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~ Ex ample 2 (cf. [15; LemméE.Zﬂ Let & DxD — D be a mean.
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1. Mean functions. In the following let D be an infinite convex subset of the set R of
extended reals. A function &: D x D — D is called mean function (or mean, for short) if

(1) &(-, P, BeDandé(x-), aeD are nondecreasing functions, and
@ ¢((wo)=a oeD.
For e D, f € D we set
m(e, f) = min{¢, B} and
M (@, B) = max {o, f}.
Remark 1. The functions m and M are means, and for every mean £ we have
@ msEsM.
We consider the following continuity properties:
(4 Foro,feDnR with a>f we have
EC.AM@)—p and £(B,*)"(@) > B (n— c0).
(5) Foro,feDNRR with a<pf we have
EC B @B and (B, )(@—B (m— o)

Let M* (D) and M~ (D) denote the set of all means £: D x D — D which satisfy Condi-
tion (4) or (5), respectively.

Example 1. For a fixed r € R define the mean £;: D x D — D according to & (, f)
= med {a, B, 7}, the middle of the three values a, § and 7. Then

E.eMt* (D)1 SinfDé,=m and
(.eM (D)etZsupDei, =M.
Observe that m (resp. M) satisfies Condition (4) (resp. (5)) for all (&, f)e D x D.

a) If&(-, B), B e Dand &(o, ), o € D are continuous from the right, and if £ (x, f) < M (e, f)
for a,f € D nR with a # f# holds, then ¢ € M* (D).
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b) If&(-, B), Be D and &(a,*), & € D are continuous from the left, and if £ (e, f) > m(, B)
for o, B D "R with o = f holds, then £ e M~ (D).

Proof. a) We follow [15; p.232]: Let o, fe DNIR with a > f. Let ap =« and
o, = &é(ty—y, B neN. Then we have o, \o* for some o* = f. But a* > f implies
o* =M (a*, B) > E(*, B) = an; ¢(e,, f) = o*, a contradiction. Hence, &(-, §)"(a)
= o, - f. Similarly, £(B,-)"(@) = B.

b) Compare the proof of a).

Example 3. a) Let 1€(0,1), let f: D— D be a strictly monotone continuous
function with inverse f ™%, and let £: Dx D — D with

$@ B =f"1Af)+ A —DS(B).

Then, by Example 2, £ e M* (D)~ M~ (D).

For A = £ an axiomatic characterization of these means has been given by Kolmogoroff
[24] (Compare also [33], [28], [29].)

The special case f(x) = x? leads to the weighted Minkowski means

& B) =GP + (1 = 1)
Especially, for p =1 and D = (— o0, 0], say, we obtain the weighted arithmetic mean

pa(o B)i=Aa+(1-2)B,
and for p = — 1 or p — 0, respectively, and D = (0, c0) we get the weighted harmonic mean

— 1\t
16 (@, B):= (§+3—B—~)

and the weighted geometric mean

Ya(o f)i= ot B2
Finally, for p — + 0o we obtain the means M and m.

b) New means can also be constructed by composition. If £;, £,, and &, are means, then
by E(o, ) = &3 (&, (e, B), &, (o, B)) another mean is defined [15]. Similarly, two means can
be “compounded” to a new mean by an appropriate limiting process [26]. Examples are
the famous Gaussian arithmetic-geometric mean and the arithmetic-harmonic mean (cf.
[11, [21, [7], i8], [26], [39]).

The following limiting process is to some extend related to the compounding proce-
dure:

a) Let y € M* (D), and let (y,, 6,) € D* x D* with m(y,, 6,) = o € D* such that for every
neN either

(1) Pn+1 = Vn and 6n+1 s '/’(aa 67:), or
(") 5n+1 = 6:: and Pn+1 é l//(‘}’,,, “)

holds. Then m<‘1£m Vs IHB, 6,,) =q.
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b) Let ¢ € M~ (D), and let (y,, 8,) € D* x D* with M (y,, 8,) < « € D* such that for every
n e N either

(1) Ynt1 = Vo @A S0 1 2 @ (a, ), or
(ll) 5n+1 = 571 and VYu+1 ; (P(ym 5)

holds. Then M <lim Vo lim & > =g
n=co nse B *

Part b) of 1this leimma is stated implicitely in [37; p. 408] for the special case ¢ (x, )
= (% B) = 3o+ 35,

Proof. a) Let k, resp. I, be the number of all n < m such that condition (i) resp. (ii)
holds. Then we have k,, + I, = m, and from (4) we infer

