On a minimax theorem of Terkelsen's

Βv

JÜRGEN KINDLER

- 1. Mean functions. In the following let D be an infinite convex subset of the set $\overline{\mathbb{R}}$ of extended reals. A function $\xi \colon D \times D \to D$ is called mean function (or mean, for short) if
- (1) $\xi(\cdot, \beta)$, $\beta \in D$ and $\xi(\alpha, \cdot)$, $\alpha \in D$ are nondecreasing functions, and
- (2) $\xi(\alpha, \alpha) = \alpha, \quad \alpha \in D$.

For $\alpha \in D$, $\beta \in D$ we set

$$m(\alpha, \beta) = \min \{\alpha, \beta\}$$
 and

$$M(\alpha,\beta)=\max\left\{\alpha,\beta\right\}.$$

Remark 1. The functions m and M are means, and for every mean ξ we have

(3) $m \le \xi \le M$.

We consider the following continuity properties:

- (4) For α , $\beta \in D \cap \mathbb{R}$ with $\alpha > \beta$ we have $\xi(\cdot, \beta)^n(\alpha) \to \beta$ and $\xi(\beta, \cdot)^n(\alpha) \to \beta$ $(n \to \infty)$.
- (5) For α , $\beta \in D \cap \mathbb{R}$ with $\alpha < \beta$ we have $\xi(\cdot, \beta)^n(\alpha) \to \beta$ and $\xi(\beta, \cdot)^n(\alpha) \to \beta \ (n \to \infty)$.

Let $M^+(D)$ and $M^-(D)$ denote the set of all means $\xi \colon D \times D \to D$ which satisfy Condition (4) or (5), respectively.

Example 1. For a fixed $\tau \in \overline{\mathbb{R}}$ define the mean $\xi_{\tau} : D \times D \to D$ according to $\xi_{\tau}(\alpha, \beta)$ = med $\{\alpha, \beta, \tau\}$, the middle of the three values α, β and τ . Then

$$\xi_{\tau} \in M^+(D) \Leftrightarrow \tau \leq \inf D \Leftrightarrow \xi_{\tau} = m \text{ and}$$

 $\xi_{\tau} \in M^-(D) \Leftrightarrow \tau \leq \sup D \Leftrightarrow \xi_{\tau} = M.$

Observe that m (resp. M) satisfies Condition (4) (resp. (5)) for all $(\alpha, \beta) \in D \times D$.

Example 2 (cf. [15; Lemma 2.2]). Let $\xi: D \times D \to D$ be a mean.

a) If $\xi(\cdot, \beta)$, $\beta \in D$ and $\xi(\alpha, \cdot)$, $\alpha \in D$ are continuous from the right, and if $\xi(\alpha, \beta) < M(\alpha, \beta)$ for $\alpha, \beta \in D \cap \mathbb{R}$ with $\alpha \neq \beta$ holds, then $\xi \in M^+(D)$.

b) If $\xi(\cdot, \beta)$, $\beta \in D$ and $\xi(\alpha, \cdot)$, $\alpha \in D$ are continuous from the left, and if $\xi(\alpha, \beta) > m(\alpha, \beta)$ for $\alpha, \beta \in D \cap \mathbb{R}$ with $\alpha \neq \beta$ holds, then $\xi \in M^-(D)$.

Proof. a) We follow [15; p. 232]: Let $\alpha, \beta \in D \cap \mathbb{R}$ with $\alpha > \beta$. Let $\alpha_0 = \alpha$ and $\alpha_n = \xi(\alpha_{n-1}, \beta)$, $n \in \mathbb{N}$. Then we have $\alpha_n \searrow \alpha^*$ for some $\alpha^* \ge \beta$. But $\alpha^* > \beta$ implies $\alpha^* = M(\alpha^*, \beta) > \xi(\alpha^*, \beta) = \lim_{n \to \infty} \xi(\alpha_n, \beta) = \alpha^*$, a contradiction. Hence, $\xi(\cdot, \beta)^n(\alpha) = \alpha_n \to \beta$. Similarly, $\xi(\beta, \cdot)^n(\alpha) \to \beta$.

b) Compare the proof of a).

Example 3. a) Let $\lambda \in (0, 1)$, let $f: D \to D$ be a strictly monotone continuous function with inverse f^{-1} , and let $\xi: D \times D \to D$ with

$$\xi(\alpha, \beta) = f^{-1}(\lambda f(\alpha) + (1 - \lambda)f(\beta)).$$

Then, by Example 2, $\xi \in M^+(D) \cap M^-(D)$.

For $\lambda = \frac{1}{2}$ an axiomatic characterization of these means has been given by Kolmogoroff [24] (Compare also [33], [28], [29].)

