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Abstract

The purpose of this paper is to introduce a generalized C-concave condition, and by using Himmelberg’s
fixed point theorem, to prove a new existence theorem of Nash equilibrium in non-compact generalized
game with C-concavity. As applications, we shall prove a minimax theorem in non-compact settings and
prove a minimax inequality in compact settings.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In 1951, Nash established the well-known equilibrium existence theorem for N -person games.
Since then, the classical results of Nash [18], Debreu [2,3] and Nikaido and Isoda [19] have
served as basic references for the existence of Nash equilibrium for non-cooperative games.
Next, in 1977, Friedman [9] established a generalization of the Nash theorem using the quasi-
concavity assumption on every payoff function. In all of them, convexity of strategy spaces,
continuity and concavity/quasi-concavity of the payoff functions were assumed. Till now there
have been a number of generalizations, and also many applications of those theorems have been
found in several areas, e.g., see [1,9] and references therein.
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Two important concepts for removing the concavity/quasi-concavity assumptions of the pay-
off functions are marked by the seminal papers of Fan [5,6] for 2-person zero-sum games, and
the complete abandonment of concavity in Nishimura and Friedman [20]. In fact, the concept of
concavelike payoffs due to Fan [6] does not require any linear structure on the strategy space.
However, Joó [13] gave a general sum 2-person game where the payoff functions are continu-
ous and concavelike, but the game has no Nash equilibrium. Horváth and Joó [11] also show that
higher smoothness of the payoff functions does not change the situation. In [8], Forgó introduced
the CF-concavity by adding continuity to Fan’s concavelike condition, and prove the existence
of a Nash equilibrium.

In a recent paper [16], the authors introduced the C-concavity which generalizes both con-
cave condition and CF-concavity without assuming the linear structure, and next, they proved an
existence theorem of Nash equilibrium and its applications using the C-concavity. And, more re-
cently, Kim and Kum [15] further generalize the C-convexity using constraint correspondences,
and they prove an equilibrium existence theorem for a compact generalized N -person game.

In this paper, we will introduce a C-concave condition which generalizes both concave con-
dition and CF-concavity without assuming the linear structure. Using this C-concavity and the
partition of unity argument, we shall prove a new existence theorem of Nash equilibrium for
non-compact generalized games. And we shall give a new minimax theorem and a minimax in-
equality as its applications. Those results generalize the existence theorems in [4,8,15,16,18,19]
to non-compact generalized games with C-concavity. Finally we shall give an example of a game
where C-concavity can be applied; but the concavity/quasi-concavity in [9,11–14,17,20] cannot
be applied.

2. Preliminaries

We begin with some notations and definitions. Let A be a subset of a topological space X.
We shall denote by 2A the family of all subsets of A. Let I be a countable index set. For each
i ∈ I , let Xi be a non-empty topological space and denote X := ∏

i∈I Xi and X
î
:= ∏

j∈I\{i} Xj .
If x = (x1, . . . , xn, . . .) ∈ X, we shall write x

î
= (x1, . . . , xi−1, xi+1, . . . , xn, . . .) ∈ X

î
. If xi ∈ Xi

and x
î
∈ X

î
, we shall use the notation (xi, xî

) := (x1, . . . , xi−1, xi, xi+1, . . . , xn, . . .) = x ∈ X.
Denote by [0,1]n the Cartesian product of n unit intervals [0,1] × · · · × [0,1]; and denote the
unit simplex in [0,1]n by Δn, i.e.,

Δn :=
{

(λ1, . . . , λn) ∈ [0,1]n
∣∣∣∣∣

n∑
i=1

λi = 1

}
.

