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Abstract

The purpose of this paper is to introduce a generalized C-concave condition, and by using Himmelberg’s
fixed point theorem, to prove a new existence theorem of Nash equilibrium in non-compact generalized
game with C-concavity. As applications, we shall prove a minimax theorem in non-compact settings and
prove a minimax inequality in compact settings.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In 1951, Nash established the well-known equilibrium existence theorem for N -person games.
Since then, the classical results of Nash [18], Debreu [2,3] and Nikaido and Isoda [19] have
served as basic references for the existence of Nash equilibrium for non-cooperative games.
Next, in 1977, Friedman [9] established a generalization of the Nash theorem using the quasi-
concavity assumption on every payoff function. In all of them, convexity of strategy spaces,
continuity and concavity/quasi-concavity of the payoff functions were assumed. Till now there
have been a number of generalizations, and also many applications of those theorems have been
found in several areas, e.g., see [1,9] and references therein.

¥ Corresponding author.
E-mail addresses: wkkim@chungbuk.ac.kr (W.K. Kim), khlee @kut.ac.kr (K.H. Lee).

0022-247X/$ — see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.06.038



W.K. Kim, K.H. Lee / J. Math. Anal. Appl. 328 (2007) 1206—-1216 1207

Two important concepts for removing the concavity/quasi-concavity assumptions of the pay-
off functions are marked by the seminal papers of Fan [5,6] for 2-person zero-sum games, and
the complete abandonment of concavity in Nishimura and Friedman [20]. In fact, the concept of
concavelike payoffs due to Fan [6] does not require any linear structure on the strategy space.
However, Jo6 [13] gave a general sum 2-person game where the payoff functions are continu-
ous and concavelike, but the game has no Nash equilibrium. Horvéth and Jo6 [11] also show that
higher smoothness of the payoff functions does not change the situation. In [8], Forgé introduced
the CF-concavity by adding continuity to Fan’s concavelike condition, and prove the existence
of a Nash equilibrium.

In a recent paper [16], the authors introduced the C-concavity which generalizes both con-
cave condition and CF-concavity without assuming the linear structure, and next, they proved an
existence theorem of Nash equilibrium and its applications using the C-concavity. And, more re-
cently, Kim and Kum [15] further generalize the C-convexity using constraint correspondences,
and they prove an equilibrium existence theorem for a compact generalized N-person game.

In this paper, we will introduce a C-concave condition which generalizes both concave con-
dition and CF-concavity without assuming the linear structure. Using this C-concavity and the
partition of unity argument, we shall prove a new existence theorem of Nash equilibrium for
non-compact generalized games. And we shall give a new minimax theorem and a minimax in-
equality as its applications. Those results generalize the existence theorems in [4,8,15,16,18,19]
to non-compact generalized games with C-concavity. Finally we shall give an example of a game
where C-concavity can be applied; but the concavity/quasi-concavity in [9,11-14,17,20] cannot
be applied.

2. Preliminaries

We begin with some notations and definitions. Let A be a subset of a topological space X.
We shall denote by 24 the family of all subsets of A. Let I be a countable index set. For each
i € I,let X; be anon-empty topological space and denote X :=[];; X; and X; := ]_[jel\{i} X;.
Ifx=(x1,...,x,,...) € X, we shall writex;:(xl, ey Xie 1y Xidflyeees Xny.n.) € X;..Ifx,- e X;
and x; € Xz, we shall use the notation (xl-,x;.) = (XL ey X1y Xiy XLy ey Xpyo..) =X € X,
Denote by [0, 1]" the Cartesian product of n unit intervals [0, 1] x --- x [0, 1]; and denote the
unit simplex in [0, 1]" by A, i.e.,

An = ()\1,...,)\-71)6[0’]]”

n
D> ni= 1}.
i=1

Throughout this paper, all topological spaces are assumed to be Hausdorff.

Let I ={1,...,n,...} be a countable set of players. A non-cooperative generalized game
I" of normal form is an ordered tuple (X1,..., Xp,...; f1,---, fu,-..) wWhere for each player
i € I, the non-empty set X; is the player’s pure strategy space, and f;i: X =[[;,c; X; = R is
the player’s payoff function. The set X, joint strategy space, is the Cartesian product of the
individual strategy sets, and an element of X; is called a strategy of the ith player. A strategy
X =(X1,...,%n,...) € X is called a Nash equilibrium for the game I" if the following system of
inequalities holds: for each i € I,

Jilkt, oo Xiy oo Xny o) 2 fi(Xa, o X1, Xi Xt oo Xy )

for all x; € X;. When [ is an uncountable set of players, we can similarly define the non-
cooperative game I of normal form, and in this case, we also call I" the non-cooperative
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generalized game. Here we remark that the model of a game in this paper is a non-cooperative
game, i.e., there is no replay communicating between players, and so players act as free agents,
and each player is trying to maximize his/her own payoff according to his/her strategy.