The special case $f(x) = x^p$ leads to the weighted Minkowski means

$$\xi(\alpha,\beta) = (\lambda \alpha^p + (1-\lambda)\beta^p)^{\frac{1}{p}}.$$

Especially, for p = 1 and $D = (-\infty, \infty]$, say, we obtain the weighted arithmetic mean

$$\mu_{\lambda}(\alpha, \beta) := \lambda \alpha + (1 - \lambda) \beta$$

and for p = -1 or $p \to 0$, respectively, and $D = (0, \infty)$ we get the weighted harmonic mean

$$\kappa_{\lambda}(\alpha, \beta) := \left(\frac{\lambda}{\alpha} + \frac{1-\lambda}{\beta}\right)^{-1}$$

and the weighted geometric mean

$$\gamma_{\lambda}(\alpha, \beta) := \alpha^{\lambda} \beta^{1-\lambda}.$$

Finally, for $p \to \pm \infty$ we obtain the means M and m.

b) New means can also be constructed by composition. If ξ_1 , ξ_2 , and ξ_3 are means, then by $\xi(\alpha, \beta) = \xi_3(\xi_1(\alpha, \beta), \xi_2(\alpha, \beta))$ another mean is defined [15]. Similarly, two means can be "compounded" to a new mean by an appropriate limiting process [26]. Examples are the famous Gaussian arithmetic-geometric mean and the arithmetic-harmonic mean (cf. [1], [2], [7], [8], [26], [39]).

The following limiting process is to some extend related to the compounding procedure:

Lemma 1. Let $D^* = D \cap \mathbb{R}$.

a) Let $\psi \in M^+(D)$, and let $(\gamma_n, \delta_n) \in D^* \times D^*$ with $m(\gamma_n, \delta_n) \ge \alpha \in D^*$ such that for every $n \in \mathbb{N}$ either

- (i) $\gamma_{n+1} = \gamma_n$ and $\delta_{n+1} \leq \psi(\alpha, \delta_n)$, or
- (ii) $\delta_{n+1} = \delta_n$ and $\gamma_{n+1} \leq \psi(\gamma_n, \alpha)$

holds. Then
$$m\left(\lim_{n\to\infty}\gamma_n, \lim_{n\to\infty}\delta_n\right) = \alpha$$
.

b) Let $\varphi \in M^-(D)$, and let $(\gamma_n, \delta_n) \in D^* \times D^*$ with $M(\gamma_n, \delta_n) \leq \alpha \in D^*$ such that for every $n \in \mathbb{N}$ either

- (i) $\gamma_{n+1} = \gamma_n$ and $\delta_{n+1} \ge \varphi(\alpha, \delta_n)$, or
- (ii) $\delta_{n+1} = \delta_n$ and $\gamma_{n+1} \ge \varphi(\gamma_n, \delta)$

Vol. 55, 1990

holds. Then
$$M\left(\lim_{n\to\infty}\gamma_n, \lim_{n\to\infty}\delta_n\right) = \alpha$$
.

Part b) of this lemma is stated implicitely in [37; p. 408] for the special case $\varphi(\alpha, \beta) = \mu_{\frac{1}{2}}(\alpha, \beta) = \frac{1}{2}\alpha + \frac{1}{2}\beta$.

Proof. a) Let k_m resp. l_m be the number of all $n \le m$ such that condition (i) resp. (ii) holds. Then we have $k_m + l_m \ge m$, and from (4) we infer

$$\alpha \leq \lim_{n \to \infty} \delta_n \leq \lim_{m \to \infty} \psi(\alpha, \cdot)^{k_m}(\delta_1) = \alpha$$

in case $k_m \to \infty$. Otherwise we have $l_m \to \infty$ and $\lim_{n \to \infty} \gamma_n = \alpha$. The proof for b) is similar.

2. Preliminaries. In the following let an infinite convex subset $D \subset \overline{\mathbb{R}}$ and a triplet $\Gamma = (X, Y, a)$ be given. Here X and Y are nonvoid sets and a is a function $a: X \times Y \to D$. The situation may be interpreted as a *game*. Player 1 and player 2 independently choose strategies $x \in X$ and $y \in Y$, respectively. Afterwards player 1 receives the (possibly negative) amount a(x, y) from player 2.

$$a_* = a_*(X, Y) := \sup_{x \in X} \inf_{y \in Y} a(x, y),$$
 and $a^* = a^*(X, Y) := \inf_{y \in Y} \sup_{x \in X} a(x, y)$

are called the *lower* and *upper value* of the game. The game is called *strictly determined* if $a_* = a^*$, i.e.

(6)
$$\sup_{x \in X} \inf_{y \in Y} a(x, y) = \inf_{y \in Y} \sup_{x \in X} a(x, y)$$

holds. We want to present sufficient conditions which ensure the validity of (6). A standard method for proving such *minimax theorems* proceeds as follows. Suppose that player 1 has to announce in advance a set $A \in \mathscr{E}(X) := \{C \subset X : C \text{ finite}\}$. Afterwards the game (A, Y, a) is played. In this case the guarantee value a^* of player 2 (he can avoid to lose more than a^*) improves to

$$\tilde{a}^* = \tilde{a}^*(X, Y) := \sup_{A \in \mathscr{E}(X)} a^*(A, Y).$$

So, as usual, in the proof of our minimax theorem we proceed in two steps: first $a^* = \tilde{a}^*$ is shown by a compactness argument, and in the proof of $\tilde{a}^* = a_*$ some convexity and connectedness properties are exploited.