Throughout this paper, all topological spaces are assumed to be Hausdorff.
Let I = {1, . . . , n, . . .} be a countable set of players. A non-cooperative generalized game

Γ of normal form is an ordered tuple (X1, . . . ,Xn, . . . ;f1, . . . , fn, . . .) where for each player
i ∈ I , the non-empty set Xi is the player’s pure strategy space, and fi :X = ∏

i∈I Xi → R is
the player’s payoff function. The set X, joint strategy space, is the Cartesian product of the
individual strategy sets, and an element of Xi is called a strategy of the ith player. A strategy
x̄ = (x̄1, . . . , x̄n, . . .) ∈ X is called a Nash equilibrium for the game Γ if the following system of
inequalities holds: for each i ∈ I,

fi(x̄1, . . . , x̄i , . . . , x̄n, . . .) � fi(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n, . . .)

for all xi ∈ Xi . When I is an uncountable set of players, we can similarly define the non-
cooperative game Γ of normal form, and in this case, we also call Γ the non-cooperative
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generalized game. Here we remark that the model of a game in this paper is a non-cooperative
game, i.e., there is no replay communicating between players, and so players act as free agents,
and each player is trying to maximize his/her own payoff according to his/her strategy.

Now we recall some concepts which generalize the concavity. When X and Y are non-empty
arbitrary sets, recall that f :X × Y → R is concavelike on X with respect to Y [6] if for any
x1, x2 ∈ X and λ ∈ [0,1], there exists x0 ∈ X such that

f (x0, y) � λf (x1, y) + (1 − λ)f (x2, y) for all y ∈ Y.

Adding the continuity to concavelike functions, Forgó [8] introduced the CF-concavity as fol-
lows: Let X be a non-empty topological space, Y a non-empty arbitrary set. Then f :X×Y → R

is said to be CF-concave on X with respect to Y if there exists a continuous function Ψ :X ×
X × R → X such that for any x1, x2 ∈ X and λ ∈ [0,1],

f
(
Ψ (x1, x2, λ), y

)
� λf (x1, y) + (1 − λ)f (x2, y) for all y ∈ Y.

Also note that by using the induction, we can obtain the equivalent formulations to the con-
cavelike and CF-concave conditions in general forms, respectively, e.g., see [16, Lemma 1] and
[8, Lemma 1].

Next, we will introduce a concave condition which generalizes both CF-concavity and con-
cavity as follows:

Definition. Let X be a topological space, Y an arbitrary set and D be a non-empty subset
of X. Then f :X × Y → R is called C-concave on D if for every n � 2, whenever n points
x1, . . . , xn ∈ X are arbitrarily given, there exists a continuous function φn :Δn → D such that

f
(
φn(λ1, . . . , λn), y

)
� λ1f (x1, y) + · · · + λnf (xn, y) (1)

for all (λ1, . . . , λn) ∈ Δn and for all y ∈ Y .

Remarks.

(a) When X = D in Definition, the C-concavity is actually the same as the definition in [16]. In
this case, the concavity clearly implies the C-concavity by letting φn(λ1, . . . , λn) := λ1x1 +
· · · + λnxn for each (λ1, . . . , λn) ∈ Δn, whenever x1, . . . , xn ∈ X are given.

(b) Note that the continuous function φn need not be defined globally on X × · · · × X︸ ︷︷ ︸
n times

×R
n as

in [8], but defined only on Δn in Definition. In fact, for any given n points x1, . . . , xn ∈ X,
by defining

φn(λ1, . . . , λn) := Ψn(x1, . . . , xn;λ1, . . . , λn)

for each (λ1, . . . , λn) ∈ Δn, we can see that the CF-concavity implies the C-concavity.
(c) If f is C-concave on X, then for any given points x1, x2 ∈ X and for each λ ∈ [0,1], by

defining x0 := φ2(λ,1 −λ), we can see that f is concavelike on X. Therefore, the following
implication diagram holds:

concave �⇒ CF-concave �⇒ C-concave �⇒ concavelike.

To prove the existence theorems in non-compact settings, we shall need the following special
form of Himmelberg’s fixed point theorem:
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Lemma 1. [10] Let X be a convex subset of a locally convex Hausdorff topological vector space,
D a non-empty compact subset of X, and let f :X → D be a continuous mapping. Then there
exists a point x̄ ∈ D such that f (x̄) = x̄.

