in H,,1. We have
(17) (T (Tjm)Pnt1ls Png1)
_ {aj,n S0y Bie(Timhgge, hig) i 1=1,

0 ' ‘ otherwise
_ {aj,n@jm,n) if I =1,
0o . otherwise

_ {ajyn ifl= l/,
0 otherwise.

From now on we regard &; as a functional on £(H,+1) by putting

U1,1 - Ul,M :
(18) @j ‘ = @j(Ul,l), Ui,k < L:(Hn)
UM,l . UM,M
We define S
4 1
(19) Pp1 = — zz; ﬁn+1z ® hn+1z

Then @ri1lr, c(H,) = D jey @G Pilmnc(rr,)- Indeed, for T € L(H,) we have,
in view of (19), :

(20) ¢n+1(7rn(T>) =
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Since Sphjx = hji we also have
n+1(7rn STZ,TS Z a/g n

Put

G=(HnEB...EBHn)(2)

M —2 times

and regard G as a subspace of H,41, i.e. identify g € G with (0,9,0)in Hpya.
Let Q : G — span{hni1,},-"" be the orthogonal projection. Moreover, let
S : G — G be the involutive 1sometry with S|o¢ = id and S| -y = —id.
Hence, if U € L(G) then

@) SUS —QUQ + (d-QU(d—Q) - QUGd~Q) - ([d-Q)UQ
Define Sn+l on Hpo1 = H,®G & H, by
Spr1(h1,9,h2) = (Sph1,Sg, ha).
Then tp, © Sp = Sni1 © Ly, Which proves (5).
We obtain
Es, ., (mn(T))(h1, 9, he) = (Es, (T)h1, Es(mn(T)|c)g: Tha).
Hence (8) is satisfied. Moreover we have
Spt1tnhjk = tnSnhjk = = tnh;jk;
ifj=1,..:,n, and Sp+1hn+1, = Bnt1, by the deﬁn1t1on of S.
For T € E( n), (21) implies
(22) Es(nmn(T)|a) = Qma(T)|eQ + (id —Q)ma(T)|c(id — Q)
Put

Tim 0 0 /0 0 0
Tj,n—l—l: 0 _ES(ﬂ'n(Tj,n)lG) 0 —Gjn 0 Q 0], 7=1...,m,
0 0 Tim 0 0 0

0 0 O
Topins1=10 Q@ 0.
0-0 0

We claim that {Tjn+1}7. ! is the unit vector basis of I%*. Indeed, by defi-

nition we have ‘
‘ thj il =7, .
Tinr1tnbix = ’ =1,...,n,
Jmt1in Tk {0 otherwise, J

and Tp41 n+1tnhyk = 0. Moreover, by (17) and (22) we obtain

ES(”rn(Tj,n))hnH,l = aj,nhn+1,l,




114 - W. Lusky

which yields
h 1.k lf ] =n-+ 1,
Tjmpthnsre =3 "
prilnalk {0 otherwise.
Therefore (18), (19), (20) and (22) imply
1 ifl=j _

23 Di(Tint1) = =1,...,n+1
(23) 5(Tin+) {0 otherwise, J

On the other hand, let (h1, g, h2) € Hpy1 be of norm one and 6; be complex
numbers with ;] =1, i = 1,...,n + 1. Then we obtain (by (22))

H %0 Ty, 0,h0)|

- | ZejTj,nhl“ + Qg
=1

+64-@) 3 tsma(T)| (-] + | S 0sTinha
=1 j=1

< [lhal® + llgll* + lIh2]l*.

Here we used the fact that ||Y7_; 6;Tj|| < 1 by the hypothesis and that

Tjntrhnsie = 0 §j < n+ 1 Hence T]n+1Qg = 0. This proves that
||Zn'HL 0;Tjn+1l < 1. In connection with (23) we deduce that {Tj, n+1}3 ath
is the unit vector basis of I%F1. ,

