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Intersecting sets in midset spaces. I

By

JURGEN KINDLER

1. Introduction. Many mathematical existence problems can be reduced to the follow-
ing

Intersection Problem. Let Y be a nonvoid set, X an index set and {®(x): xe X} a system
of subsets of Y. When does the family intersect, i.e., when is () & (x) nonvoid?
xeX
It is convenient to formulate the problem in terms of correspondences. Recall that for
nonvoid sets X and Y a set-valued mapping &: X — 27 is called a correspondence from

" X to Y iff every value ®(x), xe X, is nonvoid. Of course, w.l.g. we may assume @ to be

a correspondence in our Intersection Problem. Hence, in the following let two nonvoid
sets X and Y and a correspondence & from X to ¥ be given.

In the present paper work begﬁn in [11], [12], [13], [14] is continued. We generalize the
concept of an interval space introduced by Staché [27] and study situations where Y (or
X) is endowed with a generalized interval structure (“midset function”) such that the
values of @ (or of &*, the dual of &) are convex. Just as in our former papers all proofs
are entirely elementary.

In a subsequent paper, appearing in the same journal, several applications of the
present results will be presented.

2. Preliminaries. For a correspondence ¢ from X to ¥ we set

@ (E):= () @(x) for nonvoid E = X and &" () = Y

xeE

Furthermore, val @:= {&(x):xe X} is the value set of @, &*:Y — 2% with &* =

€X' y¢d(x)} is the dual of §, and Gr®:= {(x,))e X x ¥: ye®(x)} is the graph of &,

We also use 6:X—2¥ with $(x):= {teX:d(x)n P (1) =0}, xeX, and we set
¢ (X) = {A = X: A finite nonvoid} and &, (X) = {de€(X)u {B}: 8" (4 U {x}) + Bforall
xeX}.

If # is a nonvoid system of subsets of a set S then we say that

& has the pairwise intersection property iff F, A F, % ¢ for all Fe#Z, ie{1,2},
& has the finite intersection property iff () Fi# @ for all Fe#,i<neN.
i=1
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Let Sp,S;, and S, be subsets of a set S. We say that

So meets Sy and S, iff S, S; +0, ie{1,2},

So joins Sy and S, iff Sy = §; U S, and S, meets S, and S,.

Let O & # < 25 We say that

So is pseudoconnected for M iff S, N S, + @ for every pair (S,, S,) e M x A which is joined
by So,

So is connected for M iff S, N S; N S, % @ for every pair (S;, S,)€ .4 x A which is joined
by S

Finally, ./ will be called (pseudo)-connected iff every M e . is (pseudo-)connected for ..

Abstract connectivity conditions have been introduced into the theory of minimax
theorems by Kindler [11] (“I'-connectedness”), Simons [25], [26] (pseudoconnectedness),
Kdnig [18] and K 6nig-Zartmann [19] (connectedness). Of course, every connected subset
of a topological space is connected for any family of open (resp. closed) subsets.

For a nonvoid set § a set-valued mapping Z: S x § — 25 will be called midsez Junction
for S. The pair (S, Z) will be called mitset space. In case Z = {,} e, Z(s,6) > {s,},
(s,1)e S x S) Z is called segment function for S and (S, Z)is a segment space. Asubset T = §
is (Z-)convex iff {s,t} = T implies Z(s,#) = T.

If, in addition, S is endowed with a topology & such that every midset/segment Z (s, )
is connected, then Z will be called topological midset[segment function and (S, 7, Z), or
(S, 2) for short, is a topological midset/segment space.

Midset functions with nonvoid midsets have been studied by Calder [6] under the name
interval convexities (compare also [2], [8]) whereas topological midset spaces with symmet-
ric midsets have been introduced by Staché [27] under the name interval spaces (compare
also [17], [14)). Every midset function Z for S gives rise to a ternary relation R= SxSx S
according to R={(s,u,t)eSxSx S:ueZ(s,t)}. Here sut :<>(s,u, t)eR is to be inter-
preted as “u lies between 5 and ¢”. Conversely, to every ternary (“betweenness”) relation
there corresponds a midset function Z (s,¢) = {ueS:su t}

The notion of betweenness is ubiquitous in mathematics:

An axiomatic treatment of geometric betweenness was initiated by Pasch (compare [22]
for references). Similarly the join geometries of Prenowitz and Jantosciak [23] lead in
a natural way to a midset structure. If (S,d) is a metric space then metric betweenness
in the sense of Menger [5], is defined by the relation sut<ss +t, u¢{s.t}, and
d(s,u) +d(u,t)=d(s,¢).