3. New existence theorem of Nash equilibrium

Let Γ be a non-cooperative generalized game where I is a countable (possibly uncountable)
set of players and Xi is the player’s pure strategy space. And let the strategy space X := ∏

i∈I Xi

be a non-empty subset of a locally convex Hausdorff topological vector space.
Now let us define the total sum of payoff functions H :X × X → R ∪ {±∞} associated with

the non-cooperative generalized game Γ as follows:

H(x,y) :=
∑
i∈I

fi(y1, . . . , yi−1, xi, yi+1, . . . , yn, . . .) (2)

for every x = (x1, . . . , xn, . . .), y = (y1, . . . , yn, . . .) ∈ X = ∏
i∈I Xi .

Then we shall need the following which is a general form of Lemma 3.1 in [19]:

Lemma 2. Let Γ be a non-cooperative generalized game where I is a countable (possibly un-
countable) set of players. If there exists a point x̄ ∈ X for which

H(x̄, x̄) � H(x, x̄) for any x ∈ X,

then x̄ is a Nash equilibrium for Γ .

Proof. For each i ∈ I , we take any x = (x̄1, . . . , x̄i−1, xi, x̄i+1, . . .) ∈ X. Then, by substitution,
we can see that

H(x̄, x̄) =
∑

j∈I\{i}
fj (x̄1, . . . , x̄i , . . .) + fi(x̄i , x̄î

)

� H(x, x̄) =
∑

j∈I\{i}
fj (x̄1, . . . , x̄i , . . .) + fi(xi, x̄î

)

for all xi ∈ Xi . Therefore, we have

fi(x̄i , x̄î
) � fi(xi, x̄î

) for all xi ∈ Xi;
hence x̄ is a Nash equilibrium for Γ . �

Using the partition of unity argument, we now prove the following existence theorem of Nash
equilibrium in non-compact generalized games:

Theorem 1. Let I be a countable (possibly uncountable) set of index set, and let Γ be a non-
cooperative generalized game satisfying the following conditions:

(i) the strategy space X := ∏
i∈I Xi is a paracompact convex subset of a locally convex Haus-

dorff topological vector space and D be a non-empty compact subset of X;
(ii) the function (x, y) 	→ H(x,y) is continuous on X × X;

(iii) the function x 	→ H(x,y) is C-concave on D;
(iv) for each x ∈ D, H(x,x) � H(y,x) for all y ∈ X \ D.
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Then Γ has a Nash equilibrium x̄ ∈ D, i.e., for each i ∈ I ,

fi(x̄i , x̄î
) � fi(xi, x̄î

) for all xi ∈ Xi.

Proof. Suppose the contrary, i.e., assume that Γ has no Nash equilibrium. Then, by Lemma 2,
for all x ∈ X, there exists an y ∈ X such that H(x,x) < H(y, x).

For any z ∈ X, we let

U(z) := {
x ∈ X | H(x,x) < H(z, x)

}
.

Then, since H is continuous, each U(z) is open (possibly empty) in X; and also we have⋃
z∈X U(z) = X. Here, without loss of generality, we may assume that X \ D is non-empty. By

the assumption (iv), for each z ∈ X \ D, we have that U(z) ⊂ X \ D. Since

X =
⋃
z∈X

U(z) =
( ⋃

z∈D

U(z)

)
∪

( ⋃
z∈X\D

U(z)

)
,

we obtain that D ⊂ ⋃
z∈D U(z). Since D is compact and each U(z) is open, there exists a

finite number of non-empty open sets U(z1), . . . ,U(zn) such that D ⊂ ⋃n
i=1 U(zi), where

{z1, . . . , zn} ⊂ D. Since X \ D is non-empty, if possible, let zn+1 ∈ X \ D should be chosen
satisfying that zn+1 /∈ U(zi) for each i ∈ {1, . . . , n}. And denote an open set U(zn+1) := X \ D.
Then {U(z1), . . . ,U(zn+1)} is a finite open covering of X. Since X is paracompact, there exists
a partition of unity {α1, . . . , αn+1} subordinate to the open covering {U(z1), . . . ,U(zn+1)}, i.e.,

0 � αi(x) � 1,

n+1∑
i=1

αi(x) = 1 for all x ∈ X, i = 1, . . . , n + 1;

and if x /∈ U(zj ) for some j, then αj (x) = 0.

