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TOPOLOGICAL INTERSECTION THEOREMS

—
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(Communicated by Andrew M. Bruckner)

ABSTRACT. Let {Cx : x € X } be a family of subsets of some set Y. A
purely topological condition is given that is both necessary and sufficient for
N{Cx : x € X} to be nonvoid. Applications to minimax theorems are sketched..

1. MAIN RESULTS

Let Y be a nonvoid set and {Cy : x € X} a family of nonvoid subsets of
Y (X amonvoid index set). Let C; :={x € X:y ¢ Cx}, y € Y, denote
the system of conjugate sets-and set g (X):={4 C X : A finite nonvo1d} We
shall prove the following two theorems:

Theorem 1. The following are equivalent:

(@ M{Cx:xeX}#2. ' '
(b) There exist topologies on. X and Y such that

(o) Y is compact,

(i) every set Cy, x € X, is closed,

(ii) for every closed F C Y the subset ({Cy :y € F} is open,

(iii) every subset {Cx :x € A}, A € &(X), is connected or empty,
(iv) every subset (\{Cy:y € B}, BCY, s connected or empty.

Here subsets of topological spaces are endowed with the relative topology,
and we set ({C; :yeo}=4X. -

Theorem 2. The following are equivalent:

(@) {Cs:x€d}#@ forall A€ &(X), i.e., the sets Cx, x € X, have the
finite intersection property. v

(b) There exist topologies on X and Y such that

(i) every set Cy, x€X, is open,

(ii) for every open G C Y the subset N{C; :y € G} is closed,
(iii) every subset. N{Cx:x€ A}, Aec&X ) is connected or empty,
(iv) every subset \{C;:y € B}, BCY,is connected or empty
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Our proof of these two dual theorems is entirely elementary. It owes some
inspiration to the study of minimax theorems (compare also the examples be-
low). The source of the idea dates back to 1959 when Wu pointed out [18] that
the only property of convex sets that is actually needed in the proof of mini-
max theorems is their connectedness. Until now, many authors have used and
developed further Wu’s method (cf. Tuy [17], Jo6 [6], Staché [16], Komornik
[12], Geraghty-Lin [3], Komiya [10, 11], Kindler-Trost [8], and Horvath [5] just
to mention a few).

2. CORRESPONDENCES WITH CONSTANT SELECTOR

" It is convenient to reformulate our intersection problem in terms of corre-
spondences. In-the following, let X and Y be nonv01d sets and ® a corre-
spondence from X to Y, ie., a mapping ®: X - P(Y):={BCY:B #o}.
A mapping f: X — Y isa selector for @ iff f(x)e d(x ) forall xe X.

Main problem. When does the correspondence @ possess a constant selector?

As usual, Gr® = {(x,y) € X xY : y € ®(x)} is the graph of ®, and
Q. P*(y) ={x e X:y ¢ ®(x)}, y € Y, is the dual of ®. Recall that
a correspondence ® from a topological space X to a topological space' Y is
called upper (lower) semicontinuous iff for every open (closed) H C Y the set
{x € X : ®(x) C H} is open (closed). :

Remark 1. Let X be a topological space, Y a nonvoid set, and ® a correspon-
dence from X to Y. Then the following are equivalent:
(a) The subsets ({®*(y):y € B}, B CY, are connected or empty
(b) For every pair (x;, x;) € XxX there ex1sts a connected set C D {x;, x,}
such that
- P(x) C B(x;) UDP(xy) forall x € C.

(c) For every pair (x;, Xx3) € X x X the set {x e X :®P(x) C <I>fx1) U<I>(x2)}
is connected.

Proof. (a) = (c). For B=Y — (®(x;) U <I>(x2)) we have ({®*(y):y € B} =
{xeX:®(x) CPx;) UD(xp)}. .

(c) = (b) is obvious.

