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A TWO FUNCTION METAMINIMAX
THEOREM

BOR-LUH LIN and FENG-SHUO YU (lowa City)

Abstract. A generalization of Simons’s metaminimax theorem to a metamin-
imax theerem inveolving two functions is given.

1. Introduction

The purpose of this note is to generalize the metaminimax theorem by
S. Simons in [19] to a metaminimax theorem involving two functions. As
mentioned by 8. Simons, a metaminimax theorem is really a device for ob-
taining minimax theorems rather than a minimax theorem in its own right.

Since von Neumann proved the first minimax theorem in 1928, various
generalizations of von Neumann’s result have appeared and may be consid-
ered as three types based on the hypotheses of the theorem: (1) Quantitative
minimax theorems as Fan [3], Konig [13], Neumann {15}, Irle [9], Lin—Quan
[14], Kindler [11], and Simons [16]. (2) Topological minimax theorems as
Wa [26], Tuy [24], [25], Staché [22] and Komornik [12], Geraghty-Lin [5],
Kindler-Trost [10] and Cheng—Lin [1]. (3) Mixed type minimax theorems as
Terkelsen [23], Geraghty-Lin [4], [6] and [7], Kindler [11] and Simons [17].
See [20] for an excellent survey on minimax theorems.

As shown by Simons in [19], Theorem 1 in [19] unifies all the results
mentioned above. Theorem 1 in this note extends Theorem 1 in [19] to a
metaminimax theorem involving two functions. As examples of application
of Theorem 1, we give a two function version of a Komornik minimax theo-
rem [12] in Corollary 7 and a two function minimax theorem in Theorem 8.

Let X and Y be topological spaces. Let R denote the set of real num-
bers and let f, g be two real-valued functions defined on X x Y. Let f*
=infy supy f(z,y) and f. = supyinfy f(z,y). The notation f £ g means
that f{z,y) < g(z,y) for all (z,y) € X x Y. For each z € X, let L?(:c) ={y

€Y : flx,y) £ 8} and L?(VV) = ﬂa;ng?(m) for any finite subset W in X.

DEFINITIONS. 1. [18] We say that the sets Hy and F; are joined by a
set Hif HNHy# ¢, HNH, # 0 and H C HyU Hy. Let H be a family of
sets. We say H is pseudoconnected if for Hy, H1, H € H and Hy and H) are
joined by H, then Hqn Hy # 0.

2. Let W be a subset of X. We say that W is a good set for (ga, f) in
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X if (i) W is finite. (ii) L?J“ ()N Lf}‘ (W) # @ for all z in X. It is clear that if
W is a good set for (g.,g) in X then W is a good set for (g., f) in X when
f2g

2. Main results

TuEOREM 1. Let X and Y be topological spaces, and f,g: X xY
— R. Suppose that for any B > g. and any good set W for (g«, ) in X,
the following conditions are satisfied.

i) fsy;
(ii) (a ) ’Phere exists Oy > g« such that L °(z) is nonempty and compact
for all x

(b } There exists xg € X such that Lg"(a:g) is nonempty and compact;
(iii) The family {Lﬁ(.?: DL*B(W)} sex 18 pseudoconnected;
(iv) For any xq, v1 € X, there emists x € X such that Lﬁ(mo) and Lﬁ(:vl)

are joined by J_JfKI) N L?{VJV),

(v} f(z,") is lower semicontinuous for allz € X.
Then

(%) 1nf sup f(z,y) = sup mf glz,y).
YEY geXx zeX Y

ProOOF. Let z € X. If i > g. in R, then there exists y in ¥ such that
u 2 g{z,y). This implies that y € Ly (= ) C L)(x). Hence

(1) Li(z)#0 forall > g.

Since f{x.-) is lower semicontinuous, L(x) is closed. Also, for any
finitely many pq, ..., ttn With g > g« where i = 1,2,...,n, minj<<, {4}
> gy. Hence by (1), we have [} L’“( ) # 9. So {L“(m) B> ge} is a fam-
ily of nonempty closed sets with finite intersection property. Hence {Du x)

HL?O( Y>> g*} is a family of nonempty closed sets with the finite in-
. - .

tersection property. This family is contained in L’;O{z) which is compact by
(ii)(a). Therefore, (., L4(z) # 0. It follows that

(2) 0 L% (x).

Since z is arbitrary in X, (2) shows that the empty set is a good set for
(g, f)in X.
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Next, we show, by induction, that every finite subset W of X is a good
set for (g«, f). Suppose that n =2 1 and W C X, |W| £ n — 1 imply that W
is a good set for (g, f).

Let VC X and |V, =n. Let g € V and set W =V \ {ap}. Ther, W is
a good set for (g., f) in X. Let x € X and 3 > g.. By (iv), there exists an

x; € X such that L'?(SE[)) and L (z) are joined by L’?(:Bl) N L?(W). That is,

(3) Lo (o) N (L) 0 LE(W)) #10,
) Lj(@) 0 (L) N L (W) #80,
and

(5) L(z1) N LA (W) € Li(xo) U L ().