“E oS Jm g fne) =

in case k,, — co. Otherwise we have I,— o and limy,=«.
The proof for b) is similar. e

2. Preliminaries: In the following let an infinite convex subset D = IR and a triplet
I = (X, Y, a)be given. Here X and Y are nonvoid sets and a is a function a: X x Y — D.
The situation may be interpreted as a game. Player 1 and player 2 independently choose

s}trategies xeXandye?, respectively. Afterwards player 1 receives the (possibly nega-
tive) amount a(x, y) from player 2,

a, = 6,(X,Y):= supinfa(x,y), and

xeX yeY

a* =a*(X,Y):= inf sup a(x, y)

yeY xeX

;lfre calleci the lower and upper value of the game. The game is called strictly determined
a, = a*, ie.

(©) sup infa(x, y) = infsup a(x, y)

xeX yeY yeY xeX
holds. We want t‘? present sufficient conditions which ensure the validity of (6). A standard
method for proving such minimax theorems proceeds as follows. Suppose that player 1
has to announce in advance a set 4 € & (X):= {C = X:C finite}. Afterwards the game

(4, Y, a) is played. In this case the guarantee value a* of player 2 (he can avoid to lose
more than a*) improves to

@ =a*(X, Y):= sup a*(4, Y).
Aed(X)
So, as usual, in the proof of our minimax theorem we proceed in two steps: first a* = &*

is shown by a compactness argument, and in the proof of #* = a, some convexity and
connectedness properties are exploited.

We shall make use of the following level sets:

L) ={yeY:a(x,y)<a}, aecR, xeX
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and

L= %(), ceR, 4des(X).

xeA
Here we set Y, (0) =
I" will be called subcompact if for all « € R with Y,(4) + 0 for all 4 € &(X) we have
Y, (X) = 0 for all B> o.

Lemma 2 ([18; Satz 5]). The following conditions ar equivalent:

@) T is subcompact.
(i) X, Y)=a*X,Y)

Example 4. Let Y be a topological space such that the functions a(x,), x € X are
lower semicontinuous. If Y is compact or, more generally, if at least one set ¥;(x), x € X,
B > a*(X, Y) is compact, then I is subcompact.

This result is well-known (cf. [17, Lemma 2], [14; (2.6)], or [13; Theorem 1]). Compare
also [19; (3.3)].

Example 5. T. Tjoe-Tie [38] called Y (S)-conditionally compact if for every ¢ >0
there exists a B e §(Y) such that

Y= ﬂ {yeY:a(x,y)=a(x,z) —¢}.

zeB xeX
Similarly, X is called (S)-conditionally compact if for every ¢ > 0 there exists an 4 € & (X)
with

X= N {xeX:alx,y)Lalsy +e}.

sed ye¥t
It is not difficult to show (compare [30], [18]) that in both cases I" is subcompact.
If ¢: Dx D — D is a mean, then we set

@p (%1, X):= QB {xeX:a(x,y) = o(a(xy, yha(xs, y)}

for 0+BcY, (x,x,)eXxX. I' will be called (finitely) ¢-concave iff for all
(%1, X2) EX XX @y(xy,X5) * O (resp. @z(xy, x,) % 0 for all Be &(Y)).
Similarly, for a mean : Dx D — D let

Va0, yl)i= QA {yeY:a(x,y) £ ¥(a(x, y) a(x, y2))}

for 0+ Ac X, (y;,y,)€ YxY. Then I' will be called (finitely) y-convex iff for all

Remark 2. I is always m-concave and M-convex.

In our further investigations the following concept turns out to be useful. Let
¢@:DxD — D be a mean. For (x, x,, 0, 4) € X x X x D x &(X) consider the conditions
(1) Aney(x;,x) 0
®) 0>a>a,XY), LAu{x)+0 ic{1,2}, and %(4) < L({x)u %({x.)
©9) Y(Au{x;,x;})+0 forall f>a.

PR

Gy YR Y Yy (1,9 + B (esp. Y01,y )+ D forall dc€X). |

y+15 Wys1) = (0,5 ¥,)- In the first case we infer from w,e T

Vol. 55, 1990 Minimax theorems 577

Then Y will be called I'-connected (resp. @-connected) if Condition (8) (resp. Conditions
(7) and (8) together) imply (9).

Remark 3.a) Y is always M-connected.
b) If Y is I'-connected, then Y is ¢p-connected for every mean ¢: DxD — D.
c) If I is finitely m-convex, then Y is m-connected.

