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Abstract--This paper presents a minimax inequality for vector-valued mappings in HausdoriI 
topological vector spaces with pointed closed convex cones. (~). 1999 Elsevier Science Ltd. All rights 
reserved. 
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Let X and Y be two nonempty sets and f be a scalar-valued function on the product space 
X × Y. The following minimax equality: 

mi_n. m_ax f (x ,  y) = max rain f (x ,  y) (1) 
x E X  y E Y  y E Y  x E X  

was extensively investigated in the literature of optimization, such as [1]. See [2] for a survey. It 
is obvious tha t  (1) holds if and only if 

min max f (x ,  y) < max min..f(x, y). (2) 
zEX y E Y  -- y E Y  x E X  

In recent years, a number of authors focussed their attention on minimax problems of vector- 
valued mappings. They gave some versions oL(2) when f is a vector-valued mapping, such as 
Nieuwenhuis [3], Ferro [4-6], Tanaka [7,8], and Shi and Lin [9]. In this paper, we establish a 
new minimax inequality for vector-valued mappings in Hausdorff topological vector spaces with 
closed convex pointed cones. 

First we give some notations and definitions as follows 
Let Z be a topological vector space. We denote by Z* the topological dual space of Z and 0z 

the zero element in Z. For a subset C of Z, int C and cl C denote its topological interior and 
closure, respectively. Denote 

c o n e C : = { A c : A > O ,  V c E C } ,  

C + := {f  • Y* : f(c) >_ O, V c • C } ,  

and 
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c+ :={feY *:S(c) > 0 ,  v c • c \ { 0 z } } .  

Recall that a base B of a cone C is a convex subset of C such that 

0zC~clB and C = c o n e B .  

It is obvious that a coneC is pointed (i.e., C A ( - C )  = {0z}) if C has a base. Moreover, if C is 
a nonempty closed convex pointed cone in Z, then C +i ~ 0 if and only if C has a base. 

DEFINITION 1. (See [10,11].) Let  V be a nonempty  subset of Z and C a closed convex pointed 

cone in Z with int C ¢ 0. 

(i) A point  z • V is said to be a C-maximal  poin t  of  V i f V  (3 (z + C) = {z}; 

(ii) a point z • V is said to be a weak ly  C-minimal  po in t  of  V if V n (z - int C) = 0; 
(iii) a point z • V is said to be a Benson  p rope r ly  C-minimal  poin t  of  V if  

( - C )  n cl cone(V + C -  z) = {0z}. 

We denote Max V, Mint V, and Minp V the set of all the C-maximal points of V, the set of 
all the weakly C-minimal points of V and the set of all the Benson properly C-minimal points 
of V, respectively. 

Similarly, we can define Maxw V, Min V, and Maxp V. 
It is easy to show that 

M i n p V C M i n V C M i n ~  V and M a x p V C M a x V c M a x ~  V. (3) 

DEFINITION 2. (See  [4].) Let X be a nonempty  convex subset of a real vector space E and Z 
an ordered topological vector space with a pointed convex cone C. A vector-valued mapping 

f : X ~ Z is said to be 

(i) C-convex  if for any x, y E X and A E [0, 1], 

S( x + (1 - • AS(z) + (1 - - c ;  

(ii) p r o p e r l y  quas i -C-convex if[or any x, y • X ,  

either f ( A x + ( 1 - A ) y ) •  f ( x ) - C  or f ( A x + ( 1 - A ) y ) •  f ( y ) - C .  

It should be mentioned that a C-convex mapping is not necessarily properly quasi-C-convex. 
Conversely a properly quasi-C-convex mapping is not necessarily C-convex. See [4] for a detailed 
discussion. When Z = R and C = R+ := {r E R : r >_ 0}, the C-convexity and the properly 
quasi-C-convexity reduce to the ordinary convexity and quasiconvexity, respectively. 

Our main result is the following minimax theorem. 

THEOREM 1. Let  E l ,  E2, and Z be Hausdorff topological vector spaces, X and Y a nonempty  
compact convex subset of  E1 and E2, respectively. Let  C be a closed convex pointed cone in Z 
with int C ~ 0 and have a compact base. Let  f : X x Y --* Z be a mapping such that 

(i) it  is continuous; 
(ii) for each y E Y ,  f ( . , y )  is C-convex; 

(iii) for each x E X ,  - f ( x ,  .) is properly quasi-C-convex. 

