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1. INTRODUCTION

Throughout, let a system % = {C,:xe X} of nonvoid subsets of a set ¥
be given (X an index set). Then %*:={C}:yeY} with Ck=
{xeX:y¢C,} is the system of conjugate sets. We write

C(d):=(){C,ixed}, A<X, with C(&)=7,

C*(B):=(){C}:yeB}={xeX:BnC,=}, Bcy,
with C*(J)=1X,

and, for nonvoid " < 2% and ¥ <27,

C(A)={C(K):KeX} and CHZ)={C*(L): Le Z}.
Finally, we set €(X)= {4 = X: 4 finite nonvoid }.
We are interés_ted in the following

Intersection Problems

(a) When is C(X)=(){C,:xeX} nonvoid, ie.
25 ¢ C(2%) hold?

(b) When does % possess the “finite intersection property”
CA)=N{C,:xed}+#F for all Ae&(X), ie, when does ¢ C(&(X))
hold?

, when does

The present investigations arose out of the study of minimax theorems:
Wu [19] was the first to observe that connectedness—rather than con-
vexity—is essential in the proof of minimax theorems. By a refined method
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Tuy [17], [18] derived a generalized version of Sion’s classical minimax
theorem [14]. Compare also [1] for a related result. Independently,
inspired by Jod’s paper [4], Staché [15] established an intersection
theorem which was used by Komornik [12] to derive a generalization of
Ha’s minimax theorem [2] Both concepts were unified by Kindler-Trost
[7].

All these techniques rely on the fact that the minimax relation

sup inf a(x, y)= inf sup a(x, y) MM

xeX YeY ye xeX

holds if and only if certain systems of level sets have nonvoid intersection
(cf. Remark 10 below). The starting point of. our investigations was the
observation in [S] that some kind of abstract connectedness of certain level
sets (“I-connectedness of Y™) is necessary for MM to hold. Recently,
abstract connectivity has been studied by Simons [13], Konig [9], and
Konig-Zartman [10] in the same context.

In the following, it will be shown that the three properties

e C(2%) is connected.
o C*(2%) is connected.

» € is compact.

are sufficient for () {C,:xeX} to be nonvoid. Moreover, the second
condition can be slightly weakened such that the three properties become
-sufficient and necessary. Of course, our “abstract” intersection theorems®
can be specialized to the concrete situation of topological connectedness. We
then obtain as special cases recent results of Horvath [3], ‘Kindler’s

“topological intersection theorem” [6], and Konig’s “minimax theorems
based on connectedness” [9].

2. ABSTRACT INTERSECTION THEOREMS

If S is a nonvoid set, then 25 will denote its power set. A nonvoid 2 < 25
will be called paving in S. v

Let &/ and # be pavings in S. We say that

& is connected for B iff Aesf, B,, B,e#B, A<B,UB,, and
ANnB,NnB,= imply A< B, or A< B,.

In case o = {A} we say that A is connected for %, and in case & =
the paving & is called connected.

& is compact iff for every nonvoid £ < « with () {B:Be & } # ¢ for all
finite nonvoid & =2% we have () {R:Re R} # . :
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& is finitely intersectional iff 4,, A, € o/ implies A, N4, o/, and
& is intersectional iff  {R:Re R} €./ for every nonvoid # = .
Finally, we set o = {S—A4:de o/} and #9={"_, Ai:Aie‘d, i<neN}.

Remark 1. (a) If #is achainin § (ie., B;, B,€ % implies B, = B, or
B, < B,) then every paving ./ in S is connected for #. In particular, every
s/ is connected for {F} or for {F, S}.

(b) Every ﬁnltely intersectional paving & in S with Fé¢of is
connected.

(c) & is connected for 4 iff o7 is connected for Z.

(d) Let o« be upward directed and connected for 4. Then the set
U {4: 4e o/} is connected for 4.

(e) If the subsets of o7 are pairwise disjoint then &/ is connected.

REMARK 2. For a nomvoid subset AcS and a paving % in S the
following are equivalent:

- (a) A is connected for .

(b) For all (sy,5,)eAXA there exists a CcS such that
(i) {51, 82} =C< 4, and (ii) C is connected for .

Proof. (a)=>(b): Take C=A.

(b)=>(a): Let B,,B,e# with AcB,UB, and ANB, NB,={.
Suppose that for ke {1,2} there exist s,€4 N B,. Choose C as in (b).
Then CnB.#J, ke{l,2}, CcB,uUB,, and from (ii) we infer
Q #CnNB,nB,c An B, N B,, a contradiction.

REMARK 3. Let €= {C,:xeX} as in Section 1 and % a paving in X.
Then the following are equivalent:
(a) C*(27%) is connected for %.
(b) {C¥H(Y—(C,uC,)):(x;,x,)eXxX} is connectedfor 4.
Proof. (a)=>(b) is obvious.