We shall make use of the following level sets:

$$Y_a(x) = \{ y \in Y : a(x, y) \le \alpha \}, \quad \alpha \in \mathbb{R}, \quad x \in X$$

and

$$Y_{\alpha}(A) = \bigcap_{x \in A} Y_{\alpha}(x), \quad \alpha \in \mathbb{R}, \quad A \in \mathscr{E}(X).$$

Here we set $Y_{\bullet}(\emptyset) = Y$.

 Γ will be called subcompact if for all $\alpha \in \mathbb{R}$ with $Y_{\alpha}(A) \neq \emptyset$ for all $A \in \mathscr{E}(X)$ we have $Y_{\alpha}(X) \neq \emptyset$ for all $\beta > \alpha$.

Lemma 2 ([18; Satz 5]). The following conditions ar equivalent:

- (i) Γ is subcompact.
- (ii) $\tilde{a}^*(X, Y) = a^*(X, Y)$.

Example 4. Let Y be a topological space such that the functions $a(x,\cdot)$, $x \in X$ are lower semicontinuous. If Y is compact or, more generally, if at least one set $Y_n(x), x \in X$, $\beta > \tilde{a}^*(X, Y)$ is compact, then Γ is subcompact.

This result is well-known (cf. [17, Lemma 2], [14; (2.6)], or [13; Theorem 1]). Compare also [19; (3.3)].

Example 5. T. Tjoe-Tie [38] called Y (S)-conditionally compact if for every $\varepsilon > 0$ there exists a $B \in \mathcal{E}(Y)$ such that

$$Y = \bigcup_{z \in R} \bigcap_{x \in X} \{ y \in Y : a(x, y) \ge a(x, z) - \varepsilon \}.$$

Similarly, X is called (S)-conditionally compact if for every $\varepsilon > 0$ there exists an $A \in \mathscr{E}(X)$ with

$$X = \bigcup_{s \in A} \bigcap_{y \in Y} \{x \in X : a(x, y) \leq a(s, y) + \varepsilon\}.$$

It is not difficult to show (compare [30], [18]) that in both cases Γ is subcompact.

If $\varphi: D \times D \to D$ is a mean, then we set

$$\varphi_B(x_1, x_2) := \bigcap_{y \in B} \{ x \in X : a(x, y) \ge \varphi(a(x_1, y), a(x_2, y)) \}$$

for $\emptyset \neq B \subset Y$, $(x_1, x_2) \in X \times X$. Γ will be called (finitely) φ -concave iff for all $(x_1, x_2) \in X \times X$ $\varphi_Y(x_1, x_2) \neq \emptyset$ (resp. $\varphi_B(x_1, x_2) \neq \emptyset$ for all $B \in \mathscr{E}(Y)$).

Similarly, for a mean $\psi: D \times D \to D$ let

$$\psi_A(y_1, y_2) := \bigcap_{x \in A} \{ y \in Y : a(x, y) \le \psi(a(x, y_1), a(x, y_2)) \}$$

for $\emptyset \neq A \subset X$, $(y_1, y_2) \in Y \times Y$. Then Γ will be called (finitely) ψ -convex iff for all $(y_1, y_2) \in Y \times Y - \psi_X(y_1, y_2) \neq \emptyset$ (resp. $\psi_A(y_1, y_2) \neq \emptyset$ for all $A \in \mathscr{E}(X)$).

Remark 2. Γ is always *m*-concave and *M*-convex.

In our further investigations the following concept turns out to be useful. Let $\varphi: D \times D \to D$ be a mean. For $(x_1, x_2, \alpha, A) \in X \times X \times D \times \mathscr{E}(X)$ consider the conditions

- (7) $A \cap \varphi_{\mathcal{X}}(x_1, x_2) \neq \emptyset$
- (8) $\infty > \alpha > a_{+}(X, Y), Y_{\alpha}(A \cup \{x_{i}\}) \neq \emptyset, i \in \{1, 2\}, \text{ and } Y_{\alpha}(A) \subset Y_{\alpha}(\{x_{1}\}) \cup Y_{\alpha}(\{x_{2}\})$
- (9) $Y_{\beta}(A \cup \{x_1, x_2\}) \neq \emptyset$ for all $\beta > \alpha$.

Vol. 55, 1990 Minimax theorems

Then Y will be called Γ -connected (resp. φ -connected) if Condition (8) (resp. Conditions (7) and (8) together) imply (9).

Remark 3. a) Y is always M-connected.

- b) If Y is Γ -connected, then Y is φ -connected for every mean $\varphi: D \times D \to D$.
- c) If Γ is finitely m-convex, then Y is m-connected.

