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Abstract

The problem of guessing a random string is revisited. A closerelation between guessing and compression is
first established. Then it is shown that if the sequence of distributions of the information spectrum satisfies the large
deviation property with a certain rate function, then the limiting guessing exponent exists and is a scalar multiple of
the Legendre-Fenchel dual of the rate function. Other sufficient conditions related to certain continuity properties
of the information spectrum are briefly discussed. This approach highlights the importance of the information
spectrum in determining the limiting guessing exponent. All known prior results are then re-derived as example
applications of our unifying approach.

Index Terms

guessing, length function, source coding, information spectrum, large deviations.

I. INTRODUCTION

Let Xn = (X1, · · · , Xn) denoten letters of a process where each letter is drawn from a finite set X
with joint probability mass function (pmf)(Pn(x

n) : xn ∈ Xn). Let xn be a realization and suppose that
we wish to guess this realization by asking questions of the form “Is Xn = xn?”, stepping through the
elements ofXn until the answer is “Yes”. We wish to do this using the minimumexpected number of
guesses. There are several applications that motivate thisproblem. Consider cipher systems employed in
digital television or DVDs to block unauthorized access to special features. The ciphers used are amenable
to such exhaustive guessing attacks and it is of interest to quantify the effort needed by an attacker (Merhav
& Arikan [1]).

Massey [2] observed that the expected number of guesses is minimized by guessing in the decreasing
order ofPn-probabilities. Define theguessing function

G∗
n : Xn → {1, 2, · · · , |X|n}

to be one such optimal guessing order1. G∗
n(x

n) = g implies thatxn is thegth guess. Arikan [3] considered
the growth ofE [G∗

n(X
n)ρ] as a function ofn for an independent and identically distributed (iid) source

with marginal pmfP1 andρ > 0. He showed that the growth is exponential inn; the limiting exponent

E(ρ) := lim
n→∞

1

n
lnE[G∗

n(X
n)ρ] (1)

exists and equalsρHα(P1) with α = 1/(1 + ρ), whereHα(Pn) is the Rényi entropy of orderα for the
pmf Pn, given by

1

1− α
ln

(

∑

xn∈Xn

Pn(x
n)α

)

, α 6= 1. (2)
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(2B) UGC-CAS-(Ph.IV).
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1If there are several sequences with the same probability of occurrence, they may be guessed in any order without affecting the expected
number of guesses.
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Malone & Sullivan [4] showed that the limiting exponentE(ρ) of an irreducible Markov chain exists and
equals the logarithm of thePerron-Frobenius eigenvalueof a matrix formed by raising each element of
the transition probability matrix to the powerα. From their proof, one obtains the more general result
that the limiting exponent exists for any source if the Rényi entropy rate of orderα,

lim
n→∞

n−1Hα(Pn), (3)

exists forα = 1/(1 + ρ). Pfister & Sullivan [5] showed the existence of (1) for a classof stationary
probability measures, beyond Markov measures, that are supported on proper subshifts ofXN [5]. A
particular example is that of shifts generated by finite-state machines. For such a class, they showed that
the guessing exponent has a variational characterization (see (25) later). For unifilar sources Sundaresan
[6] obtained a simplification of this variational characterization using a direct approach and the method
of types.

Merhav & Arikan remark that their proof in [7] for the limiting guessing exponent is equally applicable
to finding the limiting exponent of the moment generating function of compression lengths. Moreover,
the two exponents are the same. The latter is a problem studied by Campbell [8].

Our contribution is to give a large deviations perspective to these results, shed further light on the
aforementioned connection between compression and guessing, and unify all prior results on existence of
limiting guessing exponents. Specifically, we show that if the sequence of distributions of theinformation
spectrum(1/n) ln(1/Pn(X

n)) (see Han [9]) satisfies thelarge deviation property, then the limiting
exponent exists. This is useful because several existing large deviations results can be readily applied. We
then show that all but one previously considered cases in theliterature2 satisfy this sufficient condition.
See Examples 1-5 in section IV.

The large deviation theoretic ideas are already present in the works of Pfister & Sullivan [5] and the
method of types approach of Arikan & Merhav [7]. Our work however brings out the essential ingredient
(the sufficient conditions on the information spectrum), and enables us to see the previously obtained
specific results under one light.

The quest for a general sufficient condition under which the information spectrum satisfies a large
deviation property is a natural line of inquiry, and one of independent interest, in view of the Shannon-
McMillan-Breiman theorem which asserts that the information spectrum of a stationary and ergodic source
converges to the Shannon entropy almost surely and inLq, for all q ≥ 1; see for example [11]. In
particular, the large deviation property implies exponentially fast convergence to entropy. In the several
specific examples we consider, the information spectrum does satisfy the large deviation property. One
sufficient condition for the weaker property of exponentially fast convergence to entropy is the so-called
blowing up property. (See Marton & Shields [12, Th. 2], or the survey article by Shields [13]). One
family of sources, that includes most of the sources we consider in this paper and goes beyond, is that
of finitary encodingsof memoryless processes, also called finitary processes. These are known to have
the blowing-up property, and therefore exponentially fastconvergence to entropy (see Marton & Shields
[12, Th. 3]). It is an interesting open question to see if finitary processes, or what other sources with the
blowing up property, satisfy the large deviation property.