(b)=(a):For Bc Ylet {x;, x,} =< C*(B). Then D := C*(Y — (C,c1 uCy))
is connected for # and {x,, x,} = D = C*(B). Now apply Remark 2.

Now we introduce a concept which will be basic for our further
investigations:

In the following, let T(¥) denote the system of all triplets
T=(x1, X3, E)e X x X x (§(X) U {F}) such that

C(Eu{x))#Q forall xeX, and 1)
C(Eu {x1, x,})= . (2)
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Remark 4. (a) F¢C(E(X))= C¥XC(E(X))={T}=T(¥)=0.
(b) FEC2¥) e C(X)# T CHC2Y)={T} = T ¢C(E(X))

and € is compact.

For 1= (x,, x,, E)e T(¥) we define the sets
Do(t)=C*(C(E)—(C,,u C,,)) e C*(2¥) and
Di(7) = C*C(Ev {x;}))e CX(C(&(X))), ke {1, 2},
and we set
T\(€)={te T(¥): Do(tr) = Dy(r) U Dy(t)} and
Ty(#)= {t€ T(%): Dy(7) is connected for {D,(t), D,(z)}}:
The proof of the following three lemmata is obvious:

LemMa 1. For r% (%1, X4, EYe T(€) we have

. DO(T)={XEX: C(EU {x})ccmucxz}’ (3)
X3_r€Do(t)nDy(t), ke{l,2}, and 4)
Dy(t) N Di(t) N Dy(r) = B ‘ (5)

LevMa 2. T,(%) n Ty(%) = &.

- LEMMA 3. For t=(x,, X5, E) € T(¥) the following are equivalent:
(a) teT (%) '
(b) {C(Eu{x}):xeDy(r)} is connected for {C,,, C,,}.
(c) There exist sets F,>C,, ke{l,2}, such that C(Eu {x})n

F.nF,=0, xeDo(r) and {C(Eu {x}):x€Dy(t)} is connected for-

{FI’FZ}

The above observations lead to the following two abstract intersection
theorems:

THEOREM 1. The following are equivalent:

(@) N{Cy:xed}#J for all Ac&(X).

(b) C(E(X)) is connected for 4, and C*(2 Yy s connected for
C*(C(e(X))).

(c) There exist two pavings Ky > C*(£) and A3 > €* such that A, is
intersectional and comnected for A, and a finitely intersectional connected
paving ¥ o 4.

N
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Proof. (a)=(c): &£ =C(&(X)) is finitely intersectional and connected,
because ¥ ¢ .. By Remark 4a) we have C*(£)= {J}, hence we may
take ;= {F} and A5 =2%, say.

(c)=(b): ¥ =&, & finitely intersectional and connected, implies that
C(£(X)) is connected for ¢, and from C*(C(€(X))) < C*( &)< A, and
C*(2") = A5 it follows that C*(2Y) is connected for C*(C(£(X))).

(b)=>(a): Suppose that ¥ e C(&(X)). Then there exists a e T(¥). By
Lemma 3 we have 7€ T (%) because C(£(X)) is connected for €. On the
other hand, Dy(t) e C*(2%) is connected for {D (), D,y(7)} = C*(C(£(X)))
in contradiction to Lemma 2.

As an immediate consequence we obtain

THEOREM 2., The following are equivalent:

(@) N{CixeX}#J. ‘

(b) C(E(X)) is connected for %, C*2Y) is connected for
C*(C(8(X))), and ¥ is compact. -

(c) ‘There exist two pavings A1 > C*( L) and A3 = €* such that A, is

intersectional and connected for A, and a finitely intersectional, compact
and connected paving ¥ > 4.

CoROLLARY 1. Suppose that there exist a finitely intersectional, compact
and connected paving ¥ > ¥ and an intersectional connected paving A" > €*.
Then N {C,:xe X} # .

Remark 5. Theorem 2 remains true if in condition (b) we replace
“C(&(X)) is connected for ¥” by the stronger property “C(2%) is con-
nected” (compare Remark 1b)). One might conjecture that the assumption
“C*(2Y¥) is connected for C*(C(é”(X)))” may also be replaced by the
stronger property “C*(27) is connected”. The following example shows
that this is false.

CExampie 1. Let X={1,2}, ¥={1,2,3,4}, C,={1,2}, and C,=

" {2,3}. Here C*(2¥)=2% is not connected.

The above results are of very simple structure. For applications in
complex situations it seems worthwile to provide a more flexible version:

LemMMmA 4. Let t=(xy,x,, E)e T\(¥). Suppose that Y has nonvoid
subsets G, xe Dy(t), H,, x€ E, and F,, F, such that

(1) H(E)NG.#J, xeDy(),
(i) G,=C,, xeDy(t), and H,=C,, xcE,
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(i) C, < F,, ke {1,2},
(iv) CEu{x})nF;nF,=, xeDy).
Then Dy(t) N Di(t)={xeDo(r): G, nH(E)nF, =}, ke {1,2}.