Example 6. Let Y be a topological space such that all nonvoid sets $Y_{\alpha}(A)$, $a_{+}(X, Y) < \alpha < \infty, A \in \mathscr{E}(X)$ are connected (as subspaces). If either (i) or (ii) is satisfied:

- (i) Every function $a(x, \cdot)$, $x \in X$ is upper semicontinuous.
- (ii) Every function $a(x, \cdot)$, $x \in X$ is lower semicontinuous,

then Y is Γ -connected.

Proof. Let (x_1, x_2, α, A) satisfy Condition (8).

If (i) holds, then $Y_{\beta}^*(A) := \bigcap \{ y \in Y : a(x, y) < \beta \}, \ \beta > \alpha$, is open, and we have $Y_{\alpha}(A) \cap Y_{\beta}^*(x_i) \neq \emptyset, i \in \{1, 2\} \text{ and } Y_{\alpha}(A) = (Y_{\alpha}(A) \cap Y_{\beta}^*(x_1)) \cup (Y_{\alpha}(A) \cap Y_{\beta}^*(x_2)).$

Now, the connectedness of $Y_{\alpha}(A)$ implies

$$\emptyset \neq Y_{\alpha}(A) \cap Y_{\beta}^*(x_1) \cap Y_{\beta}^*(x_2) \subset Y_{\beta}(A \cup \{x_1, x_2\}).$$

In the proof of case (ii) replace Y_a^* by Y_a .

The following example will be fundamental for our Theorem 2 below:

Example 7. Let Γ be finitely ψ -convex w.r.t. a $\psi \in M^+(D)$. Then

- (i) Y is Γ -connected if $\infty \notin D$.
- (ii) Y is φ -connected for every mean $\varphi: D \times D \to D$ with
- (10) $(\alpha, \infty) \in D \times D \Rightarrow \varphi(\alpha, \infty) = \varphi(\infty, \alpha) = \infty.$

Proof (cf. [6; p. 44f] and [15; p. 235f]). For $(x_1, x_2, \alpha, A) \in X \times X \times (D \cap \mathbb{R}) \times \mathscr{E}(X)$ with $A \cap \varphi_Y(x_1, x_2) \neq \emptyset$ in case (ii) – let $S = Y_\alpha(x_1)$, $T = Y_\alpha(x_2)$, and $R = Y_\alpha(A)$ such that $S \cap R \neq \emptyset$, $T \cap R \neq \emptyset$ and $R \subset S \cup T$. Choose $v_1 \in S \cap R$ and $w_1 \in T \cap R$. Then we have $\gamma_1 := a(x_2, v_1) < \infty$ and $\delta_1 := a(x_1, w_1) < \infty$. Under Assumption (10) this is true because for $y \in R$ and $\bar{x} \in A \cap \varphi_Y(x_1, x_2)$ we have $\infty > \alpha \ge a(\bar{x}, y) \ge \varphi(a(x_1, y), a(x_2, y))$ which implies $a(x_i, y) < \infty$, $i \in \{1, 2\}$. If $v_n \in S \cap R$ and $w_n \in T \cap R$ with $\gamma_n := a(x_2, v_n) < \infty$ and $\delta_n := a(x_1, w_n) < \infty$ are choosen, then choose any $y_n \in \psi_{A \cup \{x_1, x_2\}}(v_n, w_n)$. From

$$a(x,\,y_n) \leq \psi\left(a(x,\,v_n),\,a(x,\,w_n)\right) \leq \psi\left(\alpha,\,\alpha\right) = \alpha,\quad x \in A$$

we infer $y_n \in R \subset S \cup T$. In case $y_n \in S$ we set $(v_{n+1}, w_{n+1}) = (y_n, w_n)$, otherwise let $(v_{n+1}, w_{n+1}) = (v_n, y_n)$. In the first case we infer from $w_n \in T$

$$\gamma_{n+1} := a(x_2, v_{n+1}) \le \psi(a(x_2, v_n), a(x_2, w_n)) \le \psi(\gamma_n, \alpha) < \infty,$$

and in the second case $v_n \in S$ implies

$$\delta_{n+1} := a(x_1, w_{n+1}) \leq \psi(\alpha, \delta_n) < \infty.$$

If $R \cap S \cap T = \emptyset$, then $m(\gamma_n, \delta_n) > \alpha$, $n \in \mathbb{N}$. By Lemma 1 a) there exists for every $\beta > \alpha$ a $k \in \mathbb{N}$ with $m(\gamma_k, \delta_k) < \beta$, hence

$$Y_{\beta}(A \cup \{x_1, x_2\}) \cap \{v_k, w_k\} \neq \emptyset.$$

Vol. 55, 1990

3. The main theorem. We are now in the position to prove our main result. It has been observed by Wu [42] that the only property of convex sets which is actually needed in the proof of minimax theorems is connectedness. Compare also the papers [40], [41], [3], [9], [10], [11], [19], [25], [36], [37]. The proof of the following result was mainly inspired by Terkelsen's paper [37].

Theorem 1. Let Γ be φ -concave and Y φ -connected with respect to a mean $\varphi \in M^-(D)$ such that $-\infty < \inf a(x, y) \in D$ for all $x \in X$. Then

(11) $a^*(A, Y) \leq a_*(X, Y)$ for all $A \in \mathcal{E}(X)$.