(b) = (a). For {x1,x} cD:=N{®* () :y € B}, BC Y, choose C
according to (b). Then we have {x;, x,} ¢ C c D. Hence D is connected.

Remark 2. Let X and Y be topologlcal spaces and <I> a correspondence from
XtoY.
(a) @ is upper semicontinuous 1ﬁ‘ N{®*(y) : y € F} is open for every
closed FCY.
(b) @ is lower semicontinuous iff N{®*(y) : y € G} is closed for every
open GCY. '

We can now reformulate Theorems 1 and 2:

Theorem 1*. For a correspondence @ ﬁom X to Y the following are equiva-
lent:

(a) @ has a constant selector.

(b) There exist topologies on X and Y such that

(o) Y is compact,
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(i) every value ®(x), x € X , is closed,
(ii) @ is upper semicontinuous, :
(iii) every subset ({®(x):x € A}, A€ &(X), is connected or empty,
(iv) every subset {®*(y):y € B}, B C Y, is connected or empty.
Proof. (a) = (b). Choose y € ﬂ{CID x) : x € X}. Then for the topologies
Iy ={2,X} and &y ={GCY:y ¢ G}U{Y} conditions (0)-(iv) are
satisfied. '

(o) and (iv) are obvious.
(ii) For GeJy and U = {x € X : ®(x) C G} we have

U#2=>9€G=>G=Y=>U=X.
(1), (m) Every subset of Y that contains ¥ is-closed and connected.

(b) = (a). Suppose that (a) is violated. Then by conditions (o) and (i) there
isan A € &(X) such that :

(1) . N@x):xedt=2.
Step 1. We may choose A4 such that
2) [{®x):xeCl#@ for all C C X with card C < card 4.

Since ®(x) is nonvoid for every x € X, there exist x, xz € A with x; # X .
We set E = A {x1, x2} and ¥(x) ﬂ{CD( ):t€ EU{x}}. Then by (2) and

(iii)

(3) every ¥(x), x € X, is nonvoid, closed, and connected :
For Z :={x € X : ¥(x) C ®(x;) U®(x,)} and ‘
M;={xeZ ¥(x)cCPx)}, ie{l, 2},

we have (o) x; € M;, i €{l, 2}; ) MlﬂMz =g,and (y) MiUM,=Z
Here (o) is obvious and (B), (y) follow from (1) and (3). (Observe that for
x € Z we have ¥(x) C ¥(x;) U¥(xz) and Y(x;)N¥(x2) =2 by (1).)

Step 2. We now show that M) and M, are both open in Z. To see this,
let X € M; for i € {1,2}. Then G := X —¥(x3_;) is open and (1) implies
¥(X) C ¥(x;) C G, hence ®(X) C G. From (ii) it follows that U = {x € X :
®(x) C G} is an open neighborhood of X. Now for V= UNZ we infer from

() S : :
xeV=o=90x)N¥(x3-;) = Y(x)ND(x3-;) =>x € M;.

SoXxeV cM,ie, M; isopenin Z.

Step 3. From the identity Z = N{®*(y) : y € B} for B = (N{®(t) : ¢ € E})
—(®(x1) UD(x3)), it follows by (iv) that Z is connected. Now (a), (B), and
(y) together with Step 2 lead to a contradiction.

Corollary 1. Let X and Y be topological spaces and @ a correspondence from
X to Y such that

(i) Y is compact,
(ii) Gr® is closed (in the product topology), :
(iii) every subset N{®D(x):x € A}, A€ &(X), is connected or empty,
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(iv) for every pair (x1, x;) € X x X there is a connected set C > {x1, x2}
such that : v

D(x) CP(x))UD(xy) forallxeC.
Then ® has a constant selector.

?’roof . It is well known [9, 7.1.16] that (i) and (ii) imply conditions (1) and (ii)
in Theorem 1*. Together with Remark 1 the assertion follows.

:Reniark 3. (a) The proof of Theorem 1* shows that conditions (b)(1)-(iv) alone
imply ‘ '

(®(x):x €A} # o forall de &(X).