The rest of the paper is organized as follows. Section II studies the tight relationship between guessing
and compression. Section III states the relevant large deviations results and the main sufficiency results.
Section IV re-derives prior results by showing that in each case the information spectrum satisfies the
LDP. Section V contains proofs and section VI contains some concluding remarks.

II. GUESSING AND COMPRESSION

In this section we relate the problem of guessing to one of source compression. An interesting conclusion
is that robust source compression strategies lead to robustguessing strategies.

2These are cases without side information and key-rate constraints. The one exception is an example of Arikan & Merhav [7,Sec. VI-B]
for which one can show the existence of Rényi entropy rate rather directly via a subadditivity argument. See our technical report [10].
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For ease of exposition, let us assume that the message space is simplyX. The extension to strings of
lengthn is straightforward and will be returned to shortly. A guessing function

G : X → {1, 2, · · · , |X|}

is a bijection that denotes the order in which the elements ofX are guessed. IfG(x) = g, then thegth
guess isx. Let N denote the set of natural numbers. A length function

L : X → N

is one that satisfies Kraft’s inequality
∑

x∈X

exp2{−L(x)} ≤ 1, (4)

where we have used the notationexp2{−L(x)} = 2−L(x). To each guessing functionG, we associate a
PMF QG on X and a length functionLG as follows.

Definition 1: Given a guessing functionG, we sayQG defined by

QG(x) = c−1 ·G(x)−1, ∀x ∈ X, (5)

is the PMF onX associated withG. The quantityc in (5) is the normalization constant. We sayLG

defined by
LG(x) = ⌈− log2QG(x)⌉ , ∀x ∈ X, (6)

is the length function associated withG.
Observe that

c =
∑

a∈X

G(a)−1 =

|X|
∑

i=1

1

i
≤ 1 + ln |X|, (7)

and therefore the PMF in (5) is well-defined. We record the intimate relationship between these associated
quantities in the following result. (This is also availablein the proof of [14, Th. 1, p.382]).

Proposition 1: Given a guessing functionG, the associated quantities satisfy

c−1 ·QG(x)
−1 = G(x) ≤ QG(x)

−1, (8)

LG(x)− 1− log2 c ≤ log2G(x) ≤ LG(x). (9)

Proof: The first equality in (8) follows from the definition in (5), and the second inequality from the
fact thatc ≥ 1.

The upper bound in (9) follows from the upper bound in (8) and from (6). The lower bound in (9)
follows from

log2G(x) = log2
(

c−1 ·QG(x)
−1
)

= − log2QG(x)− log2 c

≥ (⌈− log2QG(x)⌉ − 1)− log2 c

= LG(x)− 1− log2 c.

We now associate a guessing functionGL to each length functionL.
Definition 2: Given a length functionL, we define the associated guessing functionGL to be the one

that guesses in the increasing order ofL-lengths. Messages with the sameL-length are ordered using an
arbitrary fixed rule, say the lexicographical order onX. We also define the associated PMFQL on X to
be

QL(x) =
exp2{−L(x)}

∑

a∈X exp2{−L(a)}
. (10)
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Proposition 2: For a length functionL, the associated PMF and the guessing function satisfy the
following:

1) GL guesses messages in the decreasing order ofQL-probabilities;
2)

log2 GL(x) ≤ log2QL(x)
−1 ≤ L(x). (11)

Proof: The first statement is clear from the definition ofGL and from (10).
Letting 1{E} denote the indicator function of an eventE, we have as a consequence of statement 1)

that

GL(x) ≤
∑

a∈X

1 {QL(a) ≥ QL(x)}

≤
∑

a∈X

QL(a)

QL(x)

= QL(x)
−1, (12)

which proves the left inequality in (11). This inequality was known to Wyner [15].
The last inequality in (11) follows from (10) and Kraft’s inequality (4) as follows:

QL(x)
−1 = exp2{L(x)} ·

∑

a∈X

exp2{−L(a)} ≤ exp2{L(x)}.

Let {L(x) ≥ B} denote the set{x ∈ X | L(x) ≥ B}. We then have the following easy to verify
corollary to Propositions 1 and 2.

Corollary 3: For a givenG, its associated length functionLG, and anyB ≥ 1, we have

{LG(x) ≥ B + 1 + log2 c}

⊆ {G(x) ≥ exp2{B}}

⊆ {LG(x) ≥ B} . (13)

Analogously, for a givenL, its associated guessing functionGL, and anyB ≥ 1, we have

{GL(x) ≥ exp2{B}} ⊆ {L(x) ≥ B}. (14)

The inequalities between the associates in (9) and (11) indicate the direct relationship between guessing
moments and Campbell’s coding problem [8], and that the Rényi entropies are the optimal growth
exponents for guessing moments, as highlighted in the following Proposition.