Moreover, Condition (6) holds iff Γ is subcompact.

Proof. Suppose that, in contrast to (11), there exists an $A \in \mathscr{E}(X)$ and an $\alpha \in \mathbb{R}$ such that $a^*(A, Y) > \alpha > a_* := a_*(X, Y)$ and

(12) $a^*(C, Y) \le a_*$ for all $C \in \mathscr{E}(X)$ with |C| < |A|.

We choose $s_1, t_1 \in A$ with $s_1 \neq t_1$ and set $E = A - \{s_1, t_1\}$. If s_n, t_n are chosen with $a^*(A_n, Y) > \alpha$ for $A_n = E \cup \{s_n, t_n\}$, then we construct s_{n+1} and t_{n+1} as follows. We choose an $x_n \in \varphi_V(s_n, t_n)$ and set

$$S_1 = Y_1(s_n), \quad T_1 = Y_1(t_n) \quad \text{and} \quad R_2 = Y_2(E \cup \{x_n\}), \quad \lambda \in \mathbb{R}.$$

We choose β and γ such that $a^*(A_n, Y) > \beta > \gamma > \alpha$. Then from

$$a(x_n, y) \ge \varphi(a(s_n, y), a(t_n, y)) > \gamma$$
 for $y \notin S_y \cup T_y$

we infer $R_y \subset S_y \cup T_y$. Hence, $R_\theta \cap S_\theta \cap T_\theta = \emptyset$ implies either $T_y \cap R_y = \emptyset$ or $S_y \cap R_y = \emptyset$, as Y is φ -connected. We set $(s_{n+1}, t_{n+1}) = (x_n, t_n)$ in the first case and $= (s_n, x_n)$ otherwise. Now we set $W = Y_{\alpha}(E) (+ \emptyset)$ by (12), $\gamma_n = \inf_{y \in W} a(s_n, y)$, and $\delta_n = \inf_{y \in W} a(t_n, y)$. Then we have

- (13) $T_n \cap R_n = \emptyset \Rightarrow a^*(A_{n+1}, Y) > \alpha \ge \gamma_{n+1} \ge \varphi(\gamma_n, \alpha)$, and
- $(14) \quad T_n \cap R_n \neq \emptyset \Rightarrow a^*(A_{n+1}, Y) > \alpha \ge \delta_{n+1} \ge \varphi(\alpha, \delta_n).$

To prove (13), say, observe that (12) implies $Y_n(E \cup \{s_n\}) \neq \emptyset$, hence $\gamma_n \leq \alpha$, $n \in \mathbb{N}$. Moreover, $R_{\nu} \cap T_{\nu} = \emptyset$ implies $a^*(A_{n+1}, Y) \ge \gamma > \alpha$.

For $v \in R_n \cap W$ we have $v \notin T_n$, hence

$$a(s_{n+1}, y) = a(x_n, y) \ge \varphi(a(s_n, y), a(t_n, y)) \ge \varphi(\gamma_n, \alpha)$$

and for $v \in W - R$, we obtain

$$a(s_{n+1}, y) = a(x_n, y) > \gamma > \alpha \ge \varphi(\gamma_n, \alpha),$$

which implies $y_{n+1} \ge \varphi(\gamma_n, \alpha)$. Now from Lemma 1b) we infer $M\left(\lim_{n\to\infty} \gamma_n, \lim_{n\to\infty} \delta_n\right) = \alpha > a_*$, and thus $a^*(E \cup \{x^*\}, Y) > a_*$ for some $x^* \in \bigcup_{n=1}^{\infty} \{s_n, t_n\}$, in contradiction to (12).

Hence, we have shown that (11) holds which is equivalent to the equality $\tilde{a}^* = a_*$. By Lemma 2 the last assertion follows.

Remark 4. If the mean φ in Theorem 1 satisfies Condition (5) for all $(\alpha, \beta) \in D \times D$, then it is not necessary to assume inf $a(x, y) > -\infty$, $x \in X$.

4. Some minimax theorems. The above theorem can be used to derive several old and new minimax theorems. We present some examples.

Corollary 1 (Dini Theorem [20], [37]). Let $D = [-\infty, \infty]$.

- a) Let Γ be M-concave, and let Y be a compact topological space such that every function $a(x, \cdot), x \in X$ is lower semicontinuous. Then (6) holds.
- b) Let Γ be m-convex, and let X be a compact topological space such that every function $a(\cdot, v), v \in Y$ is upper semicontinuous. Then (6) holds.

Proof. a) By Examples 1 and 4 and Remarks 3a) and 4 we can apply Theorem 1.

b) Apply part a) to (Y, X, b) with b(y, x) = -a(x, y).

The following version of Dini's Theorem seems to be less known:

Corollary 2 ("Dax Theorem" [21]). Let $D = [-\infty, \infty]$.