Proof. For ke {1,2} let xe Li(t) :={x€Dy(t): G, n H(E)nF,=}.
Then from (i), (ii), (iii) together with (3) we obtain @#H(E)me=
(HE)YNG,nC,)V(HE)NG,NnC,)=HE)NG,nC,,_,c
C(Eu {x, x3_;}). Therefore, x¢ D;_,(t) so xeD,(t) because e T(%).
Conversely, let xeDy(t)nDy(r). Then by (3) and (iii) we have
C(Eu{x})=C(Ev {x,x3_1})=F5_;, and (iv) implies C(EvU {x}) N F,
=, hence xe L,(t) by (ii).

ProposiTiON 1. For ¥={C,:xeX} et H={H.:xeX}, ¥=
{G,:xeX} and F = {F,: xe X} with .

J#H,cG,cC,cF,, xeX (0)

. be given. Suppose that there exist pavings %, &, in ¥ and A, A, in X such
that

(1) Ho%, & is finitely intersectional and connected for &
(i) LoHVF, S is finitely intersectional,
(ill) Ao E*, A, is intersectional and connected for A,
(iv) either G*(%,) = A, or H¥(%) = A;.

Then T(F)NT(H)= .

Proof. Suppose that there exists a = (x,, x,, E)e T(# )~ T(5#). Then
1€ T(¥) by (0), (i), and Lemma 3. Hence, if we set L, =G*(H(E)nF,,)
" in case G*(%) < A, and L, = H*(H(E) N F, ) otherwise, then by Lemma 4
we have Dy(t)nDy(t)=Dy(r)n Ly, ke{l,2}. With (4), (5), and
te T,(%) we obtain Do(t)n Ly #J, ke {1,2}, Do(t)nL;nL,=¢, and

Dy(t)= L, U L,. Thus, Dy(t) is not connected for {L,, L,}. But Dy(t) is
connected for #; by (iii), and {L, L,} < 9{”1 by (ii), (iv), which leads to a
contradiction.

. %y

The above Proposition, together with Remark 4, can be used to establish
generalized versions of Theorems 1 and 2. We shall confine ourselves to
presenting applications in minimax theory (cf. Proposition2 and
Theorems 8, 9 and 10 below).

3. TOPOLOGICAL INTERSECTION THEOREMS

If (S, ) or S, for short, is a topological spacé then G(S)(=7%), &(S),
K(S) will denote the system of all open, closed, compact subsets of S. Of
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course, a nonvoid subset 4 = S is connected (in its relative topology) iff 4
is connected for B(S) (or for F(S)). We set €(S)={4<=S: A nonvoid
connected } U { ¥ }.

Remark 6. Let S be a topological space Then every paving
P < F(S) N K(S) is compact.

We are now able to present generalized versions of the two main results
in [6]:

THEOREM 3. The following are equivalent:

(@) N{C,:xeAd}+# for all Ae&(X).

(b)  There exist topologies on X and Y such that C(£(X))=®(Y)n
€(Y), C*(C(¢(X))) = B(X), and C*(F(Y)) = C(X).

(b)*  As (b) with ®(X) replaced by F(X).

(¢)  There exist topologies on X and Y such that €(X) is inter-

sectional and contains €*, (YY) N C(Y) is finitely intersectional and contains
€, and C*(6G(Y)) c BG(X).

(c)* As (c) with &(X) replaced by F(X).
(d)  There is a topology on Y with € =« B(Y) = €(Y).

‘Proof. (a)=>(d): Take the topology Ty={GcY:34e&(X) with

G5 C(A)} U (D).

(d)=(c), (c)*: Take Jy={H, X} and 7, according to (d). Then
$*c2¥=C(X), 4= 6(Y)<=C(Y), and C*GB(Y)— {@hH={T}.
The implications (c¢)=>(b) and (c¢)* = (b)* are obvious.

(b)=(a), (b)*=(a): From C(&(X))<=6(Y)nE(Y) it follows that
C(&(X)) is connected (for ), and together with Remark 3 we infer that
C*(27) is connected for C*(C(&(X))). Now apply Theorem 1 “(b)=(a)”.

THEOREM 4. The following are equivalent:

(@) N{CixeX}#d.

(b) There exist topologies on X and Y such that € "{(Y)# I,
C(EX))=F(Y)nE(Y), C*C(E(X))) = F(X), and C*(B(Y)) = €(X).

(b)* As (b) with §(X) replaced by G(X).

(c)  There exist topologies on X and Y such that €(X) is inter-
sectional and contains €*, F(Y) n C(Y) is finitely intersectional and contains
€ EnKY)# I, and C*(%(Y)) < F(X).