Therefore, Theorem 1* remains true if condition (o) is replaced by

(o)* .'CI)(xo) is compact for some xy € X . '

Q’) Similarly, Corollary 1 remains true if condition (i) is replaced by

(i) * every value ®(x), x € X, is compact.

(To see this, proceed as in the proof of Theorem 1*. Observe that in Step 2
the set ‘X - G.= W(x3—;) is closed and compact, so as in the proof of Theorem
7.1.16 in [9] it follows that U is open.) This is Stachd’s Proposition 2 in
{16]. Corollary 1 is also an immediate consequence of Simon’s Theorem 8 in
[14]. (Cqmpare Remark 5(ii) below.) A recent paper of Ch. D. Horvath (4
connectivity approach to minimax inequalities, preprint, 1991) contains further
work of this type. .

(c) Finally, Theorem 1* remains true if condition (iii) is assumed for al
4 C X, but it fails if condition (iv) is only assumed for all B € €(Y) (compare
Example 1.1). :

’ll“h‘;orem 2*. For a correspondence ® from X to Y the following are equiva-
ent:

(@) {P(x):xcd}#2 forall A€ &(X).

(b) There exist topologies on X and Y such that

(1) every value ®(x), x € X, is open,

~ (i1) @ is lower semicontinuous,

(i'ii) every subset (\{®(x):x € A}, A€ &(X), is connected or empty,

(iv) every subset ({®*(y):iy € B} , B CY, is connected or empty.

Proof. (a) = (b). Take the topologies Iy = {&, X}, and
Fr={GCY:34 € &(X) such that G > [ {®(x) : x € A}} U {2}.

Then conditions (i), (ii), and (iv) are obviously satisfied. It remains to show
that every nonvoid subset C := N{®(x): x € 4}, 4 € &(X), is Fy-connected.
Tgt;ee(:;thmhl{eé)(c)c G1 UG, with Gy, G € Fy — {@}. Choose 4; € &(X)
wi ;D Xx):x € A;}, i € {1, 2}. Then
piriyaes } ‘{ b CNGING DM{P(x):x €
(b) = (a). Suppose that thereis aset 4 € &(X) with {D(x):x € A}=o.
We proceed as in the proof of Theorem 1*. Here the sets ¥Y(x), x € X, are
open and the proof of Step 2 has to be modified as follows: For i € {1, 2}
let X € M;. Then G ="¥(x;) is open, and from ®(X)N G = ¥(X) N D(x;) =
‘I’(?c) # 2 and (ii), we conclude that U := {x € X : ®(x) N G # @} is an open
neighborhood of X. For ¥V = UnNZ we infer from (y) ‘

XEV=2PX)NY(x)#0=>FX)NO) £ 0= x ¢ My_; = x € M.
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Togefher with Remark 2 we obtain

Corollary 2. Let X and Y be topological spaces and ® a correspondence from
X to Y such that .
(i) every ®(x), x € X, is open,
(ii) every ®*(y), y € Y, is closed, *
(iii) every subset ({®(x):x € A}, A€ &(X), is connected or empty,
(iv) every subset (\{®*(y):y € B}, B C'Y, is connected or empty.
Then ({®(x): x € A} is nonvoid for every A € &(X).

Example 1. Let X = ¥ = N be endowed with the “cofinite topology” J =
{GCN:N-Ge&N)}u{o, N}.

Example 1.1. Let C, = {x}, x € N. Here conditions (b)(0)-(iii) of Theorem
1 are satisfied, and condition (b)(iv) holds for all B € &(Y)U {&,N}. In
particular, Theorem 1 fails if condition (b)(iv) is only assumed for all closed
B C Y (asin (b)(ii)).

Example 1.2. Let C, = ®(x) = N— {x}. Here all assumptions of Theorem

2(b) and of Corollary 2 are fulfilled.