- a) Let Γ be finitely m-convex, and let Y be a compact topological space such that the functions $a(x, \cdot)$, $x \in X$ are lower semicontinuous. Then (6) holds.
- b) Let Γ be finitely M-concave and let X be a compact topological space such that the functions $a(\cdot, y), y \in Y$ are upper semicontinuous. Then (6) holds.

Proof. a) Let $A \in \mathscr{E}(X)$ be endowed with the discrete topology. Then from Corollary 1 b) we get $a^*(A, Y) = a_+(A, Y) \le a_+(X, Y)$, hence $\tilde{a}^* = a_+$. Now from Lemma 2 and Example 4 the assertion follows.

b) Apply part a) to (Y, X, b) with b(y, x) = -a(x, y).

Remark 5. a) Corollary 2a) cannot be derived directly from Theorem 1 by Remarks 2, 3c), and 4, because the mean $\varphi = m$ does not satisfy continuity property (5).

b) Corollary 1 a), say, turns wrong if Γ is only supposed to be finitely M-concave. For a counterexample, take $X = Y = \mathbb{N}$ endowed with the cofinite topology and set a(x, y) = 1 (0) for $x \neq y$ (x = y).

Corollary 3. Let $-\infty \notin D$ and let Γ be φ -concave w.r.t. $\alpha \varphi \in M^{-}(D)$. Suppose that Y is a compact topological space such that every function $a(x, \cdot), x \in X$ is lower semicontinuous and every nonvoid set $Y_{\alpha}(A)$, $A \in \mathcal{E}(X)$, $\alpha \in \mathbb{R}$ is connected. Then (6) holds.

The special case $\varphi = \mu_1$ (cf. Example 3a)) and $D = \mathbb{R}$ is due to Terkelsen [37; Theorem 2].

Proof. Apply Lemma 2, Examples 4 and 6, Remark 3 b) and Theorem 1. Observe that for every $x \in X$ there is a $z \in Y$ such that $-\infty < a(x, z) = \inf a(x, y)$.

ARCH. MATH.

Now let Y be a topological space, and let $\langle \cdot, \cdot \rangle$: $Y \times Y \to 2^Y$ be a mapping such that every "interval" $\langle y_1, y_2 \rangle$, $(y_1, y_2) \in Y \times Y$ is connected and contains y_1 and y_2 . In this case, Y is called an *interval space* [36], [19]. A subset $Z \subset Y$ is called *convex* if $\{y_1, y_2\} \subset Z$ implies $\langle y_1, y_2 \rangle \subset Z$, and a function $a(x, \cdot)$, $x \in X$ is called *quasiconvex* if every set $Y_\alpha(x)$, $\alpha \in \mathbb{R}$ is convex.

Corollary 4. Let $-\infty \notin D$, and let Γ be φ -concave w.r.t. $a \varphi \in M^-(D)$. Suppose that Y is a compact interval space such that the functions $a(x,\cdot)$, $x \in X$ are lower semicontinuous and quasiconvex. Then (6) holds.

A special case of this result is due to Terkelsen [37; Corollary 1].

Proof. In an interval space, the intersection of convex sets is convex, and every convex set is connected [19; Remark 2.1]. Hence, Corollary 3 can be applied.

In his lecture on mathematical economics in Karlsruhe (cf. [21]), which culminated in the book [23], König formulated the following problem:

König's Problem. Let $D = (-\infty, \infty]$. Characterize those pairs of functions $\varphi, \psi: D \times D \to D$ with Property (3) and the following property:

(P) For every pair of nonvoid sets X, Y and for every function $a: X \times Y \to D$ such that $\Gamma = (X, Y, a)$ is φ -concave and ψ -convex Condition (11) is satisfied.

A partial solution of this problem has been presented by Irle [15], [16] for a special class of continuous means φ and ψ which he called *averaging functions* (and which play also an important role in the theory of fuzzy sets [5]). The following theorem is closely related to Irle's main theorem in [15]:

Theorem 2. Let $-\infty < \inf_{y \in Y} a(x, y) \in D$ for all $x \in X$. Let $\varphi \in M^-(D)$ satisfy (10) and let $\psi \in M^+(D)$. Suppose that Γ is φ -concave and finitely ψ -convex. Then (11) holds, and (6) is true iff Γ is subcompact.

Proof. This follows from Lemma 2, Example 7 and Theorem 1.

Remark 6. The above theorem has a long history. By combining it with Example 4 we obtain Ky Fan's classical minimax theorem [6] as well as – up to some epsilontics – the generalized versions of König [20], [22] and Irle [15]. (I abstained from presenting Theorems 1 and 2 in the greatest possible generality in order to keep the proofs as short and lucid as possible.) In connection with Example 5 we get versions of Teh Tjoe Tie's minimax theorem [38], [30], [31], [18]. Finally, we obtain a generalization of a minimax theorem of De Wilde [4] and the author [18]:

Corollary 5. Let $D \subset \mathbb{R}$ be a compact interval. Let Γ be φ -concave and ψ -convex w.r.t. means $\varphi \in M^-(D)$ and $\psi \in M^+(D)$. If

 $\lim_{m\to\infty} \inf_{n\to\infty} \sup_{n\to\infty} a(x_m, y_n) \ge \lim_{n\to\infty} \sup_{m\to\infty} \liminf_{m\to\infty} a(x_m, y_n)$

is true for all sequences (x_m) in X and (y_n) in Y, then (6) holds.