(c)* As (c) with §(X) replaced by &(X).
(d)  There is a compact topology on Y with € = F(Y) < €(Y).
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Proof. (a)=(d): Take 7, ={G<cY:5¢G}uU {Y} for some e C(X).

(d)=(c), (c)*: Take I, ={, X} and T according to (d).

(c)=>(b) and (c)* = (b)* are obvious.

(b)=(2a) and (b)*= (a): As in the proof of Theorem 3 it follows that
& ¢ C(£(X)). Take xoe X with C, e R(Y). Then & ¢ 2 := {C(A U {x,}):
Aeé(X)}, hence C(X)= {P: Pe P} # & according to Remark 6.

Remark 7. A topological space S with G(S)=E(S) or with
&(S) = €(S) (compare condition (d) in Theorems 3 and 4) is called Ayper-
connected resp. ultraconnected. Examples can be found in [16].

Remark 8. The set system ¥={C,:xeX} gives rise to a corre-
spondence ®@:X —2¥—{F} according to &(x)=C,, xeX. Here, @ is
upper semicontinuous or lower semicontinuous iff C*(F(Y)) = G(X) resp.
C*(6(Y)) = F(X) holds. Compare [87] for details.

COROLLARY 2. [3, Theorem 6]. Let X and Y be endowed with topologies
such that €N K(Y)#J, C(EX))=FY)NC(Y), and C*Q2H<=F(X)n
C(X). Then \ {C,:xe X} # .

COROLLARY 3. Let X and Y be endowed with topologies such that
C(EX)=R](Y)NEY), CHO(Y)c<CX) and C:={(x,y)eXxY:
yeC,}eFXxY). Then N{C,:xeX}# .

Here products of topological spaces are always endowed with the
product topology.

Proof. Of course, Ce F(Xx Y) 1mphes % < §(Y). In view of Theorem 4
“(b)*=>(a)” it is therefore sufficient to show that C*(F(¥)nK(Y))<
G(X). To see this, let FeF(¥Y)nK(Y) be given. Let (x,:nel) be a net
in X — C*(F) which converges to some xeX. For every nel there is a

y,€C,,nF. Wlg. we may assume that the net (y,:nel) converges to

some y € F. From (x,, y,)€ C, ne I, we infer (x, y)e C, hence ye C,. N F, so
x € X — C*(F). Therefore, C*(F) is open.

Remark 9. Corollary3 " is a slight generalization of Horvath’s

Theorem 7 in [3] which, in view of Remark 2, is equivalent to Stach®’s
Proposition 2 in [15].

4. ABSTRACT MINIMAX THEOREMS
For the rest of the paper let X and Y be nonvoid sets and a: Xx Y - R
an extended real valued function on the cartesian product. We set

a,=sup inf a(x, y), a*=inof sup a(x, y),
xex YeY YeY xex
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and

@*= sup inf maxa(x,y).
Aeé(X) yeY xe€A )

Then a, <a* <a* is always true. We say that a fulfills

(the minimax relation) MM iff a, = a*,

(the preminimax relation) PMM iff 4* =a,, and

(the minimum minimax relation) MMM iff sup, ya(x, )=a, for
some je Y.

A subset 4 < (a,, ) with inf A=a, will be called a border set (of a).
Observe that 4 = < a, = 00 = MMM.

Pre/minimax problems and intersection problems are closely related:

REMARK 10. Let %= {CiixeX} with C.={a(x,-)<a,}, xeX.

Furthermore, let a nonvoid border set 4 and set systems #* = {C*:xe X},
A€ A, be given with

{a(x, )<Ai}c=Cic{a(x,-)<4}, =xeX, Aed
Then the following equivalences hold

(a) MMM < ¢ C(2¥) < C(X)# &< There is a compact paving
& in Y such that F¢ CHE(X)) = &, Le 4. ;

(b) MM < @ ¢ CH2¥), Aed. '

(c) PMM < ¢ CHE(X)), Le .

Proof. (a) The first two equivalences are obvious. In case C(X) # & '

the paving & = {L: C(X) = L< Y} has the desired property. Conversely, if
the last condition holds then the paving & :={C?:xe X, Ae A} has the
finite intersection property. Since & is contained in the compact paving %,
we obtain & # () {S: Sey} C(X).

The proof of (b) and (c) is similar.

We now formulate some abstract minimax theorems where the underlying
sets X and Y do not carry any topological or algebraic structure.

THEOREM 5. The following are equivalent:

(a) PMM holds.
(b) There exist pavings A;, A inX and & in Y such that

(i) A5 is intersectional and connected for A,
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(i) & is finitely intersectional and connected, and for every A>a,
and every choice of € ={C,:xe X} with {a(x, )<} =C, < {a(x, )</1}
xe X, one has

(i) =, C*(L)c=H] and €* = A5,
(¢) There is a border set A such that for every A€ there exist

pavings Ay, > in X and £ in Y and a set system € = {C,, :x e X} such that
(i)-(iii) of (b) are satisfied.