For such {z1, . . . , zn+1} ⊂ X, since H is C-concave on D, there exists a continuous mapping
φn+1 :Δn+1 → D satisfying the condition

H
(
φn+1(λ1, . . . , λn+1), x

)
� λ1H(z1, x) + · · · + λn+1H(zn+1, x)

for all (λ1, . . . , λn+1) ∈ Δn+1 and for all x ∈ X.

Next we consider a continuous mapping Ψ :X → D, defined by

Ψ (z) := φn+1
(
α1(z), . . . , αn+1(z)

)
for all z ∈ X.

Since φn+1 and each αi are continuous, Ψ is continuous on X. Moreover, Ψ maps a non-
empty convex set X into a compact subset D in a locally convex Hausdorff topological vector
space. Therefore, by Lemma 1, there exists a fixed point x̄ ∈ D such that Ψ (x̄) = x̄. Since H is
C-concave on D, we have

H
(
Ψ (x̄), x

)
� α1(x̄)H(z1, x) + · · · + αn(x̄)H(zn, x) + αn+1(x̄)H(zn+1, x)

for all x ∈ X; and so by putting x := x̄, we have

H(x̄, x̄) � α1(x̄)H(z1, x̄) + · · · + αn(x̄)H(zn, x̄) + αn+1(x̄)H(zn+1, x̄). (3)

However, if x̄ ∈ U(zj ) for some 1 � j � n, then H(x̄, x̄) < H(zj , x̄) and αj (x̄) > 0; and if
x̄ /∈ U(zk) for some 1 � k � n, αk(x̄) = 0. Also note that since x̄ ∈ D, x̄ /∈ X \ D = U(zn+1);
and so αn+1(x̄) = 0. Therefore, we have
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n+1∑
i=1

αi(x̄)H(zi, x̄) >

n+1∑
i=1

αi(x̄)H(x̄, x̄) = H(x̄, x̄),

which contradicts (3). This completes the proof. �
Remarks.

(1) Theorem 1 generalizes the equilibrium existence theorems due to Nash [18] and Forgó [8]
in the following aspects:

(i) for each i ∈ I , the strategy set Xi need not be compact; but the product space X =∏
i∈I Xi must be a paracompact convex subset of a locally convex Hausdorff topologi-

cal vector space;
(ii) for each i ∈ I , every payoff function fi need not be concave nor continuous, and H

need not be CF-concave;
(iii) the set I of players need not be finite.

(2) Theorem 1 can be further generalized by using the constraint correspondences Ti as in De-
finition 1 in [15]. Also it should be noted that in our Theorem 1, the set of players I is a
countable (possibly uncountable) set; however, in Theorem 1 in [15], the set of players I is
a finite set.

When the strategy space X = D is compact in Theorem 1, the total sum of payoff functions
H(x,y) must be bounded on X × X. In this case, the coercive condition (iv) is automatically
satisfied, and so we have the following:

Theorem 2. Let I be a countable (possibly uncountable) set of players, and let Γ be a non-
cooperative generalized game satisfying the following:

(i) the strategy space X := ∏
i∈I Xi is non-empty compact convex subset of locally convex

Hausdorff topological vector space;
(ii) the function (x, y) 	→ H(x,y) is continuous on X × X;

(iii) the function x 	→ H(x,y) is C-concave on X.

Then Γ has at least one Nash equilibrium.