By (i), (8), (4) and (5),
Lieoyn (L) n i) #6,  Li@)n (Lia)nLiw)) # 8,

and
Li(@y) N LEW) € Li(zo) U Li(=).

It follows that L% (z) N L (W) and L{(z) N L(W) axe joined by L(z1)
N LYW). By (i),
(L8() N L8 W) (M (LS (o) 0 L5 (W)) # 0.
Hence
(6) LAy L (V) #0.

Since (6) is true for all 8 > g., by (ii)(a) and using the same argument
as above, we see that

(7) L9 () (L5 (V) # 0.

Since x is arbitrary in X, so (7) shows that V is a good set for {g., f) in
X. Hence, by induction, we conclude that any finite set of X is a good set
for {g., f) in X.

Now, from (7), {L?p’“(aﬁ) nLy (mg)}mex is a family of nonempty closed
sets with finite intersection property and the family is contained in the set
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Lg*(wg) which is compact by (ii)(b), hence [ L?r*(:t:) # ¢, Therefore, there
exists ¢* in Y such that f(z,y*) < g« for all  in X. This implies that

inf sup f(z,y) £ g« = sup inf gla,y). O
yeY weX zeX VEY

COROLLARY 2. Let X be a topological space and Y a compact topological
space. Let f,g : X xY -+ R. Suppose that for any 3 > g« and any good set
W for (g«, f) in X, the conditions (i), (iil)—(v) of Theorem 1 are satisfied.
Then (*) holds.

PROOF. Since Y is compact and f(z,-) is lower semicontinuous, L?(I‘) is

nonempty and compact for all 3 > g, and for all & in X. Hence the minimax

result follows from Theorem 1. [

COROLLARY 3 [19]. Let X and Y be topological spaces, and f : X XY
— R. Suppose that for any 5 > f. and any good set W for (fi, f) in X, the
conditions (iii) and (v) of Theorem 1, as well as the following conditions are
satisfied:

(i) Lﬁo(a:) is compact for some Bo 2 fi for all x € X, and Lf* (o} is
compact for some xg in X,

(ii) For any xo, x1 in X, there exists © € X such thal Lf(uco) and L (@)
are joined by L s@)n 18 (V).

Then

inf sup flz,y) = tsup 1nf flx,y).
yeY gex

ProoF. Let f = g in Theorem 1. ]

REMARK 1. The condition that W is good for (g«, f) in Theorem 1 is
essential since if we replace it by W is good for (fs, f) then Theorem 1 is
nothing more than Simons’ flexible minimax theorem. Notice that W is good
for (g., f) does not imply W is good for (fs, f).

3. Applications of the main theorem

LEMMA 4. Suppose that
(i) X is a topological space, 8 € R, xg, x1 € X and there exists a con-
nected subset C C X such that {zg,z1} C C and for all z in C

LA(x) € Li{zo) U L (1)
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(i) Y is @ compaci topological space and Z C'Y and the sets {(z,y) € C
x 7 flz,y) £ B} and {(2z,y) €Cx Z : g{z,y) £ B} are closed in C XY
and LE(xyN Z # 0 for all x € C.

Then there exists © € X such that L’G(a:‘()) and L? g(@1) are joined by LB( )
nZ.

PRrROOF. Suppose L?(xo) N Lg(azl) NZ # @, then it i3 easy to check that,

by letting x = ¢, L?(azo) and Lg(:u) are joined by L?(Jﬁ) M Z. So we may
assume that

(1) (L) N Z) (g1} N 2) = 6.

Co={zeC: La)nz c Li(z1)}

and
Ci={zeC: L’?-(Q:)HZC L?(IU)}

By {i} and (1),

Co={zeC: L?(:c)ﬁZﬁL?(xg):@},

(2)
C| = {:r:EC : L’?(:ﬂ)ﬂZﬁLg(ﬂ?i):@}:

and Cy N Cy = 0. If there exists an element = € C'\ (Cy U Cy) then Lﬁ(:v) Nz

NI (xo) # 0, L ()N Z 0 Lj(21) # 0 and Li(z)n Z < L (xo) ULﬂ(a:I) and
we are done. Hence we may assume that €' = Cy U Cr.

Since xzg € €1, C1 # 0. If Cy is empty, then C' = Cy. Since z1 € C| this
implies that L?(a:l) nZn L’g(zl) = L’g(,rl) N Z = ¢ which contradicts (ii).
Hence Cp is also nonempty.

For = € (, it is easy to check the following statement:

(3) x € Cyp«e thereexists y & Lg(ml) NZ and flz,y) S0

e 7By

Indeed, if z € Cy, then by (ii), there exists an element y € Ly(z} N Z

s
C L’?(m) N Z. From the definition of Cy and (i), we see that y € Lg(:r:l .
Thus y € Lg(m']) NZ and f(x,y) £ 8. The proof of the other direction is

trivial.
Now let {z,} be a net in Cp with xy — z € C. By (3), for each A, there

exists ¥\ € ﬁfr};l) NZ and f(zx,yx) S 3. Since YV is compact, passing to a
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subnet if necessary, we may assume y — y for some y in Y. Then (xx, 1)