Proof. (a)=>(b): Take A#;={} and A;=2% In case a,=o0 let
& = {}, say. Then condition (iii) holds vacuously. Otherwise, take =
{LcY:34eé&(X)3pe(a,, o) such that N {{a(x, )<u}:xed}=L}.

(b)=(c) is obvious.

(c)=(a): Apply Theorem 1 “(c)= (a)” and Remark 10c). (Observe that
A= =MMM =PMM.)

COROLLARY 4. The following are equivalent:

(a) PMM holds.
(b) There exist pavings A, #5 in X and % in Y and a border set A
such that
(i) A, is intersectional and connected for A7,
(ii) & is finitely intersectional and connected,
(i) {a(x,-)<A}e¥, xeX led
(iv) yer{aly)>2}ed;, LEZ, ied, and
(v) {a(-,y)>ileA, ye¥, ded.

(c) As (b) with < and > replaced by < and >

THEOREM 6. The following are equivalent:

(2) MM holds. |
(b) There exist pavings A, A, in X, a border set A, and pavings £*,
Aed, in Y such that
(i) 5 is intersectional and connmected for A,

_ (i) every £* led, is finitely intersectional, commected and
compact,

(i) {a(x,-)<i}e &% xeX, Aed,
(v) Nyer{a(,y)>i}eA], Le £* ied, and
(v) {a(,y)>AleA, ye¥, Aed.

THEOREMS BASED ON CONNECTEDNESS 539

Proof. (a)=(b): Take A= {J}, #,=2% and A= (a,, ). In case
a,=oo conditions (ii)~(v) are vacuously satisfied. Otherwise, for e A
choose y1€Y with sup, .y a(x, y;) <A and take ¥*={L:y,e Lc Y}

(b) = (a): Since 4 =¥ implies MM, we may assume that A4 is nonvoid.
Fix a led and set C,={a(x,-)<A}, xeX. Then Theorem 2(c) is
satisfied, and together with Remark 10b) we obtain (a).

THEOREM 7. The following are equivalent:

(a) MMM holds.
(b) There exist pavings A7, A in X and & in Y and a border set A
such that
(1) A5 is intersectional and connected for A;,
(i) & is finitely intersectional, connected and compact,
(i) {a(x,-)<A}eZ, xeX, Ae4,
(IV) myEL {a('>y)>}’}e'%is Le’gale‘/l:
v) {a(y)>i}edts, ye¥, led
(c) As (b) with A={a,} and {a(x,-)<a,}e ¥ —{T}, xeX.
Proof. (a)=(b), (c): Take yeY with sup,.ya(x, y)=a,,
S={L:jeLcY}, #1={F}, #>=2% and A—(a*, o0) in case (b).
(b)=(a), (c)=(a): W.l.g. we may assume that A is nonvoid. For fixed
ded let $={C,:xeX} with C,={a(x,-)<A}. Then Theorem 2(c) is
satisfied. Together with Remark 10a) we obtain (a).

ExamPLE 2. Suppose that there exist a connected intersectional paving
A in X and a compact, connected, finitely intersectional paving % in ¥

-such that {a(-,y)>a,}ed, ye¥, and {a(x,-)<a,}e L —{J}, xeX.

Then MMM holds.
This is an .“abstract version” of Example 4in [6].

Remark 11. Let a, <a*. Then there ex1sts an A€ &(X) such that

a*(4, Y):=max inf a(x, y)>a, and (6)
xeAd yeY
a*(M, Y)<a, for all M e &(X) with cardM < cardA. (7

If for such an 4 we take {x;,x,}c4 with x,#x, and set
E=A—{x;, x,}, then we have t:=(x,, x,, E)e T(¥) for all set systems
#={C,:xeX} with

{a(x,-)<ﬂ}CCxc{a(x,-)<y}, XEA’,

where g, < f<y<a*(4, Y).
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We now formulate a “preminimax version” of Proposition 1:

PROPOSITION 2. The following are equwalent
(a) PMM holds.

(b) There is a border set A such that for every ve A there exist a ue A
wzth 1<, set systems € = {C,:xeX}, #={H, xeX},9={G,: xe X},
= {F,:xe X}, and pavings A;, A, in X and ¥,, &, in Y such that

(0) {a(x,')<,LL}CHXCGXCCXCFXC{CZ(X,')Sv}, XGX:
(i) &£ >o%, & is finitely intersectional and connected for F
(i) LHo>F uH, S is finitely intersectional,
(i) 5> €*, A, is intersectional and connected for A,
(iv) either G*(%) = A or H¥ (%) = A;.