Proposition 4: Let L be any length function onX, GL the guessing function associated withL, P a
PMF onX, ρ ∈ (0,∞), L∗ the length function that minimizesE [exp2{ρL

∗(X)}], where the expectation
is with respect toP , G∗ the guessing function that proceeds in the decreasing orderof P -probabilities
and therefore the one that minimizesE [G∗(X)ρ], andc as in (7). Then

E [GL(X)ρ]

E [G∗(X)ρ]
≤

E [exp2{ρL(X)}]

E [exp2{ρL
∗(X)}]

· exp2{ρ(1 + log2 c)}. (15)

Analogously, letG be any guessing function, andLG its associated length function. Then

E [G(X)ρ]

E [G∗(X)ρ]
≥

E [exp2{ρLG(X)}]

E [exp2{ρL
∗(X)}]

· exp2{−ρ(1 + log2 c)}. (16)

Also,
∣

∣

∣

∣

1

ρ
log2 E [G∗(X)ρ]−

1

ρ
log2 E [exp2{ρL

∗(X)}]

∣

∣

∣

∣

≤ 1 + log2 c. (17)
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Proof: Observe that

E [exp2{ρL(X)}]

≥ E [GL(X)ρ] (18)

≥ E [G∗(X)ρ]

≥ E [exp2{ρLG∗(X)}] exp2{−ρ(1 + log2 c)} (19)

≥ E [exp2{ρL
∗(X)}] exp2{−ρ(1 + log2 c)}, (20)

where (18) follows from (11), and (19) from the left inequality in (9). The result in (15) immediately
follows. A similar argument shows (16). Finally, (17) follows from the inequalities leading to (20) by
settingL = L∗.

Thus if we have a length function whose performance is close to optimal, then its associated guessing
function is close to guessing optimal. The converse is true as well. Moreover, the optimal guessing
exponent is within1 + log2 c of the optimal coding exponent for the length function.

A. Strings of lengthn

Let us now consider strings of lengthn. Let Xn denote the set of messages and considern → ∞. Let
M(Xn) denote the set of pmfs onXn. By a source, we mean a sequence of pmfs(Pn : n ∈ N), where
Pn ∈ M(Xn). We replace the normalization constantc in (7) by cn and observe that

cn ≤ 1 + n ln |X|.

If we normalize both sides of equation (17) byn, the difference between two quantities as a function ofn
decays asO((log2 n)/n), and vanishes asn tends to infinity. The following theorem follows immediately,
with a change of base to natural logarithms.

Theorem 5:Given ρ > 0, the limit

lim
n→∞

n−1 lnE[G∗
n(X

n)ρ]

exists if and only if the limit
lim
n→∞

inf
Ln

n−1 lnE[exp2{ρLn(X
n)}]

exists. Furthermore, the two limits are equal.

It is therefore sufficient to restrict our attention to the Campbell’s coding problem [8] and study if the
limit

lim
n→∞

inf
Ln

1

n
lnE[exp{(ρ ln 2)Ln(X

n)}] (21)

exists, where the infimum is taken over all length functionsLn : Xn → N and exponentiation is with
respect to the base of the natural logarithm.

B. Universality

Before we proceed to studying the limit, we make a further remark on the connection betweenuniversal
strategies for guessing and universal strategies for compression.

Let T denote a class of sources. For each source in the class, letPn be its restriction to strings of length
n and letL∗

n denote an optimal length function that attains the minimum valueE [exp{(ρ ln 2)L∗
n(X

n)}]
among all length functions, the expectation being with respect to Pn. On the other hand, letLn be a
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sequence of length functions for the class of sources that does not depend on the actual source within the
class. Suppose further that the length sequenceLn is asymptotically optimal, i.e.,

lim
n→∞

1

nρ
lnE [exp{(ρ ln 2)Ln(X

n)}]

= lim
n→∞

1

nρ
lnE [exp{(ρ ln 2)L∗

n(X
n)}] ,

for every source belonging to the class.Ln is thus “univeral” for (i.e., asymptotically optimal for all sources
in) the class. An application of (15) withcn in place ofc followed by the observation(1+log2 cn)/n → 0
shows that the sequence of guessing strategiesGLn

is asymptotically optimal for the class, i.e.,

lim
n→∞

1

nρ
lnE [GLn

(Xn)ρ]

= lim
n→∞

1

nρ
lnE [G∗(Xn)ρ] .

Arikan and Merhav [7] provide a universal guessing strategyfor the class of discrete memoryless sources
(DMS). For the class of unifilar sources with a known number ofstates, the minimum description length
encoding is asymptotically optimal for Campbell’s coding length problem (see Merhav [16]). It follows
as a consequence of the above argument that guessing in the increasing order of description lengths
is asymptotically optimal. The left side of (15) is the extrafactor in the expected number of guesses
(relative to the optimal value) due to lack of knowledge of the specific source in class. Sundaresan [17]
characterized this loss as a function of the uncertainty class.

III. L ARGE DEVIATION RESULTS

We begin with some words on notation. Recall thatM(Xn) denotes the set of pmfs onXn. The Shannon
entropy for aPn ∈ M(Xn) is

H(Pn) = −
∑

xn∈Xn

Pn(x
n) lnPn(x

n)

and the Rényi entropy of orderα 6= 1 is (2). The Kullback-Leibler divergence or relative entropy between
two pmfsQn andPn is

D(Qn ‖ Pn) =















∑

xn∈Xn

Qn(x
n) ln

Qn(x
n)

Pn(xn)
, if Qn ≪ Pn,

∞, otherwise,

whereQn ≪ Pn meansQn is absolutely continuous with respect toPn. Recall that a source is a sequence
of pmfs (Pn : n ∈ N) where Pn ∈ M(Xn). It is usually obtained vian-length marginals of some
probability measure inM(XN). Also recall the definitions of limiting guessing exponent in (1) and Rényi
entropy rate in (3) when the limits exist.G∗

n is an optimal guessing function for a pmfPn ∈ M(Xn).
From the results in Section II on the equivalence between guessing and compression, it is sufficient to
focus on the Campbell coding problem.