Now we recall some concepts which generalize the concavity. When X and Y are non-empty
arbitrary sets, recall that f: X x ¥ — R is concavelike on X with respect to Y [6] if for any
x1,x2 € X and A € [0, 1], there exists xg € X such that

fxo,y) 2 Af(x,y)+ (1 —=A)f(xa,y) forallye?.

Adding the continuity to concavelike functions, Forgé [8] introduced the CF-concavity as fol-
lows: Let X be a non-empty topological space, Y a non-empty arbitrary set. Then f: X x Y — R
is said to be CF-concave on X with respect to Y if there exists a continuous function ¥ : X x
X x R — X such that for any x1, x, € X and A € [0, 1],

FP G, x2, 1), 9) = Af @1, ) + (1= 2) f(x,y) forall ye .

Also note that by using the induction, we can obtain the equivalent formulations to the con-
cavelike and CF-concave conditions in general forms, respectively, e.g., see [16, Lemma 1] and
[8, Lemma 1].

Next, we will introduce a concave condition which generalizes both CF-concavity and con-
cavity as follows:

Definition. Let X be a topological space, Y an arbitrary set and D be a non-empty subset

of X. Then f:X x Y — R is called C-concave on D if for every n > 2, whenever n points

X1, ...,X, € X are arbitrarily given, there exists a continuous function ¢, : A, — D such that
F(@n s hn), ¥) Z 2 f 1, 9) 4+ A f (s ) (D

for all (A1,...,Ay) € Ay andforallyeY.
Remarks.

(a) When X = D in Definition, the C-concavity is actually the same as the definition in [16]. In
this case, the concavity clearly implies the C-concavity by letting ¢, (A1, ..., ) :=A1x1 +
-+ 4+ Apx, foreach (A1, ..., A,) € A,, whenever x1, ..., x, € X are given.

(b) Note that the continuous function ¢, need not be defined globally on XX xX xR" as

n times

in [8], but defined only on A,, in Definition. In fact, for any given n points x1,...,x, € X,
by defining

Gy ) =W (XL, X AL s Ag)
for each (Aq,...,A,) € A,, we can see that the CF-concavity implies the C-concavity.

(c) If f is C-concave on X, then for any given points x,x2» € X and for each XA € [0, 1], by
defining xo := ¢ (A, 1 — A), we can see that f is concavelike on X. Therefore, the following
implication diagram holds:

concave —> CF-concave —> C(-concave —> concavelike.

To prove the existence theorems in non-compact settings, we shall need the following special
form of Himmelberg’s fixed point theorem:
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Lemma 1. [10] Let X be a convex subset of a locally convex Hausdorff topological vector space,
D a non-empty compact subset of X, and let f:X — D be a continuous mapping. Then there
exists a point X € D such that f(x) =X.

3. New existence theorem of Nash equilibrium

Let I" be a non-cooperative generalized game where I is a countable (possibly uncountable)
set of players and X; is the player’s pure strategy space. And let the strategy space X :=[[,; X;
be a non-empty subset of a locally convex Hausdorff topological vector space.

Now let us define the total sum of payoff functions H : X x X — R U {00} associated with
the non-cooperative generalized game I” as follows:

HX,y) =) fi0l s Vil Xin Yidds o2 Vo) 2)
iel

forevery x = (x1,...,%n, ... ), Yy =1, ..o s Vns .. ) € X =[]ic; X
Then we shall need the following which is a general form of Lemma 3.1 in [19]:

Lemma 2. Let I be a non-cooperative generalized game where I is a countable (possibly un-
countable) set of players. If there exists a point x € X for which

H(x,x)> H(x,x) foranyxeX,

then X is a Nash equilibrium for I'.