Proof. (a)=>(b): Take A= (a,, ). In case a, < oo take #;, A, and &£
as in Theorem 5(b), and set L =% =%, u=v,and C,=H, =G, =F, =
{a(xa . ) < v }

(b)=(a): Assume that a,<a* Choose 4 and t according to
Remark 11. Fix a ve 4 with a, <v<a*(4, Y) and choose y, 4, #, 4, Z,
Ay, Ay &, and %, as in (b). Then 1€ T(F ) T(#) by Remark 11 in
contradiction to Proposition 1.

Now, with the help of Proposition 2, we are able to establish a more
flexible version of our Theorem 5.

Let 2 and 2 be pavings in X and Y, and let 4 be a nonvo1d subset ‘6f
R. Then we set

X(2, 4, >)={ N {a(-,y)=1}, Qe,@,leA},

€Q

X(2, 4, >)={ N {a(-,y)>2},0e2, ieab,
yeQ

xeP

|
Y(2, 4, < ={ﬂ {a(x, )<}, Pe2, leA} and
' f

Y(2, 4, < {ﬂ {a(x, - )<i} Pe?, ied

xeP
We shall consider the following conditions:

" (A1) {a(x,-)<A}e2forall xeX, Led,
(A2) {a(x,-)<A}elforall xeX, ie4,
(Bl) X(2% 4, >)c2,

(B2) X(2% 4, >)c 2,
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(Cl) X(2%, 4, 2) is connected for 2 and Y(&(X), 4, <) is
connected for 2,
(C2) X(2%,4,>) is connected for # and Y(6(X), 4, <) is
connected for 2. ,

THEOREM 8. Let a, < co. Then the following are equivalent:

(a) PMM holds.

(b) There exist a border set A and pavings P in X and 2 in Y such
that (Al) or (A2), (B1) or (B2), and (C1) or (C2) hold.

(c) There exist pavings 2 in X and 2 in Y such that for A= (a,, )
all of (A1), (A2), (B1), (B2), (C1), and (C2) hold.

Proof. (a)=(c):Take 2= {F}and 2={Q: N, c4 {alx,-)<i}c=QcY
for some A€ &(X), A>a,}.

(c)=(b) is obvious.

(b)=>(a): We show that Proposition 2(b) holds:
For veA take any ped with u<v and set H,.={a(x,-)<u}, G,=
{a(x,-)<v}, and F,={a(x, -)<v} in case (Al), resp. H,= {a(x,-)<u},
G.={a(x,-)<p}, and F,={a(x,-)<v} in case (A2). Then FuU K c 2,
and we have G*(29)c& in cases (A1), (B1) and (A2), (B2), resp.
H*(2%) < 2 in cases (A1), (B2) and (A2), (B1). Now take C, = G, in cases
(A1), (C1) and (A2), (C2), resp. C,=F, in cases (Al), (C2) and (A2),
(C1). Then C*(27) is connected for &, and C(£(X)) is connected for 2

(hence for #). Now apply Proposition2 “(b)=>(a)” with %, = C(£(X)),

L=99 A, =P, and A, = C*(2").

The following example generalizes Komiya’s minimax theorem in [117];

EXAMPLE 3. Suppose that there exist border sets A, and A,, A, convex,
a connected intersectional paving X" in X and a compact, connected, finitely
intersectional paving & in Y such that

(i) {a(,y)=4i}eA, yeY, ied,, and
() {a(x,-)SA}eZ, xe€X, ied,.
Then MMM holds.

Proof. We may assume that the border set 4 :=4, N4, is nonvoid.
Then conditions (A1), (B1), and (C1) are satisfied for #=4" and 2= %.
(To see that Y(&(X), 4, <) is connected for %, let Ae&(X) and
ied. Take A,ed, with A,<1, neN, and 1,- A Since every set
B,:=,ex{a(x,-)<A,}, neN, is connected for ¥, we infer from
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- B,TB:=(,c4 {a(x, ) <A} together with Remark 1d) that B is connected
for & as well) Now from Theorem8 “(b)=>(a)” together with
Remark 10a) and c) the assertion follows.

5. TorPoLOGICAL MINIMAX THEOREMS

We shall now make the abstract situation of Section 4 more precise and
present some purely topological minimax theorems.

THEOREM 9. Let a, < . Then the following are equivalent:

(a) PMM holds.
(b) There are topologies on X and Y and a border set A such that the

sets {a(x,-)<1}, xeX, Led, are open and X(®(Y), 4, >)aB(X),

X(2%, 4, >) = €(X), and Y(E(X), 4, <)<= &(Y) hold.

(c) As (b) with X(6(Y), 4, >)=G(X), X2Y, 4, >)=C(X), and
Y(8(X), 4, <) = E(Y).

(d) As (b) with X(G(Y), 4, >)=F(X), X2, 4, >)=C(X), and
Y(6(X), 4, <)<= G(Y).