Our first contribution is a proof of the following implicit result of Malone & Sullivan [4]. The proof
is given in Section V-A.

Proposition 6: Let ρ > 0. For a source(Pn : n ∈ N), E(ρ) exists if and only if the Rényi entropy rate
(3) exists. Furthermore,E(ρ)/ρ equals the Rényi entropy rate.

The question now boils down to the existence of the limit in the definition of Rényi entropy rate. The
theory of large deviations immediately yields a sufficient condition. We begin with a definition.
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Definition 3 (Large deviation property):[18, Def. II.3.1] A sequence(νn : n ∈ N) of probability
measures onR satisfies thelarge deviation property (LDP)with rate functionI : R → [0,∞] if the
following conditions hold:

• I is lower semicontinuous onR;
• I has compact level sets;
• lim supn→∞ n−1 ln νn{K} ≤ − inft∈K I(t) for each closed subsetK of R;
• lim infn→∞ n−1 ln νn{G} ≥ − inft∈G I(t) for each open setG of R.

Several commonly encountered sources satisfy the LDP with known and well-studied rate functions.
We describe some of these in the examples treated subsequently.

Let νn denote the distribution of the information spectrum given by the real-valued random variable
−n−1 lnPn(X

n). The following proposition gives a sufficient condition forthe existence of the limiting
Rényi entropy rate (and therefore the limiting guessing exponent).

Proposition 7: Let the sequence of distributions(νn : n ∈ N) of the information spectrum satisfy the
LDP with rate functionI. Then the limiting Rényi entropy rate of order1/(1 + ρ) exists for allρ > 0
and equals

β−1 sup
t∈R

{βt− I(t)},

whereβ = ρ/(1 + ρ). Consequently, the limiting guessing exponent exists and equals

(1 + ρ) sup
t∈R

{βt− I(t)}.

The functionI∗(β) := supt∈R {βt−I(t)} is the Legendre-Fenchel dual of the rate functionI. Proposition
7 says that, under the sufficient condition, the limiting guessing exponent equals(1 + ρ)I∗(ρ/(1 + ρ)),
and is thus directly related to the large deviations rate function for information spectrum. This is however
different from Merhav & Arikan’s [7, Th. 2] for memoryless sources which states that the limiting guessing
exponent is the Legendre-Fenchel dual of the source codingerror exponentfunction. We refer the reader to
Merhav and Arikan [7, Sec. IV] for further interesting connections between source coding error exponent,
guessing exponent, and two other exponents related to lossysource coding.

Let us briefly discuss another approach to verify the existence of Rényi entropy rate (see Proposition
6). With α = 1/(1 + ρ), we can rewrite1− α times the Rényi entropy rate in (3) as

(1− α) lim
n→∞

n−1Hα(Pn)

= lim
n→∞

n−1 ln
∑

xn∈Xn

exp {−nαFn(x
n)}Un(x

n), (22)

where
Fn(x

n) :=
(

−n−1 lnPn(x
n)− (ln |X|)/α

)

,

andU is the iid process onXN with uniform marginal onX. One can then viewα ∈ (0, 1) as the inverse
temperature (whenρ > 0) of a statistical mechanical system,Fn(x

n) as the energy of the configuration
xn, and the right side of (22) as a scaled version of (i.e.,α times) the specific Gibbs free energy of
the corresponding statistical mechanical system, if the limit exists. This view point is particularly useful
because the iid processU satisfies a sample path large deviation property. If the information spectrum
sequence satisfies the continuity conditions in Varadhan [19, Th. 3.4], then the limiting specific Gibbs
free energy exists, and so does the Rényi entropy rate. Our technical report [10] treats an example via
this more general approach.
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A. Additional results from Large Deviations Theory

In order to study the examples in Section IV, we state some additional results on LDP of transformed
variables. (See [20, Sec. 4.2]), [21, Th. 6.12 and 6.14]).

Proposition 8 (Contraction Principle):Let (ξn : n ∈ N) denote a sequence ofX -valued random
variables whereX is a complete separable metric space (Polish space). Letνn denote the distribution
of ξn for n ∈ N, and let the sequence of distributions(νn : n ∈ N) on X satisfy the LDP with rate
function I : X → [0,∞]. Let φ : X → R be a continuous function. The sequence of distributions of
(φ(ξn) : n ∈ N) on R also satisfies the LDP with rate functionJ : R → [0,∞] given by

J(y) = inf{I(x) : x ∈ R, φ(x) = y}.

Proposition 9 (Exponential Approximation):Suppose that the sequence of distributions of(ξn : n ∈ N)
satisfies the LDP with rate functionI onR. Assume also that the sequence of random variables(ζn : n ∈ N)
is superexponentially close to(ξn : n ∈ N) in the following sense: for eachδ > 0

lim sup
n→∞

1

n
lnPr{|ξn − ζn| > δ} = −∞. (23)

Then the sequence of distributions of(ζn : n ∈ N) also satisfies the LDP onR with the same rate function
I. The condition in (23) is satisfied if

lim
n→∞

sup
ω∈Ω

|ξn(ω)− ζn(ω)| = 0, (24)

whereΩ is the underlying sample space.

