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Abstract—This paper presents a minimax inequality for vector-valued mappings in Hausdorff
topological vector spaces with pointed closed convex cones. (©)-1999 Elsevier Science Ltd. All rights
reserved.
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Let X and Y be two nonempty sets and f be a scalar-valued function on the product space
X x Y. The following minimax equality:

min max f(z,y) = max min f(z,y) 1)
was extensively investigated in the literature of optimization, such as [1]. See [2] for a survey. It
is obvious that (1) holds if and only if
i < i .
min max f(z,y) < max min f(z,y) (2)

In recent years, a number of authors focussed their attention on minimax problems of vector-
valued mappings. They gave some versions of .(2) when f is a vector-valued mapping, such as
Nieuwenhuis [3], Ferro [4-6], Tanaka (7,8], and Shi and Lin [9]. In this paper, we establish a
new minimax inequality for vector-valued mappings in Hausdorff topological vector spaces with
closed convex pointed cones.

First we give some notations and definitions as follows

Let Z be a topological vector space. We denote by Z* the topological dual space of Z and 0z

the zero element in Z. For a subset C of Z, int C and clC denote its topological interior and
closure, respectively. Denote

coneC :={Ac:A2>0, VceC},
Ct:={feY*:f(c)20, VceC},

and
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C*":={feY":f(c)>0,VceC\{0z}}.
Recall that a base B of a cone C is a convex subset of C such that
0z gclB and C = coneB.

It is obvious that a cone C is pointed (i.e., C N (—C) = {0z}) if C has a base. Moreover, if C is
a nonempty closed convex pointed cone in Z, then C** # 0 if and only if C has a base.

DEFINITION 1. (See [10,11].) Let V be a nonempty subset of Z and C a closed convex pointed
cone in Z with int C # 0.
(i) A point z € V is said to be a C-maximal point of V if VN (2 + C) = {z};
(if) a point z € V is said to be a weakly C-minimal point of V if VN (z —intC) = §;
(iii) a point z € V is said to be a Benson properly C-minimal point of V if

(-C)nclcone(V+C —2)={0z}.

We denote Max V, Min,, V, and Min, V the set of all the C-maximal points of V, the set of
all the weakly C-minimal points of V and the set of all the Benson properly C-minimal points
of V, respectively.

Similarly, we can define Max,, V, Min V, and Max, V.

It is easy to show that

Min, V C Min V C Min,, V and Max, V C Max V C Max,, V. (3)

DEFINITION 2. (See [4].) Let X be a nonempty convex subset of a real vector space E and Z
an ordered topological vector space with a pointed convex cone C. A vector-valued mapping
f: X — Z is said to be

(i) C-convex if for any z,y € X and A € [0,1],

fAz + (1= Ny) € Af(z) + (1 - A)f(y) - C;
(ii) properly quasi-C-convex if for any z,y € X,

either f(Az+ (1= MNy) € f(z)-C or f(Az+(1-Ny)€ f(y) - C.

It should be mentioned that a C-convex mapping is not necessarily properly quasi-C-convex.
Conversely a properly quasi-C-convex mapping is not necessarily C-convex. See [4] for a detailed
discussion. When Z = R and C = Ry := {r € R : r > 0}, the C-convexity and the properly
quasi-C-convexity reduce to the ordinary convexity and quasiconvexity, respectively.

Our main result is the following minimax theorem.

THEOREM 1. Let E,, E;, and Z be Hausdorff topological vector spaces, X and Y a nonempty
compact convex subset of E1 and E,, respectively. Let C be a closed convex pointed cone in Z
with int C # @ and have a compact base. Let f : X x Y — Z be a mapping such that
(i) it is continuous;

(ii) foreachy €Y, f(-,y) is C-convex;

(iii) for each z € X, —f(z,-) is properly quasi-C-convex.
Then

0 # Min, | J Max f(z,Y) c Max | J Miny, f(X,y) + 2\ (C\ {0z}). (4)
reX YyEY

If, in addition, the following condition

(iv) for each z € X, Min, | J, x Max f(z,Y) C Max f(z,Y) - C,
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is satisfied, then
Min, J Mex f(z,Y) c Max | J Min, f(X,y) - C. (5)
r€X yeY

PROOF. Define a set-valued mapping F : X — 22 by
F(z) = Max f(z,Y).