A ternary algebra (S,(-,-,"), where (-,-,"):SxSxS—S is a ternary operation on
S, defines a ternary relation sut:e-(s,u,t)=u with the midset function Z (s,8)=
{u,eﬂ;,(s,u,,t)iu}Aparticulancasefisfthe,medianoperator—(s,-u,—t—): SAuyv-(sat)vuat)
in a distributive lattice. Compare [1] for further examples. )

In a partially ordered set (S, <) the midsets Z (s, t) = {ueS:s<u=t} resp. Z(s,0) =
{ueS:s<u=tort<uxs} are called order intervals and Z-convex subsets are called
order convex. On (8, £) order topologies (or interval topologies) can be defined [3], [21]. If
the order intervals are connected (the classical result on linear orders is in [10], p. 55f)
then we obtain a topological midset space. Compare also [24] and the references therein,

In lattices S the betweenness relation sut<ssAt<u<svt resp. sut<>(s A u)

v{Aat)y=u=(sVvu)A(uvt)is also frequently used [22], [28). If the lattice is endowed
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with‘a norm (Positive valuation) ||, then d‘(s, 1) =|s v t|—|s A t| defines a metric on S.
For interrelations between metric betweenness and order betweenness compare [4], [3],
{20}, [22]. For lattice topologies we refer to [9].

3. Pairwise intersection — abstract version. For a given midset function Z on X we
consider the following conditions:
(A) D(x;)) N B (x,)=9.
B) &(x) = (x,) U B(x,).
(C) &(x) meets &(x,) and D(x,).
(D) xeZ(x,,x,) implies D (x) = D(x,) or (x) = D (x,).
(B)  Z(xy,x,) meets &(x,) and &(x,).
(F)  Z(xy,x,) is connected for {S(x,), & (x,)}.
We say that

@ is Z-concave iff for all ((x,, x35x)eGrZ  (A) implies (B),
@ is Z-connected iff for all ((x1,x,),x)eGrZ (A), (B) and (C) are inconsistent,
& is Z-linked iff for all (x,x)eXxX (A) and (D) imply (E),
. Z is $-connected iff for all (x1,x)eXxX  (A)and (D) imply (F).
Finally we say that Z is @-shrinking iff for every pair (x1,%,)e X x X there exists a pair
(t1,t)€Z (%4, %,) x Z(x;,x,) such that ?(ty) = &(x,) and D(ty) = D(x,).
We want to demonstrate that the following simple observation can be very useful in the
solution of the Intersection Problem. The idea is to split the problem into four subprob-
lems which can be treated separately. V

Proposition 1. val & has the Pairwise intersection property i X admits a midset function
- Z such that (a) @ is Z-concave, (b) @ is Z-connected, (©) b is Z-linked, and (d) Z is
b-connected.

Proof. Let (a)—(d) be satisfied. Suppose that for some pair (x1,x5)€ X x X condition
(A) holds. Then (a) and (b) lead to (D) and to Z (x1,%,) = B (x,) U B(x,). Now, by (©),
Z(x4,x,) joins &(x,) and B(x,). So by (d) there is an ez (e15%2) N B (x)) N B (x,).
Hence, by (a), 0 + & (%) = (@E)NDP(x,) U (P A @ (x,)) =0, a contradiction.

To prove the converse, take Z = {5}, say.

Remark 1. For every midset function Z on X the following implications hold:

a) O(x)c P(x,)ud(x,) V((x1,x5), x)€ Gr Z <> &* is Z-convex-valued = & is Z-con-
cave.

b)— & is Z=connected < & (x) is pseudoconnected for {9 (x1), B (x,)} ¥((xy,%,),x)eGr Z.
€) Zis a segment function = Z is @-shrinking = & is Z-linked.

Proposition 2. The Jollowing are equivalent:

(1) val @ has the pairwise intersection property. :

(2) X admids a @-shrinking midset Junction Z such that &* is Z-convex-valued and for
every pair (x,,x,)eX x X .
() every ®(x),xeZ(x,,x,), is pseudoconnected for {® (x,), b (x,)}, and
()  Z(x,x,) is connected for {&(x,), & (x,)}.