— (x,y) and (x1,y5) — (21,¥). By (il), we see that y € Z, f(z,y) £ § and
g(x1,y) £ 4. From (3), it follows that 2z € Cy. Hence Cy is closed. Similarly,
we can prove that ] is also closed. But this contradicts the connectedness
of C. O

The following is a two function version of Lemma 4 in [18].
nd 8

Toninga = I ot md Vo he tamalamienl smprse 7 Vo4 = 2 Qo
AEJdILIVIIVISY [ I PR W N K/ PR A LA bU})Ulﬂbe(‘wﬂ 3}}(}./(/(/0} L W L aiacy f“} L 3 A ul(»})
pose that

(i) For xg, 21 € X, there exists a conmected subset C C X such that
{z0,21} C C and for all z in C, L{(z) C L (zo) U L (z1).
(ii) The sets Oy == {x € C : (:1: y) < ﬁ} are open in C' for any y i Z;
(iii) For any x in C, there exists y € Z such that g(z,y) < 5.

Then there exists 2 € X such that L’j(lo) and Lf 7(x1) are joined by L‘j( 1)
nZz.

Proor. Proceed as in Lemma 4 up to {2), where Cy and €7 are both
nonempty, Cp N Cy =0, and C' = Cy U 1.
For = € €', we have, by (iii),

(1) xz € Cy < there exists y € Lf(azl) NZ and glz,y) < 5.

Let z € Cy. By (1), there exists an element y € Lg(xl) N Z such that
g(z,y) < (. Hence x € Oy. If there exists 2’ € O, \ Cy, then L’s( N L’ﬁ(a'l)
NZ=10. But 2’ € O,, hence y € L?(z’). This implies that fﬁw\ N L2z

4 Y Fud iH

1EHCE 1 dighd

M Z # 0, a contradiction. Hence, z € Oy C Cy. Therefore, Co is an open set
in C. Similarly, ] is also an open set in C by the followmg condition:

rz € Cy < there exists y & L’?(mg) nZ and flz,y) <p.

......... ..-.......L..,.] cat Tira At ot a oAmwedaa Aa o e ™
IIUWUVt‘l, L/ l‘: a4 connecied SCL, WE UDLdlIL a4 COILLIaUlCLIOn. -
THEOREM 6. Let X and Y be topological spaces with Y compact. Let

fog : X xY — R. Suppose that for any 3 > g., the conditions (1) and (v) of
Theorem 1, (1) of Lemma 5, as well as the following conditions are satisfied:
(i) For any finite set A C X, Npea{y €Y : fla,y) < B} is connecied;
(ii) The sets { (x,y) e CxY : f(z,y) S ﬂ} and {(:ﬂy) eECxY : g(x,y)
< B} are closed in C x Y.
Then (%) holds.

PRrROOF. Let 5 > g. and let W be a good set for (g4,
since L (x)n LA(W) > L2 )mLﬁ(W):)Lg* ng*( Y £
uen

I (x
ma 4 is satisf

g). For z €,
# (, hence condi-
h

Lemma 4,

em ntly, by Lemma

)N
tion {ii) of Lex
A St
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there exists an element z in X such that L‘?(J‘Jg) and L2(z)) are joined by
L’?(T) N L?(W) By Theorem 1, the minimax result follows, U

REMARK 2. Condition (i) of Lemma 5 is satisfied if for any =g, z; € X,
there exists a connected set C'in X such that {z¢,21} € C and for all 2 in C'

Flzyy) 2 min { flzo,u), g(a1,9) }

or if f(,y) is quasi-concave on X for any y in Y. Hence, we obtain the
following

COROLLARY 7. Let X and Y be topological spaces with Y compact. Let
fog: X' xY — R. Suppose that for any 3 > g, condition (i) of Theorem 1,
(i), (ii) of Theorem 6 are satisfied and

(iii) For any z¢, 1 € X, there exists a connected set O in X such that
{zo, 21} C C and for all x in C,

1A%

fla,y)

or,
(iii") f(-,y) is quasi-concave on X for anyy in Y.
Then (x} holds.

REMARK 3. Corollary 7 gives a two-function gereralization of Theorem 2
in [12] and hence Ha’s minimax theorem [8]. It is worth to note that Ha's
minimax theorem is different from Sion’s minimax theorem in the continuity
conditions of f. See [8] and [21].

THEOREM 8. Let X and YV be topological spaces with Y r:ompact Let
frg 1 X XY — R, Suppose that for any 58 > g., the conditions (i) and (v)
of Theorem 1, (ii} of Theroem 6, (1) of Lemma 5, as well as the following
condition is satisfied.

(1) The sets {z € C : g(z,y) < B} are open in C for any y in Y.

Then (*) holds.

Proor. Let 8 > g, and W a good set for (g.,¢). Then t owists
element y in LI (W) N Lg (z) for any = in X. Since y € LY (W) c Liw)
and g(x,y) € g« < 3, so Lemma 5 is satisfied with Z = Lﬁ(

by Theorem ! and Lemma 5, the minimax result follows.

%

3. Therefore,

By using Theorem 1 and Lemma 3, we can also obtain a non-compact
version of Theorem 8 as shown in [2].
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