By Conditions (i),(ii) and [5, Lemma 2.3], F is single-valued, continuous and C-convex. Hence, by
the compactness of X, |J,cx Max f(z,Y) = F(X) is compact. Since the closed convex pointed
cone C has a base, we can take a ¢ € C**. Thus, there exists a zp € F(X) such that

©(20) = min{p(2) : z € F(X)}.

By (11, Theorem 4.1},
20 € Min,, | J Max f(z,Y) # 0.

zeX
Let z € Minp | J,cx Max f(z,Y). Thus, there exist Z € X and § € Y such that

Z=f(Z,9) = F(Z) € Min,F(X). (6)
Since F is C-convex, by [11, Theorem 4.2], (6) implies that there exists h € C** such that
h(z) = mip hF(z). (7
Let x € X. Since hf(x,-) is continuous and Y is compact, there exists a y, € Y such that
max hf(z,y) = hf (z,yz) . (8)
yeY
Again by [11, Theorem 4.1], (8), (3), and h € C** imply that
f(z,yz) € Max, f(z,Y) C Max f(z,Y) = F(z). (9)
Combining (7)—(9), we have
h (2) <hf (zvyz) = ma.th(a:, y)' (10)
yey
Because = can be any element of X, (10) yields

h(2) < gg)r(lglghf(w y). (11)

It is easy to verify that the real-valued function hf : X x Y — R has the following properties: it

is continuous; hf(-,y) is convex for each y € Y; and hf(z,-) is quasiconcave for each r € X. By
the minimax theorem in [12], it follows that

min max hf(z,y) = maxmin hf(z,y).

So, there exist £o € X and yp € Y such that

gél}r{uneai;chf(x, y) = math (%0, y) (12)
= ;&a‘s,cmm hf(z,y) = minhf (z, Yo) = hf (zo,Y0) ,
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which together with h € C** and (3) yields

£ (o, 0) € Min £ (X, yo) C Miny, f (X, 0), (13)

and

f (o, y0) € Max f (20,Y) = F (x0). (14)

From (11) and (12), we get
h(z) < hf (xOsyO)s

which together with A € C** implies
Z & f(zo,90) +C\{0z}. (15)
From (15) and (13), we have

7 € f(zo,5) + Z\(C\{0z})
C Miny, f (X, y0) + Z \ (C{0z})

c U Miny f(X,9) + Z\ (C\ {0z}).
yeY )

(16)

Because f is continuous and because X and Y are compé,ct, by [6, Lemma 2.1}, U, ¢y Min, f(X, y)
is compact. Hence, by [13, Lemma 1],

|J Min, £(X,y) € Max | | Min,, f(X,y) - C. (17)
yeY yeY .

From (16) and (17), we have

Z € Max | | Min, f(X,y) — C + Z\ (C\ {0z})
yeY

= Max | J Min f(X,y) + Z\ (C\ {0z}).
yeY

Hence, conclusion (4) holds. In addition, if Condition (iv) is satisfied, then

Z € Maxf (29, Y) - C =F(xp) - C
= f(zo,y0) - C (by (14) and the single-valuedness of F)
C Miny f (X,3) -C  (by (13))

c J Minuf(X,y) - C c Max [ | Minuf(X,3) ~C~C  (by (17))
yeY yeY
= Max |_J Min, f(X,y) - C.
yeY

Therefore, conclusion (5) holds. The proof is completed.

REMARK 1. Minimax inequalities (4) and (5) remain true if we replace the Benson properly
C-minimal point set Miny(-) by the Borwein properly C-minimal point set [14] or the super
C-minimal point set [15]. So far as we know, we are first to study the minimax inequalities with
the properly C-minimal point sets.

In comparison with those minimax inequalities in [3,5-9], our minimax inequality (4) is new.
The proof of Theorem 1 is also different from the others. The minimax inequality (5) is somewhat
similar to the one in (8], but the conditions are different.
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