Proof. For each i € I, we take any x = (X1, ...,X;—1, Xj, Xj+1, ...) € X. Then, by substitution,
we can see that

HED= Y fiGEn ... %)+ [ 5)
Jjel\li)
>HED)= Y fi(d.... %)+ filx, %)
Jjel\li)
for all x; € X;. Therefore, we have
ﬁ()f,',)f;.)}ﬁ(xi,i;.) for all x; € X;;

hence x is a Nash equilibrium for I". O

Using the partition of unity argument, we now prove the following existence theorem of Nash
equilibrium in non-compact generalized games:

Theorem 1. Let I be a countable (possibly uncountable) set of index set, and let I' be a non-
cooperative generalized game satisfying the following conditions:

(i) the strategy space X :=[[;c; Xi is a paracompact convex subset of a locally convex Haus-
dorff topological vector space and D be a non-empty compact subset of X,
(i) the function (x,y) +— H(x,y) is continuous on X x X,
(iii) the function x — H(x,y) is C-concave on D;
@iv) foreachx € D, H(x,x) > H(y,x) forall y e X \ D.
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Then I' has a Nash equilibrium x € D, i.e., for eachi € I,

JiGxi, x3) = fi(xi, x;)  forall x; € X;.

Proof. Suppose the contrary, i.e., assume that I" has no Nash equilibrium. Then, by Lemma 2,
for all x € X, there exists an y € X such that H(x, x) < H(y, x).
For any z € X, we let

U@):=={xeX|Hx, x)<H(zx)}

Then, since H is continuous, each U (z) is open (possibly empty) in X; and also we have
U.ex U(z) = X. Here, without loss of generality, we may assume that X \ D is non-empty. By
the assumption (iv), for each z € X \ D, we have that U(z) C X \ D. Since

x=JUuw@= ( U U(z)) U ( U U(z)>,
zeX zeD zeX\D
we obtain that D C UZe p U(z). Since D is compact and each U(z) is open, there exists a
finite number of non-empty open sets U(z1),...,U(z,) such that D C U?:] U(z;), where
{z1,...,z2} C D. Since X \ D is non-empty, if possible, let z,+1 € X \ D should be chosen
satisfying that 7,11 ¢ U(z;) foreach i € {1, ..., n}. And denote an open set U(z,+1) := X \ D.
Then {U(z1), ..., U(zy+1)} is a finite open covering of X. Since X is paracompact, there exists
a partition of unity {1, ..., &,+1} subordinate to the open covering {U (z1), ..., U(zn+1)}, i.e.,

n+1

0<o(x)<1, Zai(x)zl forallxe X, i=1,....,n+1;
i=1

and if x ¢ U(z;) for some j, then a;(x)=0.

For such {z1, ..., zy+1} C X, since H is C-concave on D, there exists a continuous mapping
Gn+1: An+1 — D satisfying the condition
H(pns1 (Ao hng1), X) 2 A H @1 X) + -+ A1 H(Zng1,X)
for all (A1,...,An41) € Ay41 and for all x € X.

Next we consider a continuous mapping ¥ : X — D, defined by
W (z) = pr1(c1(2), ..., ant1(2)) forallz e X.

Since ¢,+1 and each ¢; are continuous, ¥ is continuous on X. Moreover, ¥ maps a non-
empty convex set X into a compact subset D in a locally convex Hausdorff topological vector
space. Therefore, by Lemma 1, there exists a fixed point x € D such that ¥ (x) = x. Since H is
C-concave on D, we have

H(W(X),x) 2 a1(X)H (21, %) + -+ (X) H(zn, X) + o1 (X) H (Znt1, X)
for all x € X; and so by putting x := X, we have
H(x,%) Z o1 (X)H(z1,X) + -+ + an(X) H(zp, X) + 0p1(X) H (2p1, X). 3)

However, if x € U(z;) for some 1 < j <n, then H(x,x) < H(z;,X) and o;(x) > 0; and if
x ¢ U(zg) for some 1 < k < n, ar(x) =0. Also note that since x € D, x ¢ X \ D = U (zy+1);
and so oy, 41 (x) = 0. Therefore, we have
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n+1 n+1
D ei(@H (. %) > Y () H(E,X) = H (%, %),
i=1 i=1

which contradicts (3). This completes the proof. O
Remarks.

(1) Theorem 1 generalizes the equilibrium existence theorems due to Nash [18] and Forg6 [8]
in the following aspects:

(i) for each i € I, the strategy set X; need not be compact; but the product space X =
[T;c; Xi must be a paracompact convex subset of a locally convex Hausdorff topologi-
cal vector space;

(ii) for each i € I, every payoff function f; need not be concave nor continuous, and H
need not be CF-concave;
(iii) the set / of players need not be finite.

(2) Theorem 1 can be further generalized by using the constraint correspondences 7; as in De-
finition 1 in [15]. Also it should be noted that in our Theorem 1, the set of players [ is a
countable (possibly uncountable) set; however, in Theorem 1 in [15], the set of players [ is
a finite set.