(&) As (b) with X(B(Y), 4, >)=§(X), XQ%, 4, >)<=C(X), and
Y(&(X), 4, <) = C(Y).

Proof. (a) implies condition (b)— (e)- w1th A=(a,, ©)=(a* x),
- Iy={J, X}, and Ty={G<Y:34e&(X), Aed, such that Go
mxeA {a(x )<l}} o {Q}
(b)=(a), (c)=(a): Apply Theorem 8 with # = @(X) and 2=0(Y).
(d)=(a), (¢) = (a): Apply Theorem 8 with 2 = F(X) and 2= G(Y).

THEOREM 10. Let a, < 0. Then the following are equivalent:

() MMM holds.

(b) There are topologies on X and Y such that for some x,eX
the set{a(x,,-)<ay} is compact, all sets {a(x,-)<a,}, x€X, are closed
and nonvoid, X(F(Y), {a,}, >)c®(X) X((S(Y) {a,} >)CG(X) and
Y(&(X), {a,}, <) =E(¥).

(c) There are topologies on X and Y and a border set A such that
Jor some pair (xo, Ag)€ X x A the set {a(xy, )< Ao} is compact, the sets
{a(x, )<A}, xeX, Aed, are closed, and X(F(Y), 4, =)< F(X),
X(2%, 4, >)c &(X), and Y(E(X), 4, <)< &(Y) hold.

@) 4s (c) with X(F(Y), 4, =)= FX), XY, 4, >)<6), and
Y(&(X), 4, <)<= &(Y).
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(€) As (c) with X(F(Y), 4, >)=®(X), X% 4, >)<=C(X), and .

Y(8(X), 4, <)<= &(Y).
(£) As (c) with X(F(Y), 4, >)c®(X) X(2", 4, >)=6(X), and
Y(E(X), 4, <)< &(Y).

Proof. (a)=>(b)~(f): Take ye Y with sup,ya(x,5)=a,, Ix={J, X},
Ty={GcY:7¢G}u{Y}, and A= (a,, ).

(b)=(a): Apply Theorem 4 “(b)*=(a)” to C,={a(x,-)<a,}, xeX.

(c)=>(a), (d)=>(a): Applying Theorem 8 with £ = F(X) and 2= §(Y)
we infer a,=a* Hence, £ :={{a(xy,-)<Aio}n{alx,")<A}:x€eX,
Ae A} has the finite intersection property. By Remark 6 there exists a
JeN{R:ReR}={sup,cyalx, )<a,}.

(e)=(a), (f)= (a): As above with Z = ®(X) and 32 &(Y).

Remark 12. An inspection of the proof of Theorem 10 shows the
following:

(a) Conditions (c), (d), (e) or (f) of Theorem 10 without any
compactness assumption imply PMM.

(b) Theorem 10 remains true if in (c) and (e) one replaces
“X(2%, 4, >)<=€(X)” by the weaker condltlon “X(B(Y), 4, >)=C(X)".
This follows with Remark 3.

(c) If in Theorem 10(b)-(f) we make the stronger compactness
assumption

» all sets {a(x, -)< A}, xe X, Le 4, are compact,
with A={a,} in case (b), then we may replace F(Y) by F (V) n
K(Y)=:9).

(d) Theorem 10 remains true if one-replaces: “X(F(Y), 4, =)c
F(X)” in (c) and (d) resp. “X(F(Y), 4, >) <= G(X)” in (e) and (f) by the
unconventional conditions “X(F(Y), 4, >)c®(X)” and “X(F(Y), 4, >)
= FX)”.

For xe X and nonvoid B< Y we set a(x, B)=inf, . 5 a(x, y).

REMARK 13. Let X and Y be topological spaces. .

(a) If 2 is a paving in ¥ then X(2, R, =)< §(X)-iff every function
a(-,Q), Q€2— {}, is upper semicontinuous. In particular, we have
X(2¥, R, =) = §(X) iff every a(-, y), ye ¥, is upper semicontinuous.

(b) Iffor &F# AR every set {a<i}, le 4, is closed in X' x Y then
we have X(F(Y)n ](Y), 4, >) <= B(X).

Proof. (a) is obvious and (b) follows as in the proof of Corollary 3. .
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The following two examples are slight generalizations of Kénig’s
“minimax theorems based on connectedness” [9].

ExamPLE 4. (cf. [9], Theorem 1.2). Let X and Y be topologicdl spaces
and A a nonvoid border set such that

(1) {a(xo,-)< Ao} is compact for some pair (x,, Ao) € X x A,
(i) every set {a(x,-)<A}, x€X, Le A, is closed,
(iii) every set {a(-,y)=A1}, ye ¥, Le 4, is closed.
Assume, moreover, that
either X(2%, 4, 2)<=€(X) and Y(&(X), 4, <)<=€(Y),
or  X(G(Y), 4, >)<CX) and Y(E(X), 4, <)=G(Y).
Then MMM holds.