Proof. From Theorem 2 we infer $\tilde{a}^* = a_*$. By symmetry we have $\tilde{a}_* := \inf_{B \in \mathcal{S}(Y)} a_*(X, B) = a^*$. But the "double limit condition" implies $\tilde{a}^* \ge \tilde{a}_*$ [4], [18].

The following example shows that the continuity properties (4) and (5) cannot be dispensed with:

Example 8. Let X = Y = D = [0, 1] and $a(x, y) = (x - y)^2$. Then $\Gamma = (X, Y, a)$ is subcompact, and for $\varphi = m$ and $\psi = \mu_{\frac{1}{2}}$ all assumptions of Theorem 2 and Corollary 5 are fulfilled with the only exception that φ does not satisfy Condition (5). Of course, $a_{+} = 0 < \frac{1}{4} = a^{+}$, i.e. (6) is violated.

Addendum. After the present paper had been submitted Lin and Quan published the following result:

Theorem A (Lin-Quan [27]). Let Y be a compact topological space and let every function $a(x,\cdot)$, $x \in X$ be real valued and lower semicontinuous. If there exist s, t in (0,1) such that X is s-concave and Y is t-convex then (6) holds.

Here X (Y) is called λ -concave (λ -convex) iff – in our terminology – Γ is ξ_{λ} -concave (resp. ξ_{λ} -convex) w.r.t. the composed mean ξ_{λ} := $\mu_{\lambda}(M, m)$ (cf. Example 3).

By Example 2, $\xi_{\lambda} \in M^+(\mathbb{R}) \cap M^-(\mathbb{R})$. Hence the above theorem is a special case of our Theorem 2. Similarly, several other related results of Geraghty and Lin [9], [11], [12] are easy consequences of the present results.

Theorem A has recently been generalized by Simons. He calls a function $a: X \times Y \to \mathbb{R}$ upward on Y if

$$\forall \varepsilon > 0 \exists \delta > 0 \forall y_1, y_2 \in Y \exists y_0 \in M_X(y_1, y_2) \forall x \in X:$$

$$|a(x, y_1) - a(x, y_2)| \ge \varepsilon \Rightarrow a(x, y_0) \le M(a(x, y_1), a(x, y_2)) - \delta$$

Similarly, a is downward on X if b: $Y \times X \to \mathbb{R}$ with b(y, x) = -a(x, y) is upward on Y.

Theorem B (Simons [34]). Let $a: X \times Y \to \mathbb{R}$ be upward on Y, downward on X, and let inf $a(x, y) > -\infty$, for all $x \in X$. Then (11) holds.

This theorem is similar to our Theorem 2. By a slight modification of our proofs, one gets the following versions of Example 7 and Theorem 1, which demonstrate again the usefulness of our concept of connectedness.

Example 7*. Let $D = \mathbb{R}$, and let a be upward on Y. Then Y is Γ -connected.

Theorem 1*. Let $D = \mathbb{R}$, let a be downward on X, and let Y be Γ -connected. If $\inf_{y \in Y} a(x, y) > -\infty$ for all $x \in X$, then (11) holds.

By combining both results we obtain Theorem B. Finally, Theorem 1* together with Example 6 imply Simons' version of Terkelsen's minimax theorem [35].

Acknowledgement. The author is grateful to Heinz König for his kind permission to quote [21]. He is also indebted to Joachim Gwinner for drawing his attention to Simons' preprints. Finally, he would like to thank Bor-Luh Lin and Stephen Simons for sending him copies of some of their recent work on minimax theorems.