Example 2. Let X = Y = {1, 2} be endowed with the discrete topology and
take again Cy = {x}, x € X . Here all conditions of Theorem 2(b) are satisfied
with the only exception that condition (iv) does not hold for B = @. Of course,
CinG=2. ’

Example 3. Let X = {1,2}, ¥ = {1,2,3}, ®(1) = {1,2}, and ®(2) =
{2,3}. Let Jx be a topology on X such that the sets ®*(1) = {2} and
®*(3) = {1} are both open (resp. both closed). Then Jx is the discrete
topology, and X = N{®*(¥) : ¥y € @} is not connected. Hence, conditions
(ii) and (iv) of Corollary 1 or 2 cannot both be satisfied. On the other hand,
conditions (b)(0)-(iv) of Theorem 1* are fulfilled if we take the topologies
Fx={@,X} and Fy={GCY:2 ¢ Gtu{Y}={z, {1},{3}, {1, 3}, Y}.
This example shows that the results analogous to the converses of Theorems 1~

" and 2* do not hold in the situation of Corollaries 1 and 2 and that Theorem

1* cannot be derived from Staché’s Proposition 2 in [16].

Remark 4. If Gr® is open then, of course, conditions (i) and (ii) of Corollary
2 are satisfied, but not conversely as Example 1.2 shows. It is an open problem
whether Corollary 1 remains true if, instead of a closed graph, one only assumes
that all ®(x), x € X, are closed and all ®*(y), y € Y, are open. Compare
also [8, (4.4), (4.5); 7, (Remark); 13].

3. MINIMAX. AND PREMINIMAX VERSIONS

For the rest of the paper let X and Y be nonvoid sets and a: X x Y = R
an extended real-valued function on the cartesian product. We set
a, =supinfa(x, y), a* = infsupa(x,y),
‘ XGII\::J’GY ( y) erszlg’ ( 2

a* = sup inf maxa(x,y).
'AEZ(X)yEY xX€A ( ’ :

Then a, < &* < a* is always true. We say that a fulfills
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(the minimax relation) MM iff a, = a*,

(the prgminimax relation) PMM iff 4* = a, , and

(thhe m}z,nzmum minimax relation) MMM iff sup,cya(x, ) = a. for some

N P c . 3 *

The intersection problem and the minimax problem are related as follows:
Remark 5. Lej X and Y be nonvoid sets.

(1) A function a: X x Y — R satisfies MMM iff

O(x) :={a(x, -) < a.}, xeX,

is a correspondence from X to Y with constant selector.

.. (i) A correspondence ® from X to Y has a constant selector iff the funétion

Q(X,Y) = l1grpy(x), xeX, yeY,
satisfies MM (hence MMM). : :
(iii) A function a: X x ¥ — R satisfies MM iff for every 1> a,
®(x) :={a(x, -) < i}, xekX,
is a‘correspond'ence from X to_Y with constant selector.
(iv) A function a: X x Y — R satisfies PMM iff for every 4> a,
O(x) := {a(x, -) < A}, xeX,

satisfies (\{®(x):x € A4} # @ forall 4e &(X).

(v) A correspondence @ from X to Y satisfies D(x) :
~all 4 € &(X) iff the function a: HPO) 230 < 43 ;é 7 for

alx,y) = Lox(y(x) xeX, yevy,
satisfies PMM. » ;
Example 4 (Compare [12, Theorem 2: 13, The | '
‘ N ; 13, orem 1.3]).
topological spaces such that b “L.et Aand Y b?
(0) Y is compact, -
(i) a is lower semicontinuous (in the product topology),

(11) all subsets N{{a(x, Y<al:xed, A .
empty, < al 1 4 € &(X), are connected or

(ii1) all subsets N{{a(-, y) > a.}:y € B}, BCY,are 6onnected or empty.

Then MMM holds.
- Proof. Apply Corollary 1 and Remarks 1 and 5(1).