Example 6. Let Y be a topological space such that all nonv01d sets Y, (A4),
a, (X, Y) <o < o0, 4 €& (X) are connected (as subspaces). If either (i) or (ii) is satisfied:

(i) Every function a(x,-), x € X is upper semicontinuous.
(i) Every function a(x,-), x € X is lower semicontinuous,

then Y is I'-connected.
Proof. Let (x,, x,, o, A) satisfy Condition (8).
If (i) holds, then Yj*(4):=

V(AN Yrx)+£0,ie{1,2} and Y (4) = (Y, (4) 0 Y3 (x ) L (Y (A) N T5F(x,)).
Now, the connectedness of Y, (4) implies

0+ Y, (4)n Y () N Y¥(xy) = Y(Au {x1,%2}).
In the proof of case (i) replace Y;* by ¥;.

ﬂ {yeY:a(x,y)<B}, B>« is open, and we have

The following example will be fundamental for our Theorem 2 below:
Example 7. Let I' be finitely y-convex w.rt.aye M* (D) Then
(i) Y is I'-connected if oo ¢ D.
(i) Y is p-connected for every mean ¢: D x D — D with
(10) (x, 0)e DX D= @ (x, 00) = ¢ (00, &) =

Proof (cf. [6; p. 44f] and [15; p. 235f]). For (x4, X5, 0, A) e X x X x (D nR) x & (X)-
with 4 N @y (%, x;) + @ in case (i) — let S = Y,(x,), T = Y,(x,), and R = Y, (4) such that
SAR+0, TnR+0and R < SuT. Choose v, € SN R and w; € T n R. Then we have
P1:=a(x,,v,) <coand d, := a(x,, w,) <co. Under Assumption (10) this is true because
for ye R and X € A N gy (x4, x,) we have co > o 2 a(X, y) = ¢ (a(x;, y), a(x,, y)) which
implies a(x;, y) <o, i€ {1, 2}. If v,e SN R and w,€ T n R with y,:= a(x,, v,) <co and
Gpi= a(x,, w,) <co are choosen, then choose any y, € ¥ 4, . xp (V> W,). From

ax,y)Sv¥@xv,), alxw)SY(o)=a xed

we infer y,e R<SUT. In case y,eS we set (U,4, Wory) = (Vu» W,), Otherwise let

Yut1:= a(x2’ n+1) s l//(a(st n)s a(xl: n)) = '//('ym a) < 00,
and in the second case v, € S implies
5n+1 = a(xl’ Wy 1) § ‘//(as 6:1) <.

IfRNS AT =0, then m(y,, §,) > o, n € N. By Lemma 1 a) there exists for every > aa
k e N with m(y,, 6,) < B, hence

Y3 (AU {x1, %) 0 {vp, wi} * 0.

Archiv der Mathematik 55 : 37
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3. The main theorem. We are now in the position to prove our main result. It has been
observed by Wu [42] that the only property of convex sets which is actually needed in the
proof of minimax theorems is connectedness, Compare also the papers [40], [41], [3], [9],
[10], [11], [19], [25], [36], [37}. The proof of the following result was mainly inspired by
Terkelsen’s paper [37].

Theorem 1. Let I' be ¢-concave and Y ¢-connected with respect to a mean ¢ € M~ (D)
such that —oo< inf a(x,y)eD for all x e X. Then

yeyY
(11) a*(4,Y)=4a,(X,Y) for all Ae&(X).
Moreover, Condition (6) holds iff I is subcompact.

Proof. Suppose that, in contrast to (11), there exists an 4 € £(X) and an a € R such
that a*(4, Y) > a > a,:=a,(X, Y) and
(12) a*(C, Y) L a, for all Ce &(X) with |C| < |A|.
We choose s,, t; € 4 with s; +t; and set E = A4 — {s,,}. If 5,, £, are chosen with

a*(4,, Y) > o for A, = EuU/{s,,t,}, then we construct s,,, and t,,, as follows. We
choose an x, € @y (s, t,) and set

S, =Y6) T,=Y() and R,=Y(Eu{x)), AeR.
We choose B and y such that a*(4,, Y) > f >y > «. Then from
a(x, y) Z @(als, y) alty, ) >y for y¢S,0 T,
we infer R, < S, U T,. Hence, Ry 1 §; N T = @ implies either T, R, = GorS,NnR,=0,
as Y is o-connected. We set (5,41 £y 1) = (X, £,) in the first case and = (s, x,) otherwise.
Now we set W= Y, (E)(* 8 by (12)), y, = inf a(s,, ), and §, = inf a(t,, y). Then we
have yeW veW
(13) TyﬁRy = ®=>a*(An+12 Y) >0 g I)’n+1 ; QD(‘)’,,, a)’ and
(14) q;nRy * ¢=a*(A'n-*-la Y) >a g 5n+1 2— (,D((X, 6;1)'
To prove (13), say, observe that (12) implies Y, (E U {s,}) = 0, hence y, < a, n e N. More-
over, R,n T, = § implies a*(4,+1, ) 2y >
For ye R,n Wwe have y¢ T,, hence

a(Sp+15 Y)=a(x, ) = 0@, y), alt, ) Z 0¥ 9
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Hence, we have shown that (11) holds which is equivalent to the equality 4* = a,. By
Lemma 2 the last assertion follows.