IV. EXAMPLES

We are now ready to apply Proposition 7 and related techniques to various examples. In first five
examples that follow, our goal is to show that the sufficient condition for the existence of the limiting
guessing exponent holds, i.e., that the sequence of distributions of the information spectrum satisfies the
LDP.

A. LDP for information spectrum

Example 1 (An iid source):This example was first studied by Arikan [3]. Recall that an iid source is
one for whichPn(x

n) =
∏n

i=1 P1(xi), whereP1 is the marginal ofX1. It is then clear that the information
spectrum can be written as a sample mean of iid random variables

−n−1 lnPn(X
n) = −n−1

n
∑

i=1

lnP1(Xi).

It is well-known that the sequence(νn : n ∈ N) of distributions of this sample mean satisfies the LDP with
rate function given by the Legendre-Fenchel dual of the cumulant of the random variable− lnP1(X1)
(see for example [18, Th. II.4.1] or [9, eqn. (1.9.66-67)]):

lnE

[

exp
{

β(− lnP1(X1))
}

]

= ln

(

∑

x∈X

P1(x)
α

)

= (1− α)Hα(P1).

The Legendre-Fenchel dual of the rate function is thereforethe cumulant itself ([18, Th. VI.4.1.e]). An
application of Proposition 7 yields that(1 + ρ) times this cumulant, given byρHα(P1), is the guessing
exponent. We thus recover Arikan’s result [3].
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The rate functionI can also be obtained using thecontraction principle(Proposition 8) as follows. This
method will provide a recipe to obtain the limiting guessingexponent in subsequent examples. Consider
a mapping that takesxn to its empirical pmf inM(X). Empirical pmf is then a random variable. The
distribution ofXn induces a pmf onM(X). It is well-known that the sequence of distributions of these
empirical pmfs, indexed byn, satisfies thelevel-2 LDP3 with rate functionI(2)P1

(·) = D(· ‖ P1). See for
example [18, Th II.4.3]. Observe that the mapping from the empirical pmf to the information spectrum
random variable is continuous. We can therefore use the contraction principle to get a formula forI in
terms ofI(2)P1

(·) as follows [18, Th II.5.1]. For anyt in R, let

θ(t) :=
{

Q ∈ M(X) :
∑

x∈X

Q(x) ln
1

P1(x)
= t
}

,

i.e.,
θ(t) =

{

Q ∈ M(X) : H(Q) +D(Q ‖ P1) = t
}

.

Then
I(t) = inf{I

(2)
P1

(Q) : Q ∈ θ(t)}.

Using this, we can write

I∗(β) = sup
t∈R

{

βt− inf
Q∈θ(t)

D(Q ‖ P1)
}

= sup
t∈R

sup
Q∈θ(t)

{

βt−D(Q ‖ P1)
}

= sup
Q∈M(X)

{

β(H(Q) +D(Q ‖ P1))−D(Q ‖ P1)
}

= (1 + ρ)−1 sup
Q∈M(X)

{

ρH(Q)−D(Q ‖ P1)
}

,

thus yielding
E(ρ) = sup

Q∈M(X)

{

ρH(Q)−D(Q ‖ P1)
}

. (25)

This formula extends to more general sources, as is seen in the next few examples.
Example 2 (Markov source):This example was studied by Malone & Sullivan [4]. Consider an irre-

ducible Markov chain taking values onX with transition probability matrixπ. Our goal is to verify that
the sufficient condition holds and to calculateE(ρ) defined by (1) for this source.

Let Ms(X
2) denote the set ofstationarypmfs defined by

Ms

(

X
2
)

=
{

Q ∈ M
(

X
2
)

:
∑

x1∈X

Q(x1, x) =
∑

x2∈X

Q(x, x2)∀x ∈ X

}

.

Denote the common marginal byq and let

η(· | x1) :=

{

Q(x1, ·)/q(x1), if q(x1) 6= 0,
1/|X|, otherwize.

3Level-1 refers to sequence of distributions (indexed byn) of sample means, level-2 refers to sample histograms, and level-3 to sample
paths.
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We may then denoteQ = q × η, whereq is the distribution ofX1 and η the conditional distribution of
X2 given X1. It is once again well known that the empirical pmf random variable satisfies the level-2
LDP with rate functionI(2)π (Q), given by [22]

I(2)π (Q) = D(η ‖ π | q)

:=
∑

x1∈X

q(x1)D(η(· | x1) ‖ π(· | x1)).

As in Example 1, the contraction principle then yields that the sequence of distributions of information
spectrum satisfies the LDP with rate functionI given by

I(t) = inf{I(2)π (Q) : Q ∈ θ(t)}.

where fort in R, θ(t) ⊂ Ms(X
2) is defined by

θ(t) =

{

Q ∈ Ms(X
2) :

∑

x1,x2

Q(x1, x2) ln
1

π(x2|x1)
= t

}

.