4. Some applications

As an application of Theorem 1, we shall prove the following minimax theorem in non-
compact settings:

Theorem 3. Let X and Y be non-empty sets such that X × Y is a paracompact convex in a
locally convex Hausdorff topological vector space, D a non-empty compact subset of X, and E

a non-empty compact subset of Y . Assume that

(a) the function f :X × Y → R is continuous on X × Y ;
(b) for each y ∈ Y , the function x 	→ −f (x, y) is C-concave on D;
(c) for each x ∈ X, the function y 	→ f (x, y) is C-concave on E;
(d) for each (x, y) ∈ D × E, f (x, v) − f (u, y) � 0 for all (u, v) ∈ X × Y \ D × E.
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Then we have

sup
y∈Y

inf
x∈X

f (x, y) = inf
x∈X

sup
y∈Y

f (x, y).

Proof. Let f1(x, y) := −f (x, y) and f2(x, y) := f (x, y). In order to apply Theorem 1, we first
note that the mapping H : (X × Y) × (X × Y) → R is given by

H
(
(x1, y1), (x2, y2)

) := f1(x1, y2) + f2(x2, y1) for each (x1, y1), (x2, y2) ∈ X × Y.

Then H is clearly continuous, so it suffices to show that the assumptions (iii) and (iv) of
Theorem 1 are satisfied. Let two points (x1, y1), (x2, y2) ∈ X × Y be given arbitrarily. Then for
{x1, x2}, by the assumption (b), there exists a continuous function φ1 :Δ2 → D such that

f1
(
φ1(λ,1 − λ), v

)
� λf1(x1, v) + (1 − λ)f1(x2, v)

for every λ ∈ [0,1] and every v ∈ Y . Also, for {y1, y2}, by the assumption (c), there exists a
continuous function φ2 :Δ2 → E such that

f2
(
u,φ2(λ,1 − λ)

)
� λf2(u, y1) + (1 − λ)f2(u, y2)

for every λ ∈ [0,1] and every u ∈ X.
Now we define a continuous function Φ2 :Δ2 → D × E by

Φ2(λ,1 − λ) := (
φ1(λ,1 − λ),φ2(λ,1 − λ)

)
for every λ ∈ [0,1].

Then it is easy to see that Φ2 is a continuous function on Δ2. Also, for every λ ∈ [0,1], we
have

λH
(
(x1, y1), (u, v)

) + (1 − λ)H
(
(x2, y2), (u, v)

)
= λ

(
f1(x1, v) + f2(u, y1)

) + (1 − λ)
(
f1(x2, v) + f2(u, y2)

)
= [

λf1(x1, v) + (1 − λ)f1(x2, v)
] + [

λf2(u, y1) + (1 − λ)f2(u, y2)
]

� f1
(
φ1(λ,1 − λ), v

) + f2
(
u,φ2(λ,1 − λ)

)
= H

(
Φ2(λ,1 − λ), (u, v)

)
for all (u, v) ∈ X × Y.

For arbitrarily given n points (x1, y1), . . . , (xn, yn) ∈ X×Y , we can similarly define a continuous
function Φn :Δn → D × E by

Φn(λ1, . . . , λn) := (
ψ1(λ1, . . . , λn),ψ2(λ1, . . . , λn)

)
for every (λ1, . . . , λn) ∈ Δn, where ψ1 :Δ2 → D is a continuous function suitable for f1 with
respect to {x1, . . . , xn}, and ψ2 :Δ2 → E is a continuous function suitable for f2 with respect
to {y1, . . . , yn} in the C-concavity condition. Thus we can also show the condition (1) for the
C-concavity of H ; and hence H is C-concave on D × E. It remains to show that H satis-
fies the coercive condition (iv) in Theorem 1. For each (x, y) ∈ D × E, H((x, y), (x, y)) =
f1(x, y)+f2(x, y) = −f (x, y)+f (x, y) = 0. And for each (x, y) ∈ D×E, H((u, v), (x, y)) =
f1(u, y) + f2(x, v) = f (x, v) − f (u, y). Therefore, by assumption (d), we have that for each
(x, y) ∈ D × E, H((x, y), (x, y)) � H((u, v), (x, y)) for all (u, v) ∈ X × Y \ D × E, which
implies the assumption (iv) of Theorem 1.