4%
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Proof. (1)=(2): Take Z = {-,}. (2) = (1): Apply Proposition 1 and Remark 1.

4. Pairwise intersection — topological version. In the sequel we shall present some
topological versions of Propositions 1 and 2 where the crucial abstract connectedness
assumptions will be replaced by “ordinary” topological ones. The following observation
is the key for our further investigations:

Remark 2. Let Z be a midset function for X. Suppose that for every pair
(%4, X,)e X x X which satisfies conditions (A) and (D) there exists a topology on X such
that Z (x,,%,) is connected or empty and the sets Z (x;,x,) N &(x,), ke {1,2}, are either
both closed or both open in Z (x,,x,). Then Z is @-connected.

As an immediate consequence we obtain:

Proposition 3. The following are equivalent:

(1) val @ has the pairwise intersection property.

(2) X admits a midset function Z such that & is Z-linked, * is Z-convex-valued, and for
every pair (x,%,)€X x X there exist topologies on X and Y such that
()  Z(xy,x,)is connected or empty, and the values ® (x), x€ Z (x4, X,), are connected,
(i) @(x,) and B (x,) are both closed, and
(iii) the sets Z(x;,%,) N & (x,), ke {1,2}, are both open in Z(xy,x,).

(3) As (2) with (ii) replaced by
@i)* @(x,) and (x,) are both open:

Proof. (1) = (2),(3): Take Z = {*,-} and the topologies {§, X} and {G = Y:9¢ G} u {Y}
in case (2) resp. {G = Y:9e G} u {#} in case (3), with arbitrary e P (x,) N P (x,).

(2)=> (1), (3) = (1): From Remarks 1 and 2 we infer that the assumptions of Proposi-
tion 1 are satisfied.

In applications the verification of condition (iii) in Proposition 3 may cause difficulties.
Therefore, we shall present a modified version where (iii) is replaced by another condition
(ifi)* fitting better into the frame of correspondences. We shall make use of the following
continuity conditions:

Let X and Y be topological spaces. Then a correspondence & from X to Y is called

upper semicontinuous at a point x € X iff for every open sct G with G > @ (x) thereis a .

neighborhood U of x such that #(u) = G, ueU,
lower semicontinuous at a point x e X iff for every open set G with G N & (x) + 0 there
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Remark 3. The following are equivalent:

(1) val @ has the pairwise intersection property.
(2) @ is open-valued w.r.t. every topology on X.
(3) @ is quartercontinuous w.r.t. all topologies on X and Y.

The following lemma summarizes some interrelations, most of which ought to be
well-kown.

Lemma 1. Let X and Y be topological spaces. For a correspondence ® from X to Y
consider the following properties:

(@) @ is upper semicontinuous.

@* () {@*():yeF} is open for every closed F < Y.
(b) @ is lower semicontinuous.

(0)* () {®*():y€eG} is closed for every open G < Y.
(c) @ is quartercontinuous.

(d) & is open-valued.

(e) @ is closed-valued.

() & is open-valued.

(&) & is closed-valued.

(h) @* is closed-valued.

(i) Gr® is closed.

(k) Y is compact.

Then the following implications hold: 1. (a) <> (a)* = (c); 2. (b) <> (b)* = (c); 3.‘ (@) A (©=();
4. (b) A (d)=(2); 5. W) =>(g); 6. (@) =>(c); 7. () A (K)=>(a) A ().

Proof. 1.and 2. are obvious, and 3., 4., and 5. follow from & (x) = () {®* (3): y € & (x)}
together with 1. and 2. To see 6. observe that for U = X — &(x) and G > &(x) we have
& (4) N G =+ 0, ueU. Finally 7. is well-known [15].

Remark 2*. Let Z be a midset function for X. Suppose that for every pair
(1,%,)€ X x X which satisfies conditions (A) and (D) there exist topologies on X and ¥
such that the values &(x,) and ®(x,) are either both open or both closed, & is quarter-
contiguous at every xe Z (x;, x,), and Z (x,, x,) is connected or empty. Then Z is $-con-
nected.

Proof. Let (x,,x,) satisfy (A) and (D). For ke {1,2} let M, = Z(x,,x,) n &(x,). By

is a neighborhood U of x such that W AGFY, ueU,

quartercontinuous at a point xe X iff for every open set G with G > @(x) there is a
neighborhood U of x such that ® ()" G * @, ue U.