By Proposition 6, the limiting guessing exponent exists. Perron-Frobenius theory (Seneta [23, Ch. 1],
see also [24, pp.60-61]) yields the cumulant directly aslnλ(β), whereλ(β) is unique largest eigenvalue
(Perron-Frobenius eigenvalue) of a matrix formed by raising each element ofπ to the powerα. (Recall
thatα = 1/(1+ρ) andβ = ρ/(1+ρ)). ThusE(ρ) = (1+ρ) lnλ(β), and we recover the result of Malone
& Sullivan [4]. It is useful to note that the steps that led to (25) hold in the Markov case (with appropriate
changes to entropy and divergence terms) and we may write

E(ρ) = sup
Q∈Ms(X2)

{

ρH(η | q)−D(η ‖ π | q)
}

, (26)

whereH(η | q) is the conditional entropy ofX2 givenX1 under the joint distributionQ, i.e.,

H(η | q) := −
∑

x∈X

q(x)H(η(· | x)).

Example 3 (Unifilar source):This example was studied by Sundaresan in [6]. A unifilar source is a
generalization of the Markov source in Example 2. LetX denote the alphabet set as before. In addition,
let S denote a set of finite states. Fix an initial states0 and let the joint probability of observing(xn, sn)
be

Pn(x
n, sn) =

n
∏

i=1

π(xi, si | si−1)

whereπ(xi, si | si−1) is the joint probability of(xi, si) given the previous statesi−1. The dependence of
Pn on s0 is understood. Furthermore, assume thatπ(xi, si | si−1) is such thatsi = φ(si−1, xi), whereφ is
a deterministic function that is one-to-one for each fixedsi−1. Such a source is called a unifilar source.

PS,X(si−1, xi) andφ completely specify the process: the initial stateS0 is random with distribution that
of marginal ofS in PS,X , the rest being specified byPX|S(xi | si−1) andφ. Example 2 is a unifilar source
with S = X, φ(si−1, xi) = xi, andPS,X = q × π where q is the stationary distribution of the Markov
chain.

Let Ms(S × X) denote the set of joint measures on the indicated space so that the resulting process
(Sn : n ≥ 0) is a stationary and irreducible Markov chain. Let aQ ∈ Ms(S×X) be written asQ = q×η.
For anyt in R, let

θ(t) :=







Q ∈ Ms(S× X) :
∑

(s,x)

Q(s, x) ln
1

π(x | s)
= t







.
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Then the sequence of distributions of information spectrum−n−1 lnPn(X
n) satisfies the LDP ([9, eqn.

(1.9.30)]) with rate function given (once again via contraction principle) by

I(t) = inf{D(η ‖ π | q) : Q ∈ θ(t)}.

The limiting exponent therefore exists. Following the sameprocedure that led to (25) in the iid case and
(26) for a Markov source, we get

E(ρ) = sup
Q∈Ms(S×X)

{

ρH(η | q)−D(η ‖ π | q)
}

, (27)

whereH(η | q) andD(η ‖ π | q) are analogously defined, and the result of Sundaresan [6] is recovered.
Example 4 (A class of stationary sources):Pfister & Sullivan [5] considered a class of stationary sources

with distributionP ∈ M
(

XN
)

that satisfies two hypotheses H1 and H2 of [5, Sec. II-B], which we will
now describe.

Let MP (XN) denote the set of sources that satisfyQn ≪ Pn for all n ∈ N, wherePn andQn are
restrictions ofP andQ to n letters. Note that it may be possible that aQ ∈ MP (XN) is not absolutely
continuous with respect toP . Also, letMP

s (X
N) ⊂ MP (XN) denote the subset of stationary sources with

respect to the shift operatorτ : XN → XN defined by

(τ(x))i = xi+1, ∀i ∈ N.

Hypothesis H1 of Pfister & Sullivan [5] assumes that for any neighborhood of a stationary sourceQ ∈
MP

s (X
N) and anyε > 0, there exists an ergodicQ′ ∈ MP

s (X
N) in that neighborhood such thatH(Q′) ≥

H(Q)− ε, whereH(Q) is the Shannon entropy rate of sourceQ. Their hypothesis H2 is given by (30)
below.

Under these hypotheses, Pfister & Sullivan [5] proved thatE(ρ) exists, and provided a variational
characterization analogous to (27), i.e.,

E(ρ) = sup
Q∈MP

s (XN)

{

ρH(Q)−D(Q ‖ P )
}

, (28)

where

D(Q ‖ P ) = lim
n→∞

n−1
∑

xn

Qn(x
n) ln

Qn(x
n)

Pn(xn)
.

En route to this result, Pfister & Sullivan [5] showed that thesequence of distributions of theempirical
processsatisfies thelevel-3LDP for sample paths. We first state this precisely, and then use this as the
starting point to show the sufficient condition that the information spectrum satisfies the LDP.

For anx ∈ XN given by x = (x1, x2, · · · ), we definexn = (x1, · · · , xn) as the firstn components
of x in the usual way. Consider a stationary sourceP whose letters areX = (X1, X2, · · · ). Define the
empirical process of measures

Tn(X, ·) = n−1

n−1
∑

i=0

δτ i(X)(·).