Therefore, by Theorem 1, there exists a Nash equilibrium (x0, y0) ∈ D × E such that

f1(x0, y0) = sup f1(x, y0) and f2(x0, y0) = sup f2(x0, y).

x∈X y∈Y
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Therefore, we have

−f (x0, y0) = f1(x0, y0) � f1(x, y0) = −f (x, y0) for all x ∈ X,

and

f (x0, y0) = f2(x0, y0) � f2(x0, y) = f (x0, y) for all y ∈ Y.

Hence

sup
y∈Y

f (x0, y) � f (x0, y0) � inf
x∈X

f (x, y0),

which implies

inf
x∈X

sup
y∈Y

f (x, y) � f (x0, y0) � sup
y∈Y

inf
x∈X

f (x, y).

And the reverse inequality

sup
y∈Y

f (x, y) � sup
y∈Y

inf
x∈X

f (x, y)

is trivial, and so we obtain the conclusion. �
As another application of Theorem 2, we shall prove the following which is comparable to

the well-known minimax inequality due to Fan [7]:

Theorem 4. Let X be a non-empty compact convex set in a locally convex Hausdorff topological
vector space E and let f :X × X → R be a real-valued function on X × X such that

(a) for each y ∈ X, the function x 	→ f (x, y) is lower semicontinuous on X;
(b) for each x ∈ X, the function y 	→ f (x, y) is C-concave on X.

Then the minimax inequality

min
x∈X

sup
y∈X

f (x, y) � sup
x∈X

f (x, x)

holds.

Proof. Let μ := supx∈X f (x, x). Clearly we may assume that μ < ∞. Suppose the contrary, i.e.,

min
x∈X

sup
y∈X

f (x, y) > sup
x∈X

f (x, x) = μ.

Then, for each x ∈ X, there exists y ∈ X such that f (x, y) > μ. For any y ∈ X, we let

U(y) := {
x ∈ X | f (x, y) > μ

}
.

Then, by the assumption (a), each U(y) is (possibly empty) open in X and also we have⋃
y∈X U(y) = X. Since X is compact, there exists a finite number of non-empty open sets

U(y1), . . . ,U(yn) such that
⋃n

i=1 U(yi) = X. Let {αi | i = 1, . . . , n} be the partition of unity
subordinate to the open covering {U(yi) | i = 1, . . . , n} of X, i.e.,

0 � αi(x) � 1,

n∑
i=1

αi(x) = 1 for all x ∈ X, i = 1, . . . , n;

and if x /∈ U(yj ) for some j, then αj (x) = 0.
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For such {y1, . . . , yn} ⊂ X, since y 	→ f (x, y) is C-concave, there exists a continuous map-
ping φn :Δn → X satisfying the condition

f
(
x,φn(λ1, . . . , λn)

)
� λ1f (x, y1) + · · · + λnf (x, yn)

for all (λ1, . . . , λn) ∈ Δn and for all x ∈ X.

Now consider a continuous mapping Ψ :X → X, defined by

Ψ (x) := φn

(
α1(x), . . . , αn(x)

)
for all x ∈ X.

Since φn and each αi are continuous, Ψ is continuous on X. Moreover, Ψ maps X, which
is a compact convex subset of a locally convex Hausdorff topological vector space, into itself.
Therefore, by Lemma 1, there exists a fixed point x̄ ∈ X such that Ψ (x̄) = x̄.

On the while, by the C-concavity of f , we have

f
(
x,Ψ (x̄)

)
� α1(x̄)f (x, y1) + · · · + αn(x̄)f (x, yn) for all x ∈ X;

and so we have

f (x̄, x̄) �
n∑

i=1

αi(x̄)f (x̄, yi). (4)

However, if x̄ ∈ U(yj ) for some 1 � j � n, then we have f (x̄, yj ) > μ and αj (x̄) > 0; and if
x̄ /∈ U(yk) for some 1 � k � n, then αk(x̄) = 0. Thus we have