Remark 4. If the mean ¢ in Theorem 1 satisfies Condition (5) for all (o, f) e D x D,
then it is not necessary to assume inf a(x, y) > —o0, xe X.
. yeY

4. Some minimax theorems. The above theorem can be used to derive several old and
new minimax theorems. We present some examples.

Corollary 1 (Dini Theorem [20], [37]). Let D = [—o0, 0].

a) Let I be M-concave, and let Y be a compact topological space such that every function
a(x,*), x € X is lower semicontinuous. Then (6) holds.

b) Let I be m-convex, and let X be a compact topological space such that every function
a(-,y), ye Y is upper semicontinuous. Then (6) holds.

Proof.a) By Examples 1 and 4 and Remarks 3a) and 4 we can apply Theorem 1.
b) Apply part a) to (Y, X, b) with b(y, x) = — a(x, ).

The following version of Dini’s Theorem seems to be less known:

Corollary 2 (“Dax Theorem” {21]). Let D = [—c0, o0].

a) Let I' be finitely m-convex, and let Y be a compact topological space such that the
functions a(x,*), x€ X are lower semicontinuous. Then (6) holds.

b) Let I be finitely M-concave and let X be a compact topological space such that the
functions a(-,y), ye Y are upper semicontinuous. Then (6) holds.

Proof. a) Let A e £(X) be endowed with the discrete topology. Then from Corol-
lary 1b) we get a*(4,Y) = a, (4, Y) £ a,(X, Y), hence @* = a,.. Now from Lemma 2 and
Example 4 the assertion follows.

b) Apply part a) to (Y, X. b) with b(y, x)=— a(x, y).

Remark 5. a) Corollary2a) cannot be derived directly from Theorem 1 by Re-
marks 2, 3¢), and 4, because the mean ¢ = m does not satisfy continuity property (5).

b) Corollary 1a), say, turns wrong if I' is only supposed to be finitely M-concave. For
a counterexample, take X =Y =N endowed with the cofinite topology and set
a(x,y) =1(0) for x +y (x =7y).

and for ye W— R, we obtain
a(s,,+1,y) =a xn;y) >'J’ > ag (p(),n’ (1),

which implies y,+1 2 ¢ (7, 9).
Now from Lemmailb) we infer M ( lirg Vs }im 5,,> =o>a,, and thus
n- ~* 0

a*(E U {x*},Y) > a, for some x*e | {s,, t,}, in contradiction to (12).
n=1

Corollary 3. Let — o ¢ D and let I be g-concave wirit-a o e M~ (D) Suppose that Y-is—

a compact topological space such that every function a(x,"), x € X is lower semicontinuous
and every nonvoid set Y,(4), A€ &(X), xR is connected. Then (6) holds.

The special case ¢ = , (cf. Example 3a)) and D =R is due to Terkelsen [37; Theo-
rem 2]. :

Proof.Apply Lemma 2, Examples 4 and 6, Remark 3 b) and Theorem 1. Observe that
for every x € X there is a ze Y such that —co< a(x,2) = in£ a(x, y).
yE

37
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Now let Y be a topological space, and let {-,->: Y x ¥ — 2Y be a mapping such that
every “interval” {3y, ¥,, (1, ¥2) € Y x Y is connected and contains y, and y,. In this
case, Y is called an interval space [36], [19]. A subset Z < Y is called convex if
{1, y2} = Z implies {yy, y;> < Z, and a function a(x,*), x € X is called quasiconvex if
every set Y, (x), « € R is convex.

Corollary 4. Let — oo ¢ D, and let I be ¢-concave w.r.t. a ¢ € M~ (D). Suppose that Y
is a compact interval space such that the functions a(x,-), x € X are lower semicontinuous
and quasiconvex. Then (6) holds.

A special case of this result is due to Terkelsen [37; Corollary 1].

Proof. In an interval space, the intersection of convex sets is convex, and every
convex set is connected [19; Remark 2.1]. Hence, Corollary 3 can be applied.