& is called upper semicontinuous, ... iff @ is upper semicontinuous, ... at every point
xeX.

The notion of upper and lower semicontinuity is classical [15]. In our framework,
‘however, the weaker quartercontinuity, which has recently been introduced by Komiya
[16], and, under the name of semicontinuity, by Correa et al. [7], is essential:

Remark 2'it’is sufficient to show that M and M, are both open in Z(x,, x,). To see this,

let xe M,, say. Weset G=Y — & (x,) if §(x,) and H(x,) are both closed and G = & (x,)

otherwise. Then G is open and contains @ (X). Hence, there is a neighborhood U of % such

that ®(u) N G + §,ucU. Now (A) and (D) imply U n Z(x,,x,) < M, in both cases.
Now, as above, we obtain:

Proposition 3*. Proposition 3 remains true if condition (iii) is replaced by
(iii)* @ is quartercontinuous at every xe Z(x,,%,).
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5. Correspondences with constant selector —solution of the intersection problem. We shall
now attack the problem mentioned in the introduction. In order to be able to apply our
results from Sections 3 and 4 we reduce it to a pairwise intersection problem:

For Ee & (X)u {0} let &5(x):=&"(Ev {x}), xe X. If P is any property then we say
that @ has P hereditarily iff every &g, E€£4(X), has P.

Remark 4. a) The correspondence & possesses a constant selector iff val @ has the

finite intersection property and Y admits a topology such that & is closed-valued and at

least one value of @ is compact.
b) val @ has the finite intersection property iff it has the pairwise intersection property

hereditarily.

Proof. a) For §e®"(X) the topology {G = Y:9¢ G} u {Y} is compact and & is
closed-valued. The converse is obvious.

b) Suppose that val @ does not possess the finite intersection property, ie., " (4) =0
for some Ae&(X). Then we have @ (x,) N P5(xz) =9 for {x1s%,} © 4,% F X,, and
E = A — {x,,x,}. If such an A is chosen with minimal cardinality, then E€ &4 (X). So &
fails to have the pairwise intersection property hereditarily. The converse is obvious.

Remark 5. For a midset function Z on X the conditions “®* is Z-convex-valued”
and “Z is @-shrinking” are hereditary.
The following “hereditary version” of Lemma 1 will enable us to apply Remark 4:

Lemma 2 (Compare also [16]) Let X and Y be topological spaces and @ a correspon-
dence from X to Y. Consider the same conditions (@), (b), . . as in Lemma 1. We write (aH),
(bH), ... iff condition (@), (b), ... holds hereditarily.

The following implications hold: 1. (a) A (€)<>(aH) A (eH) = (cH) A (fH); 2. (a) A (d)=
(aH) A (dH) = (cH); 3. (b) A (d) <> (bH) A (dH) = (cH) A (gH); 4. () <> (hH) = (k) = (cH);
5. () A (k) <>(@H) A (kH) = (cH) A (fH).

Proof. (a) A (€)= (aH): Let Ee &,(X), x€ X, and G an open neighborhood of @ (x).
Then &(x) = Go:= GuU(Y — 9" (E)). Hence there is a neighborhood U of x such that
& (u) = G, and therefore (1) = G, ueU.

(@) A (d)=>(aH): Conclude as above with G, = ¢ (x).

(b) A (d)= (bH): Let Ee£5(X), x€ X, and G an open set intersecting @ (x). Then for
Go=Gn @ (E) thereisa neighborhood U of x with D) " G = () N G, * 0, ueU.
The rest of the proof follows with Lemma 1.

Theorem-l.—Forfafcorrespondence~<I>~ﬁovaltoJLth&foIlowing.ar:e,equiyalent :
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(3) There exist topologies on X and Y and a topological segment function on X such that
(v) @ is lower semicontinuous,

and conditions (i), (ii), and (iv) as in (2) hold.

Proof. (1)=(3): (Compare [12]). Take the topologies Iy = {§,X} and JF7=
{G = Y: 1A e & (X) such that G > &"(4)} U {#} and the segment function Z = {-,-}.
(3) = (2): This follows with the second implication in Lemma 2.

' )= (.1): By Remark 4 it is sufficient to show that every @, E € &, (X), has the pairwise
1ntgr§ect10n property. But this follows with Proposition 3* together with Remarks 1 ¢)
and 5.