Proof. Condition (iii) implies X(F(Y), 4, =)< F(X). Hence, by
Theorem 10 “(d)=>(a)”, resp. “(c)=>(a)” and Remark 12b), the assertion
follows.

(8)

ExampLE 5. (cf. [9], Theorem 1.3). Let X and Y be topological spaces
and A a nonvoid border set such that ’

(i) every set {a(x,-)<A1}, xe X, Ae 4, is compact, and
(i) every set {a<<A}, Ae Ay is closed in X x Y.

Assume, moreover, that (8) is satisfied. Then MMM holds.

Proof. This follows with Theorem 10 “(e)=-(a)” resp. “(f)=(a)”
together with Remarks 12b), ¢) and 13b).

Predecessors of our last two examples are Examples 4 and 5 in [6].

EXAMPLE 6. Let X and Y be topological spaces such that for all pairs
(x1, X)X XX and (y,,y,)€ YX Y there exist connected sets {x,, %)y
and {yi, y>yy with

{x1, %} = {x1, X, 05 {xéX: a(x, )= a(x;, ) A a(xs, 9} and
{yiy2}eyuydye{yeYia, y)<al, 1) v a(-, 1)}
Then PMM holds if one of the following two conditions is satisfied:

(i) Every a(-,G), Ge®(Y)— {&}, and every a(x, -), xe X, is upper
semicontinuous.

_— e -
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(i) Every a(-, F), Fe§(Y)— {}, is upper semicontinuous, and every
a(x, -), x€ X, is lower semicontinuous.

If Y is compact then in case (ii) even MMM holds.

Proof. For BcY, AeR, and D= ﬂyeB {a(-, y)>i} or
D=,.5{a(-,y)>A} we have

{xl,xz}CD=><x1,x2>XcD, (%1, x)e X% X.

Hence D is connected, so X(2¥, R, >)uX(2¥, R, >) = €(X). Similarly,
Y25 R, <)u Y(2*, R, <)<= €(Y).

Condition (i) implies X(G(Y), R, =)< &X) and (i) leads to
X(FY), R, =)< F(X). Now apply Theorem 9 in case (i) and Theorem 10,
together with Remark 12a), in case (ii). .

ExaMPLE 7. Let X and Y be topological spaces such that

(i) every set {a(x,-)<a,}, x€X, is compact and nonvozd
(i) the set {a<a,} is closed in X x Y, '
(ili) every set Nyeq {a(-,y)>a,}, Ge®(Y), is connected or empty,
(iv) every sef N e {al(x,-)<a,}, Ae&(X), is connected or empty.
Then MMM holds.

Proof. Apply Theorem 10 “(b)=>(a)” together with Remarks 12¢) and
13b).

Remark 14. Let X and Y be convex subsets of linear topological spaces
and let the functions a(-,y), ye Y, be quasiconcave and a(x,-), xeX,
quasiconvex.

Here we can take for <{x;,x,>x and <{y,,y,>y the convex hull of
{x1,x,} resp. {y,,y,} to satisfy the connectedness assumption of
Example 6. In particular, Example 6(ii) generalizes Sion’s minimax
theorem [14].

Moreover, conditions (iii) and (iv) of Example 7 are satisfied because the
involved sets are convex. Therefore, Example 7 contains Ha’s minimax

theorem [2]

Many of the minimax theorems mentioned in the introduction can be
derived by this method.
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Let @ <RY, N>1 be a bounded domain, H=L*(Q) and let L: D(L) <
H— H be a linear operator. In this paper we study the solvability of
operator equations of the form

Lu+Gu=h, (1)

where G: H - H, (Gu)(x)= g(x, u(x)) is the Nemytskii map defined by
a Caratheodory function g: Q2 xR — R, that is, g(x, ) is continuous in

ueR for a.e. xeQ and is measurable in xe Q for all ue R, he H is a given

function. We assume that

(H1) L is closed, densely defined, with a closed range R(L) and a
finite dimensional nontrivial null space N(L) such that R(L)=N(L )t

Here and in what follows, the real Hilbert space H=L*Q) with
the norm |u| and the inner product (u, v) is defined in the usual way.
Properties such as orthogonality and selfadjointness are always referred to
with respect to the inner product of H. Clearly the restriction of L to
D(L)nR(L) is one-one onto R(L) and so has an inverse denoted by
L=*: R(L)— R(L), which by the closed graph theorem is bounded. We
assume also that

(H2) L~':R(L)— R(L) is a compact linear operator.

The main model and one of the most interesting examples of equations
of the form (1) where L satisfies (H1), (H2) is the Dirichlet boundary value
problem for a symmetric uniformly elliptic operator on 2 of order 2m,
mz1. Let

Au= Y (—=1)""D¥a,,D%u),

lal, 1Bl <m
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