If we put
Tjn 0 0
Twljm=1 0 Eg(Trn(Tj,nﬂg) 0
0 : 0 Tin

then 7, is an isometry from &, =spa’n{Tj,,L};7°=1 into &y :span{Tj’n_l_l}?;’ll
with @pr1(enTjn) = ajn by (20). We have already seen that
Tjnt1tnhikx = tnLjnhik
thj k if ] = l, : . .
= ’ . forallj=1,...,n+1,1<n,
0 otherwise,

and

T. h ._{hn+1,l ifj=n+1,
priinld 0 . otherwise.

Finally, we introduce
n+1 _
Poi(T) = 8i(T)Tjner T € L{(Hnt1):

=1
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This is certainly a contractive projection. Since @;(Sn+1TSn+1) = @;(T),
by (11), (18), (19), the definition of Sy+1 and the fact that Sphjk = hj K We
obtain Pny1(T) = Poy1(Snt1TSn+1) for all T € L(Hpy1). This proves (7).

" Moreover, by hypothesis and the definitions of T} n+1 and Sp+1 we obtain
Tjmnt19n+1 = Sns1ljn+1, 5 =1,...,n+ 1. (Recall that QS = SQ.) This
proves (6). Furthermore, if T € L(H,) and h € H, then, by (18), (20) and
the definition of TJ n+1, We obtain

Pn+1(7rn (T) th = Z @ 7, n+1bnh + Z aj, n T}Tn+1 n+1bnh
Jj=1 j=1
n
P;(T)inTjnh,
j=1
i.e. Poy1(mn(T)) © tn = tn 0 Pp(T'), which proves (4).
Finally, for T € L(H,), we have

P, 7rn ) = Z Qj g,n+1 + Z as, n® n+1 n+1
" T 0 0
= ngj(T) 0  Es(m(Tin)le) O
] 0 0 Tin
= 1, P (1), '

which pro%res (2).
This concludes the proof of Claim (b). =

Now, (9), (10), (14) and (15) show that the C*- algebra constructed in
the proof of Claim (a) is of the form A = A, +1). Hence A is contractively
complemented in the CAR-algebra. This finishes the proof of the Theorem.
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On weak sequential convergence in JB*-triple duals
by

LESLIE J. BUNCE (Reading) and ANTONIO M. PERALTA (Granada)

Abstract. We study various Banach space properties of the dual space E™* of a homo-
geneous Banach space (alias, a JB*-triple} E. For example, if all primitive M-ideals of £
are maximal, we show that E* has the Alternative Dunford—Pettis property (respectively,
the Kadec—Klee property) if and only if all biholomorphic automorphisms of the open
unit ball of E are sequentially weakly continuous (respectively, weakly continuous). Those
E for which E* has the weak™ Kadec—Klee property are characterised by a compactness
condition on E. Whenever it exists, the predual of E is shown to have the Kadec—Klee
property if and only if F is atomic with no infinite spin part. ’

1. Introduction. Let E be a complex Banach space. It is said that F
has the Kadec-Klee property (the KKP hereafter) if weak sequential con-
vergence in the unit sphere of norm one elements of E implies norm con-
vergence. In other words, the KKP is the Schur property confined to the
unit sphere. When applied to the Dunford-Pettis property this procedure
results in its “alternative” introduced and studied in [21]. Thus E is defined
to have the Alternative Dunford—Pettis property (the DP1 in what follows)
if, whenever (z,) and (gn) are sequences in E and E*, respectively, where
(0n) is weakly null and z,, — z weakly in E with ||z,]| = [|z]| = 1 for all n,
we have g, (z) — 0. Plainly, the KKP implies the DP1 and both properties
are geometric. The geometry of E is entirely determined by the structure

~ of the group, G, of biholomorphic automorphisms on the open unit ball, D,

of E (cf. [27]). When G acts homogeneously on D, E is termed a JB*-triple.
The latter comprise an extensive class of complex Banach spaces that in-
cludes all Hilbert spaces, spin factors and C*-algebras. More generally; given
a complex Hilbert space, every norm closed subspace of B(H) that is also
closed under z — zz*z is a JB*-triple. ' ‘

It was shown in [21] that the DP1 coincides with the usual Dunford-
Pettis property on von Neumann algebras. Modulo infinite-dimensional Hil-
bert spaces and spin factors, which have the DP1 but not the Dunford-Pettis
property, this was extended to JBW*-triplesin [1]. Recently [10] the present
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