References

- C. Carlson, Algorithms involving arithmetic and geometric means. Amer. Math. Monthly 78, 496-505 (1971).
- [2] D. A. Cox, The arithmetic-geometric mean of Gauss. Enseignement Math. 30, 275-330 (1984).
- [3] B. C. Cuóng, Some remarks on minimax theorems. Acta Math. Vietnam. 1, 67-74 (1976).
- [4] M. De Wilde, Doubles limites ordonnées et théorèmes de minimax. Ann. Inst. Fourier 24, 181-188 (1974).
- [5] D. Dubois and H. Prade, Possibility theory. New York 1988.
- [6] Ky Fan, Minimax theorems. Proc. Nat. Acad. Sci. USA 39, 42-47 (1953).
- [7] D. M. E. FOSTER and G. M. PHILLIPS, A generalization of the Archimedian double sequence. J. Math. Anal. Appl. 101, 575-581 (1984).
- [8] D. M. E. Foster and G. M. PHILLIPS, The arithmetic-harmonic mean. Math. Comp. 42, 181–191 (1984).
- [9] M. A. Geraghty and B.-L. Lin, On a minimax theorem of Terkelsen. Bull. Inst. Math. Acad. Sinica 11, 343-347 (1983). Correction: 12, 203 (1984).
- [10] M. A. GERAGHTY and B.-L. LIN, Topological minimax theorems. Proc. Amer. Math. Soc. 91, 377-380 (1984).
- [11] M. A. GERAGHTY and B.-L. LIN, Minimax theorems without linear structure. Linear and Multilinear Algebra 17, 171-180 (1985).
- [12] M. A. GERAGHTY and B.-L. LIN, Minimax theorems without convexity. Contemporary Math. 52, 102-108 (1986).
- [13] J. Hartung, An extension of Sion's minimax theorem with an application to a method for constrained games. Pacific J. Math. 103, 401-408 (1982).
- [14] A. IRLE, Minimax theorems in convex situations. In: Game theory and mathematical economics, Proceedings. O. Moeschlin and D. Pallaschke, Eds., Amsterdam-New York-Oxford 1981.
- [15] A. IRLE, A general minimax theorem. Z. Oper. Research 29, 229-247 (1985).
- [16] A. IRLE, On minimax theorems for hide-and-seek games. Methods Oper. Res. 54, 373-383 (1986).
- [17] J. KINDLER, Über Spiele auf konvexen Mengen. Methods Oper. Res. 26, 695-704 (1977).
- [18] J. Kindler, Schwach definite Spiele. Math. Operationsforsch. Statist., Ser. Optimization 8, 199-205 (1977).
- [19] J. KINDLER and R. TROST, Minimax theorems for interval spaces. Acta Math. Hung. 54, 39-49 (1989).
- [20] H. KÖNIG, Über das von Neumannsche Minimax-Theorem. Arch. Math. 19, 482-487 (1968).
- [21] H. KÖNIG, Aufgabe 8 in: Mathematische Wirtschaftstheorie. Lecture Notes, Universität Karlsruhe 1977–1978.
- [22] H. König, On some basic theorems in convex analysis. In: Modern applied mathematics-optimization and operations research, B. Korte Ed., Amsterdam 1982.
- [23] H. König and M. Neumann, Mathematische Wirtschaftstheorie mit einer Einführung in die konvexe Analysis. Mathematical Systems in Econom. 100, A. Hain 1986.
- [24] A. Kolmogoroff, Sur la notion de la moyenne. Atti. Regio Accad. Lincei 12, 388-391 (1930).
- [25] V. Komornik, Minimax theorems for upper semicontinuous functions. Acta Math. Acad. Sci. Hung. 40, 159-163 (1982).
- [26] D. H. LEHMER, On the compounding of certain means. J. Math. Anal. Appl. 36, 183-200 (1971).
- [27] B.-L. Lin and X.-Ch. Quan, A symmetric minimax theorem without linear structure. Arch. Math. 52, 367-370 (1989).
- [28] S. MATSUMARA, Über die Axiomatik von Mittelbildungen. Töhoku Math. J. Sendai 36, 260-262 (1933).

- [29] I. NAKAHARA, Axioms for the weighted means. Tôhoku Math. J. Sendai 41, 424-434 (1936).
- [30] T. Parthasarathy, A note on a minimax theorem of T. T. Tie. Sankhyā 27, Series A, 407-408 (1965).
- [31] T. PARTHASARATHY, On a general minimax theorem. Math. Student 34, 195-197 (1966).
- [32] G. M. PHILLIPS, Archimedes the numerical analyst. Amer. Math. Monthly 88, 165-169 (1981).
- [33] R. SCHIMMACK, Der Satz vom arithmetischen Mittel in axiomatischer Begründung. Math. Ann. 68, 125-132 (1910).
- [34] S. Simons, An upward-downward minimax theorem. Arch. Math. 55, 275-279 (1990).
- [35] S. Simons, On Terkelsen's minimax theorem. Bull. Inst. Math. Acad. Sinica, to appear.
- [36] L. L. Stachó, Minimax theorems beyond topological vector spaces. Acta Sci. Math. 42, 157–164 (1980).
- [37] F. TERKELSEN, Some minimax theorems. Math. Scand. 31, 405-413 (1972).
- [38] T. TJOE-TIE, Minimax theorems on conditionally compact sets. Ann. Math. Stat. 34, 1536-1540 (1963).
- [39] G. H. TOADER, Generalized double sequences. L'Analyse Numérique et la Théorie de l'Approximation 16, 81-85 (1987).
- [40] H. Tuy, On a general minimax theorem. Soviet. Math. Dokl. 15, 1689-1693 (1974).
- [41] H. Tuy, On the general minimax theorem. Colloq. Math. 33, 145-158 (1975).
- [42] Wu Wen-Tsun, A remark on the fundamental theorem in the theory of games. Sci. Rec., New Ser. 3, 229-233 (1959).

Eingegangen am 12.5.1989*)

Anschrift des Autors:

Vol. 55, 1990

Jürgen Kindler Fachbereich Mathematik Technische Hochschule Darmstadt Schloßgartenstr. 7 D-6100 Darmstadt

^{*)} Eine Neufassung ging am 7.7.1989 ein.