This is a measure onXN that puts mass1/n on the following strings:x, τ(x), τ 2(x), · · · , τn−1(x). Pfister
& Sullivan showed that the distributions of theM(XN)-valued processTn(X, ·) satisfies the level-3 LDP
with rate functionI(3)P (·) = D(· ‖ P ) under hypotheses H1 and H2 of their paper ([5, Prop. 2.2-2.3]).
Furthermore,

D(Q ‖ P ) = +∞, Q /∈ MP
s (X

N), (29)

so that we may restrictD(· ‖ P ) to MP
s (X

N). We next use this to show that the information spectrum
satisfies the LDP.
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Hypothesis H2 of Pfister & Sullivan assumes the existence of acontinuous mappingeP : XN → R

satisfying

lim
n→∞

sup
x∈ΣP

n

∣

∣

∣

∣

n−1 lnPn(x
n) +

∫

XN

eP dTn(x, ·)

∣

∣

∣

∣

= 0, (30)

whereΣP
n = {x ∈ X

N : Pn(x
n) > 0}.

By the compactness ofXN, eP is uniformly continuous. Under the weak topology on the complete
separable metric spaceM(XN), the mapping

φ : M(XN) → R

defined byQ 7→
∫

XN eP dQ is a continuous mapping. Hence by the contraction principle, by setting
X = M(XN) we get that the sequence of distributions of(φ(Tn(X, ·) : n ∈ N) satisfies the LDP with
rate functionI given by

I(t) = inf
{

D(Q ‖ P ) : Q ∈ MP
s (X

N), φ(Q) = t
}

,

where the restriction of the infimum toMP
s (X

N) follows from (29). Furthermore, given hypothesis H2 and
(30), an application of the exponential approximation principle (Proposition 9) indicates that the sequence
of distributions of the information spectrum too satisfies the LDP with the same rate functionI, and we
have verified that the sufficient condition holds.

What remains is to calculate this rate function. For this, wereturn to Pfister & Sullivan’s work and use
D(Q ‖ P ) = φ(Q)−H(Q) [5, Prop. 2.1] to write

I(t) = inf
Q∈MP

s

{

D(Q ‖ P ) : H(Q) +D(Q ‖ P ) = t
}

.

Finally, the Legendre-Fenchel dual of the rate function is computed as in the steps leading to (25)-(27),
yielding (28).

Example 5 (Mixed source):Consider a mixture of two iid sources with letters fromX. We may write

Pn(x
n) = λ

n
∏

i=1

R(xi) + (1− λ)
n
∏

i=1

S(xi)

where λ ∈ (0, 1) with R, S ∈ M(X) the two marginal pmfs that define the iid components of the
mixture. It is easy to see that the guessing exponent is the maximum of the guessing exponents for the
two component sources. We next verify this using Proposition 7.

The sequence of distributions of the information spectrum satisfies the LDP with rate function given
as follows (see Han [9, eqn. (1.9.41)]). Define

θ1 =
{

Q ∈ M(X) : D(Q ‖ S)−D(Q ‖ R) ≥ 0
}

,

θ2 =
{

Q ∈ M(X) : D(Q ‖ S)−D(Q ‖ R) ≤ 0
}

,

and for t ∈ R

At = θ1 ∩
{

Q ∈ M(X) : H(Q) +D(Q ‖ R) = t
}

Bt = θ2 ∩
{

Q ∈ M(X) : H(Q) +D(Q ‖ S) = t
}

.

The rate function (via the contraction principle) is given by

I(t) = min

{

inf
Q∈At

D(Q ‖ R), inf
Q∈Bt

D(Q ‖ S)

}

.
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From Proposition 7 we conclude that the limiting guessing exponent exists.I∗(β) is then

sup
t∈R

{

βt−min
{

inf
Q∈At

D(Q ‖ R), inf
Q∈Bt

D(Q ‖ S)
}

}

= max

{

sup
t∈R

sup
Q∈At

{

βt−D(Q ‖ R)
}

,

sup
t∈R

sup
Q∈Bt

{

βt−D(Q ‖ S)
}

}

= max

{

sup
Q∈θ1

{

βH(Q)− (1− β)D(Q ‖ R)
}

,

sup
Q∈θ2

{

βH(Q)− (1− β)D(Q ‖ S)
}

}

= (1 + ρ)−1 max

{

sup
Q

{

ρH(Q)−D(Q ‖ R)
}

,

sup
Q

{

ρH(Q)−D(Q ‖ S)
}

}

= (1 + ρ)−1 max
{

ρHα(R), ρHα(S)
}

,

yielding
E(ρ) = max

{

ρHα(R), ρHα(S)
}

.

V. PROOFS

We now prove Propositions 6 and 7.

A. Proof of Proposition 6

From Theorem 5 it is sufficient to show that the limit in (21) for Campbell’s coding problem exists if
and only if the Rényi entropy rate exists, with the formerρ times the latter.

Fix n. In the rest of the proof, we use the notationEPn
[·] for expectation with respect to distributionPn.

The length function can be thought of as a bounded (continuous) function fromXn to R and therefore our
interest is in the logarithm of its moment generating function of ρ, the cumulant. The cumulant associated
with a bounded continuous function (hereLn) has a variational characterization [25, Prop. 1.4.2] as the
following Legendre-Fenchel dual of the Kullback-Leibler divergence, i.e.,

lnEPn

[

exp{(ρ ln 2)Ln(X
n)}
]

= sup
Qn∈M(Xn)

{

(ρ ln 2)EQn
[Ln(X

n)]−D(Qn ‖ Pn)
}

.