In his lecture on mathematical economics in Karlsruhe (cf. [21]), which culminated in
the book [23], K&nig formulated the following problem:

Konig’s Problem. Let D =(—c0, oo]. Characterize those pairs of functions
@, ¥: D x D — D with Property (3) and the following property:

(P) For every pair of nonvoid sets X, Y and for every function a: X x Y — D such that
I'=(X,7, a)is g-concave and y-convex Condition (11) is satisfied.

A partial solution of this problem has been presented by Irle [15], [16] for a special class
of continuous means ¢ and Y which he called averaging functions (and which play also
an important role in the theory of fuzzy sets [5]). The following theorem is closely related
to Irle’s main theorem in [15]:

Theorem 2. Let —00 < mf a(x,y)eD for all xe X. Let ¢ € M~ (D) satisfy (10) and let

¥ € M* (D). Suppose that 1" zs @-concave and finitely y-convex. Then (11) holds, and (6) is
true iff I is subcompact.

Proof. This follows from Lemma 2, Example 7 and Theorem 1.

Remark 6. The above theorem has a long history. By combining it with Example 4
we obtain Ky Fan’s classical minimax theorem [6] as well as — up to some epsilontics —
the generalized versions of K&nig [20], [22] and Irle [15]. (I abstained from presenting
Theorems 1 and 2 in the greatest possible generality in order to keep the proofs as short
and lucid as possible.) In connection with Example 5 we get versions of Teh Tjoe Tie’s

—minimax theorem[38]; [30]; {31]; [18]: Finally; we-obtain-a-generalization-of a-minimax- ——

theorem of De Wilde [4] and the author [18]:

Corollary 5. Let D = R be a compact interval. Let I be ¢-concave and y-convex w.r.t.
means o € M~ (D) and Yy e M* (D). If

lim inf lim sup a(x,,, y,) = 11m sup hm 1nf a(Xps Vi)

m=t n=too

is true for all sequences (x,,) in X and ( y,,) inY, then (6) holds.
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Proof. From Theorem2 we infer &*=a, By symmetry we have
d,:= inf a,(X,B)=a* But the “double limit condition” implies &* = @, [41, [18].
Beé& (Y)
The following example shows that the continuity properties (4) and (5) cannot be
dispensed with:

Example 8.Let X=Y =D=[0,1] and a(x,y) = (x -2 Then I' =(X, Y, a) is
subcompact, and for ¢ = mand = e all assumptions of Theorem 2 and Corollary 5 are
fulfilled w1th the only exception thit ¢ does mot satisfy Condition (5). Of course,

a, =0 < $=a* ie. (6) is violated.

Addendum. After the present paper had been submitted Lin and Quan published the
following result:

Theorem A (Lin-Quan [27]). Let Y be a compact topological space and let every function
a(x,*), x € X be real valued and lower semicontinuous. If there exist s, t in (0, 1) such that
X is s-concave and Y is t-convex then (6) holds.

Here X (Y) is called A-concave (1-convex) iff — in our terminology — I is £,-concave
(resp. &,-convex) w.r.t. the composed mean £, := g,(M, m) (cf. Example 3).

By Example 2, £, e M* (R) » M~ (IR). Hence the above theorem is a special case of our
Theorem 2. Similarly, several other related results of Geraghty and Lin [9], [11], [12] are
easy consequences of the present results.

Theorem A has recently been generalized by Simons. He calls a functiona: X x Y =R
upward on Y if

Ye>036>0Vy,,y,€ YAy, e My(y;, y,)Vxe X
la(xa yl) - a(x’ .V2)| 2 8=>a(x’ J’o) = M(a(x3 yl)’a(xa J’z)) -4
Similarly, a is downward on X if b: Y x X - R with b(y, x) = — a(x, y) is upward on Y.

Theorem B (Simons [34]). Let a: X x Y — R be upward on Y, downward on X, and let
inf a(x, y) > — oo, for all x € X. Then (11) holds.
yeY

This theorem is similar to our Theorem 2. By a slight modification of our proofs, one
gets the following versions of Example 7 and Theorem 1, which demonstrate again the
usefulness of our concept of connectedness.

Example 7*.Let D =IR, and let a be upward on Y. Then Y is I'-connected.

Theorem 1*. Let D =R, let a be downward on X, and let Y be I'-connected. If
inf a(x, y) > — o0 for all x € X, then (11) holds.
yeY

By combining both results we obtain Theorem B. Finally, Theorem 1* together with
Example 6 imply Simons’ version of Terkelsen’s minimax theorem [35].
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