Then 

0 ~ Minp U Max f ( x ,  Y) C Max U Mint f ( X ,  y) + Z \ (C \ {0z}). (4) 
xEX yEY 

If, in addition, the following condition 

(iv) for each x E X ,  Minp Uxex Max f ( x ,  Y )  c Max f ( x ,  Y )  - C, 
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Minp U Max f(x, Y) C Max U Minwf(X, y) - C. (5) 
xE X  yEY  

PROOF. Define a set-valued mapping F : X --+ 2 z by 

F(x) = Max f(x, Y). 

By Conditions (i),(ii) and [5, Lemma 2.3], F is single-valued, continuous and C-convex. Hence, by 
the compactness of X, Uxex Max f(x, Y) = F(X) is compact. Since the closed convex pointed 
cone C has a base, we can take a ~o • C +i. Thus, there exists a z0 • F(X) such that  

~a(zo) = min{~(z) : z • F(X)}.  

By [11, Theorem 4.1], 

z0 E Minp U Max f(x, Y) ~ O. 
xE X  

Let ~ • Minv Uzex  Max f (x ,  Y). Thus, there exist ~ • X and ~2 • Y such that  

= f (~, ~) = F (~) • MinvF(X).  (6) 

Since F is C-convex, by [11, Theorem 4.2], (6) implies that  there exists h • C +i such that  

h (~) = min hE(x). (7) 
x E X  

Let x • X. Since hf(x, .) is continuous and Y is compact, there exists a Yz • Y such that  

max hf(x, y) = hf  (x, y~). (8) 
yEY 

Again by [11, Theorem 4.1], (8), (3), and h • C +i imply that  

f (x, Yx) • Maxpf(x, Y) C Max f(x, Y) = F(x). (9) 

Combining (7)-(9), we have 

h(2) <_ hf  (x, yx) = mua~hf(x,y ). 

Because x can be any element of X, (10) yields 

(10) 

It is easy to verify that  the real-valued function hf  : X x Y --. R has the following properties: it 
is continuous; h f(., y) is convex for each y E Y; and hf(x, .) is quasiconcave for each x E X. By 
the minimax theorem in [12], it follows that  

rain max hf(x, y) -- max min hf(x, y). 
xEX yE Y  yEY xEX  

So, there exist x0 E X and yo E Y such that  

rain max hf(x, y) = max h f  (xo, y) 
xE X  yE Y  yE Y  

= max rain hf (x ,  y) = min h f  (x, Yo) : h f  (xo, Yo) 
yEY xE X  xEX  

(12) 

h (~) < minmaxhf(x,y).  (11) 
xEX yEY 
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which together with h • C +i and (3) yields 

f (x0, Yo) • Min f (X, Yo) C Minwf (X, Y0), (13) 

and 
f (xo, Yo) • Max f (x0, Y) = f (xo). 

From (11) and (12), we get 
h (~) <_ h f  (xo, Yo), 

which together with h • C +i implies 

(14) 

¢ / (z0, y0) + c \ {0z}.  (15) 

From (15) and (13), we have 

• f (z0, yo) + z \ ( c  \ {0z}) 
C Minwf (X, Yo) + Z \ (C {0z}) 

C U Minwf(Z,y)  + Z \  ( C \  {Oz}). 
yEY 

(16) 

Because f is continuous and because X and Y are compact, by [6, Lemma 2.1], Uyey Minwf(X, y) 
is compact. Hence, by [13, Lemma 1], 

U Minwf(X,y) C Max U Minwf(Z,y) - C. (17) 
yEY yEY 

From (16) and (17), we have 

5 E Max U Minwf(X, y) - C + Z \ (C \ {0z}) 
yEY 

= Max U Min f (X ,  y) + Z \ (C \ {0z}) • 
yEY 

Hence, conclusion (4) holds. In addition, if Condition (iv) is satisfied, then 

2 E Maxf (Xo, Y) - C -- F (Xo) - C 

= f (Xo, Yo) - C (by (14) and the single-valuedness of F) 

C Minwf (X, Yo) - C (by (13)) 

C U Min~f(X, y) - C C Max U Min~f(X, y) - C - C (by (!7)) 
yEY yEY 

---- Max U Minwf(X, y) - C. 
yEY 

Therefore, conclusion (5) holds. The proof is completed. 

REMARK 1. Minimax inequalities (4) and (5) remain true if we replace the Benson properly 
C-minimal point set Minp(.) by the Borwein properly C-minimal point set [14] or the super 
C-minimal point set [15]. So far as we know, we are first to study the minimax inequalities with 
the properly C-minimal point sets. 

In comparison with those minimax inequalities in [3,5-9], our minimax inequality (4) is new. 
The proof of Theorem 1 is also different from the others. The minimax inequality (5) is somewhat 
similar to the one in [8], but the conditions are different. 
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