(31)
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Taking infimum on both sides over all length functions, we arrive at the following chain of inequalities:

inf
Ln

lnEPn

[

exp{(ρ ln 2)Ln(X
n)}
]

(32)

= inf
Ln

sup
Qn∈M(Xn)

{

EQn
[(ρ ln 2)Ln(X

n)]−D(Qn ‖ Pn)
}

= sup
Qn∈M(Xn)

inf
Ln

{

EQn
[(ρ ln 2)Ln(X

n)]−D(Qn ‖ Pn)
}

+Θ(1) (33)

= sup
Qn∈M(Xn)

{

ρHn(Qn)−D(Qn ‖ Pn)
}

+Θ(1) (34)

= ρH 1

1+ρ
(Pn) + Θ(1). (35)

Equation (33) follows because (i) the mapping

(Ln, Qn) 7→ EQn
[(ρ ln 2)Ln(X

n)]−D(Qn ‖ Pn)

is a concave function ofQn; (ii) for fixed Qn and for any two length functionsL(1)
n andL

(2)
n , for any

λ ∈ [0, 1], the function
Ln =

⌈

λL(1)
n + (1− λ)L(2)

n

⌉

is also a length function and

EQn
[Ln] = λEQn

[L(1)
n ] + (1− λ)EQn

[L(2)
n ] + Θ(1);

(iii) M(Xn) is compact and convex, and therefore the infimum and supremummay be interchanged upon
an application of a version of Ky Fan’s minimax result [26]. This yields a compression problem, the
infimum overLn of expected lengths with respect to a distributionQn. The answer is the well-known
Shannon entropyH(Qn) to within ln 2 nats, and (34) follows. Lastly, (35) is a well-known identity which
may also be obtained directly by writing the supremum term in(34) as

(1 + ρ) sup
Qn∈M(Xn)

{

EQn

[

−

(

ρ

1 + ρ

)

lnPn(X
n)

]

− D(Qn ‖ Pn)
}

and then applying (31) with−(ρ/(1 + ρ) lnPn(X
n)) in place of(ρ ln 2)Ln(X

n) to get the scaled Rényi
entropy.

Normalize both (32) and (35) byn and letn → ∞ to deduce that (21) exists if and only if the limiting
normalized Rényi entropy rate exists. This concludes the proof.

B. Proof of Proposition 7

This is a straightforward application of Varadhan’s theorem [19] on asymptotics of integrals. Recall that
νn is the distribution of the information spectrumn−1 lnPn(X

n). DefineF (t) = βt. Since the(νn : n ∈ N)
sequence satisfies the LDP with rate functionI, Varadhan’s theorem (see Ellis [18, Th. II.7.1.b]) states
that if

lim
M→∞

lim sup
n→∞

1

n
ln

∫

t≥M
β

exp{nβt} dνn(t) = −∞ (36)

then the limit
lim
n→∞

1

n
ln

∫

R

exp{nβt} νn(dt) = sup
t∈R

{βt− I(t)} (37)
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holds. The integral on the left side in (37) can be simplified by defining the finite cardinality set

An = {−n−1 lnPn(x
n) : ∀xn ∈ X

n} ⊂ R

and by observing that
∫

R

exp{nβt} νn(dt)

=
∑

t∈An

exp{nβt}
∑

xn:Pn(xn)=exp{−nt}

Pn(x
n)

=
∑

xn

Pn(x
n)1−β

=
∑

xn

Pn(x
n)

1

1+ρ = exp
{

βH1/(1+ρ)(Pn)
}

.

Take logarithms, normalize byn, take limits, and apply (37) to get the desired result. It therefore remains
to prove (36).

The event{t ≥ M
β
} occurs if and only if

{

Pn(x
n) ≤ exp

{

−nM

β

}}

.

The integral in (36) can therefore be written as
∑

t∈An,t≥
M
β

∑

xn:Pn(xn)=exp{−nt}

exp{nβt}Pn(x
n)

=
∑

xn:Pn(xn)≤exp{−nM
β

}

Pn(x
n)

1

1+ρ

≤ |X|n · exp
{ −nM

β(1 + ρ)

}

.

The sequence inn on the left side of (36) is then

ln |X| −
M

β(1 + ρ)
,

a constant sequence. Take the limit asM → ∞ to verify (36). This concludes the proof.

VI. CONCLUSION

We first showed that the problem of finding the limiting guessing exponent is equal to that of finding
the limiting compression exponent under exponential costs(Campbell’s coding problem). We then saw
that the latter limit exists if the sequence of distributions of the information spectrum satisfies the LDP
(sufficient condition). The limiting exponent was the Legendre-Fenchel dual of the rate function, scaled
by an appropriate constant. It turned out to be the limit of the normalized cumulant of the information
spectrum random variable. While some of these facts can be gleaned from the works of Pfister & Sullivan
[5] and Merhav & Arikan [7], our work sheds light on the key role played by the information spectrum. It
will be of interest to find a rich class of sources beyond thoselisted in this paper for which the information
spectrum satisfies the LDP.

Results on guessing with key-rate constraints for a generalsource are provided using the above
information spectrum approach in [27].
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