Remark 6. The implication “(2) = (1)” in Theorem 1 remains true if condition (iv) is
replaced by

(iv)* @ is closed-valued.

But “(1) = (2)” fails in this case as the example X = Y =N and & (x) =N — {x}, xeN,
shows. (Here (iv)* is only satisfied for 73 = 2 which violates (ii).) ,

Theorem 2. For a correspondence ® from X to Y the following are equivalent:

(1) - @ possesses a constant selector (i.e., [} @(x) is nonvoid).
xeX

2 The}:'e hexist topologies on X and Y and a @-shrinking topological midset function on X
such that

(0) at least one value of @ is compact,
@) * is convex-valued,
(i) every &"(A), Ae&(X), is connected or empty,
(iii) @ is hereditarily quartercontinuous, and
(iv) @ is closed-valued.
(3) There exist topologies and topological segment functions on X and Y such that
(0) Yis compact,
@) @* is convex-valued,
(i) @ is convex-valued,
(i) & is upper semicontinuous, and
(iv) @ is closed-valued.

(1) val @ has the finite intersection property.
(2) There exist topologies on X and Y and a ®-shrinking topological midset function on
X such that
@ @* is convex-valued,
(i) every " (A),Aef(X), is connected or empty,
(iii) @ is hereditarily quartercontinuous, and
Gv) @ is open-valued.

Pro.of. (1)=(3):(Compare [14],{12]). Choose $.€ $°(X). Take Z = {0, X}, Zy =
Fr={Gc Y:9¢Gu{Y}and Z,={-,-} U {P}. e i =13,

(3) = (2): This follows with the first implication in Lemma 2. (Observe that every " (4).
Aeé&(X), is convex and therefore connected.) ’

(2) = (1): This follows with Remarks 4 2a) and 6.

If emark 7, Cogditions (2) or (3) in Theorem 2 without the compactness assumption
(0) imply the finite intersection property of val .
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Theorem 3. For a correspondence ® from X to Y the following are equivalent:

(1) @ has a constant selector.

(2) There exist topologies on X and Y and a topological midset function Zy for X such
that @ is hereditarily Zy-linked and
(0) @ is compact-valued,

@) O* is Zy-convex-valued,

(i) every ®"(4),Aeé (X), is connected or empty,

(i) Grén(Zx(x,,x;)xY)is closed in Zy(xy,x;)x Y for every (x,,x,)eX x X,
and

(@iv) @ is closed-valued.

(3) There exist topologies on X and Y, a topological midset function Zy for X such that
& is hereditarily Zy-linked, and a topological segment function Zy for Y with the
properties
(0) Y is compact,

(@) @* is Zy-convex-valued,

(i) @ is Zy-convex-valued,

(iii) Grén(Zx(xy,x,)xY) is closed in Zy(x,,%,) X Y for every (x,,x,)e X x X,
and

@iv) & is closed-valued.

Proof. (1)=(3): Take Zy =0 and Jy,J5 and Z, as in the proof of Theorem 2.

(3) = (2): Compare the proof of Theorem 2.

(2) = (1): By Remark 4 it is sufficient to show that val @ has the pairwise intersection
property, because the assumptions are hereditary for @. So by Proposition 3 it remains
to show that for every pair (x,,x,)e X x X the sets My, = Zx(%,,%,) n &(x;), ke {1,2},are
both open in Zy (x,,x,). To this end, consider a net (z,) in Z4(x,, x,) — M,, say, which
converges to some zeZy(x,,X,). For every n choose y,e @(x;) nP(z,). As P(x,) is
compact there exists a subnet (y,,) converging to some ye ®(x;). Condition (iii) implies
ye®(z), hence z¢ M.

Remark 8. Theorem 3 “(2)=(1)” contains Stachd’s Proposition 2 in [27] and, in
essence, Simons’ Theorem 8 in [25]. In these results Zy is assumed to be a topological
segment function. However, under this stronger assumption the implication “(1)=>(2)”
fails to hold any more: Consider X = {1,2}, Y = {1,2,3}, (1) = {1,2}, and &(2) = {2,3}
as in [12], Example 3. It is easily seen that there exist no topologies on X and Y and no
@-shrinking topological midset function (in particular, no topological segment function)
Zy for X such that condition (jii) in Theorem 3 is satisfied.
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