μ = sup
x∈X

f (x, x) � f (x̄, x̄) �
n∑

i=1

αi(x̄)f (x̄, yi) > μ,

which is a contradiction. This completes the proof. �
As we mentioned before, the generalized game described in [8,19] has an equilibrium if the

payoff function fi satisfies either CF-concavity or concavity. Indeed, many of the assumptions
made in the preceding theorems in [8,19] have been weakened and the existence of equilibrium
has been proved; however, it is hard to improve the equilibrium theorem by relaxing quasi-
concavity assumption of the payoff functions and the convexity assumption on the strategy space.
On the other hand, in this paper, we introduce a meaningful C-concavity, and prove a new Nash
equilibrium existence theorem. Since the Nash equilibrium is an useful tool in many areas of
mathematical economics including oligopoly theory, general equilibrium and social choice the-
ory, the C-concavity should be helpful in developing the theory of Nash equilibrium. Also note
that Theorem 1 can be improved to more general spaces by using Eilenberg–Montgomery’s fixed
point theorem without assuming the linear structure on X.

Finally, we shall give an example where Theorem 1 can be applied but previous results due to
Nash [18], Nikaido and Isoda [19], and Friedman [9] can not be applied.

Example. Let Γ = {X1,X2;f1, f2} be a 2-person game where X1 = (−1,1], X2 = [0,1],
D = [0,1] ⊂ X1, E = [0,1] = X2, and payoff functions be given as follows:

f1(x1, x2) := x2
1x2 for every (x1, x2) ∈ X = X1 × X2,

f2(y1, y2) := y1
√

y2 for every (y1, y2) ∈ X = X1 × X2.
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Clearly, f1(·, x2) is not quasi-concave for any x2 ∈ [0,1], and thus theorems of Nash [18],
Nikaido and Isoda [19], and Friedman [9] cannot be applied. For this game, the related total sum
of payoff functions H :X × X → R is given by

H
(
(x1, x2), (y1, y2)

) = f1(x1, y2) + f2(y1, x2) = x2
1y2 + y1

√
x2,

for every ((x1, x2), (y1, y2)) ∈ X × X. Then H(x,y) is continuous on X × X. For arbitrarily
given two points (x1, x2), (x3, x4) ∈ X, we now define a continuous function φ2 :Δ2 → D × E

by

φ2(λ,1 − λ) := (√
λx2

1 + (1 − λ)x2
3 ,

[
λ
√

x2 + (1 − λ)
√

x4
]2) for all λ ∈ [0,1].

Then it is easy to see that φ2 is a continuous function on Δ2. Also, for every λ ∈ [0,1] and
(y1, y2) ∈ X, we have

H
(
φ2(λ,1 − λ), (y1, y2)

)
= H

((√
λx2

1 + (1 − λ)x2
3 ,

[
λ
√

x2 + (1 − λ)
√

x4
]2)

, (y1, y2)
)

= (
λx2

1 + (1 − λ)x2
3

)
y2 + (

λ
√

x2 + (1 − λ)
√

x4
)
y1

� λ
(
x2

1y2 + y1
√

x2
) + (1 − λ)

(
x2

3y2 + y1
√

x4
)

= λH
(
(x1, x2), (y1, y2)

) + (1 − λ)H
(
(x3, x4), (y1, y2)

)
.

For arbitrarily given n points (x1, x2), . . . , (z1, z2) ∈ X, we can similarly define a continuous
function φn :Δn → D × E by

φn(λ1, . . . , λn) := (√
λ1x1

2 + · · · + λnz1
2,

[
λ1

√
x2 + · · · + λn

√
z2

]2)
for all (λ1, . . . , λn) ∈ Δn; then we can show the C-concave condition (1); and hence H is
C-concave on D × E. Therefore, we can apply the Theorem 1 to the game Γ ; and clearly, (1,1)

is a Nash equilibrium for Γ . In fact,

1 = f1(1,1) � f1(x1,1) = x2
1 for every x1 ∈ X1,

1 = f2(1,1) � f2(1, y2) = √
y2 for every y2 ∈ X2.
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