In the following, if X and Y are to i
., : pological spaces then i
upper connected in x iff the sets ¢ ’ we say that a s

(x1, )x ={xeX:a(x,-)>alx, JAa(xy, +)}, (X1, x) e X x X,
are connected and that a is lower connected in y iff the sets

Y, yy={reY:a(-,y) <al,y) vVai-, y)}, 1,)eY xY,
are connected.
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Example 4.1. Suppose that there are topologies on X and Y such that

(0). Y is compact, ‘

(i) a is lower semicontinuous,

(ii) a is upper connected in x,

(iii) a is lower connected in y.
Then MMM holds.
Proof. By Remark 1, applied to ®(x) = {a(x,-) < a.} , condition (ii) implies
condition (iii) in Example 4. Similarly, (iii) implies condition (ii) in Example
4 because {y1,y2} € D:=N{{alx,)<a}:xe€d}, A€ & (X), implies
1, y)rcD. :
Example 4.2. Let X and Y be convex subsets of two (Hausdorff) topological
vector spaces. 4 C ’

(i) If a is quasiconcave in x then a is upper connected in x.
(ii) If a is quasiconvex in y then a is lower connectedin y.

In connection with Example 4.1 this leads to Ha’s minimax theorem [4, The-
orem 4].
Example 5. Let X and Y be topological spaces such that
(i) a is upper semicontinuous in x, '
(ii) ‘a is upper semicontinuous in y,
(iii) a is upper connected in X, '
(iv) a is lower connected in .
Then PMM holds.
Proof. For 2> a. let ®(x) = {a(x, ) < A}, x € X . Then conditions (i) and
(ii) imply conditions (i) and (ii) in Corollary 2, and conditions (iii) and (iv)
imply conditions (iv) and (iii) in Corollary 2 as in the proof of Example 4.1.
Now by Remark 5(iv) the assertion follows from Corollary 2.~
As a special case we obtain the following unconventional version of Sioyn"s
minimax theorem [15]. '
Example 5.1. Let X and Y be convex subsets of topological vector spaces such
that :
(i) a is upper semicontinuous in x,
(ii) a is upper semicontinuous in y,
(iii) a is quasi-concave in x,
(iv). a is quasi-convex in . R
Assume, moreover, that there is another topology on Y such that
(0) Y is compact and a is lower semicontinuous iny.

Then MMM holds. ,
Proof. By Examples 4.2 and 5 conditions (i)-(iv) imply- a. = &, and from (o)
we easily infer 4* =a*.

4. AN OPEN PROBLEM

In [1, 2] Fan proved the following theorem with the aid of his infinite-
dimensional version of the Knaster-Kuratowski-Mazurkiewicz Theorem:




1010 : JURGEN KINDLER

Theorem (Fan). Let X be a compact convex subset of a topological vector space.
Assume that ® is a correspondence from X to X such that

(i) every ®(x), x € X, is closed,
(ii)- every ®*(y), y € X, is convex,
(iii) x € (x) forevery x € X .
Then ® has a constant selector.

As Fan’s Theorem has a lot of interesting applications it would be very desir-
able to have a simple proof—and perhaps even a generalization to nonconvex
situations—of this important result.

Problem. In the above situation let 7] be the (relative) vector space topology
on X. Find a topology % on X such that ® is an upper (resp. lower)
semicontinuous correspondence from (X, J]) to (X, %), every value ®(x),
x € X, is F-closed (resp. Fr-open), and every subset ({®(x) : x € A},
A€ &(X),is F-connected or empty.

If this problem is solved then Fan’s Theorem is an immediate consequence
of Theorem 1* and Remark 3 or Theorem 2*, respectively. On the other
hand, once Fan’s Theorem is proved such topologies can be found easily: Take
S, = Fy as in the proof of Theorem 1* (2*).

Question. Can the above problem be solved' w1thout using any version of the
KKM-Theorem?
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