When the strategy space X = D is compact in Theorem 1, the total sum of payoff functions
H (x,y) must be bounded on X x X. In this case, the coercive condition (iv) is automatically
satisfied, and so we have the following:

Theorem 2. Let I be a countable (possibly uncountable) set of players, and let I' be a non-
cooperative generalized game satisfying the following:

(i) the strategy space X = [];c; Xi is non-empty compact convex subset of locally convex
Hausdorff topological vector space;
(i) the function (x,y) +— H(x,y) is continuous on X x X;
(iii) the function x — H(x,y) is C-concave on X.

Then I' has at least one Nash equilibrium.
4. Some applications

As an application of Theorem 1, we shall prove the following minimax theorem in non-
compact settings:

Theorem 3. Let X and Y be non-empty sets such that X x Y is a paracompact convex in a
locally convex Hausdorff topological vector space, D a non-empty compact subset of X, and E
a non-empty compact subset of Y. Assume that

(a) the function f:X x Y — R is continuous on X x Y,

(b) for each y €Y, the function x — — f(x, y) is C-concave on D;

(¢c) foreach x € X, the function y — f(x,y) is C-concave on E;

(d) foreach (x,y)e D X E, f(x,v) — f(u,y) <0 forall u,v) e X xY\D X E.
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Then we have

sup inf f(x,y) = inf sup f(x,y).
yeyxEX xeXyey

Proof. Let fi1(x,y):=—f(x,y) and f>(x,y) := f(x,y). In order to apply Theorem 1, we first
note that the mapping H : (X x Y) x (X x Y) — Ris given by
H((x1, 1), (x2,¥2)) := fi(x1, y2) + fa(x2, y1) foreach (xi, y1), (x2,y2) € X x Y.

Then H is clearly continuous, so it suffices to show that the assumptions (iii) and (iv) of
Theorem 1 are satisfied. Let two points (x1, y1), (x2, y2) € X x Y be given arbitrarily. Then for
{x1, x2}, by the assumption (b), there exists a continuous function ¢; : A — D such that

Si(@1(A, 1=2),v) = Afi(x1,v) + (1 = 4) f1(x2,v)

for every A € [0, 1] and every v € Y. Also, for {y;, y»2}, by the assumption (c), there exists a
continuous function ¢; : Ay — E such that

fa(u, o2, 1= 2)) = Afa(u, y1) + (1 = X) fa(u, y2)

for every A € [0, 1] and every u € X.
Now we define a continuous function @,: A — D x E by

Dr(A, 1 —1) = (d)l(k, 1—A), (1, 1 — X)) for every A € [0, 1].

Then it is easy to see that @, is a continuous function on A,. Also, for every A € [0, 1], we
have

AH ((x1, Y1), (u,v)) + (1 = D) H((x2, y2), (, v))
=M1, v) + falu, yD) + (1= D) (fi(x2, v) + fau, y2))
= [Afi(x1,0) + (1 = 1) fi(x2, V)] + [Afa(u, y) + (1= 1) fau, y2) ]
< fi(@r(, 1=2),v) + fa(u, d2(r, 1 —21))
=H(P2(h, 1= 1), (u,v)) forall (u,v) € X x Y.

For arbitrarily given n points (x1, y1), ..., (Xn, y») € X X Y, we can similarly define a continuous
function @,,: A, - D x E by

Dty i) = (Y1O0s o A, Y2 (hrs oy A))

for every (A1, ..., ,) € Ay, wWhere i : A — D is a continuous function suitable for f; with
respect to {x1,...,x,}, and Y»: Ay — E is a continuous function suitable for f> with respect
to {¥1,..., yn} in the C-concavity condition. Thus we can also show the condition (1) for the

C-concavity of H; and hence H is C-concave on D x E. It remains to show that H satis-
fies the coercive condition (iv) in Theorem 1. For each (x,y) € D x E, H((x, y), (x,y)) =
S1e, )+ fa(x, y) =—=f(x, )+ f(x,y) =0. And for each (x, y) € DX E, H((u, v), (x,y)) =
1w, y) + falx,v) = f(x,v) — f(u,y). Therefore, by assumption (d), we have that for each
(x,y)e D x E, H{(x,y), (x,y)) =2 H((u, v), (x,y)) for all (u,v) € X x Y \ D x E, which
implies the assumption (iv) of Theorem 1.

Therefore, by Theorem 1, there exists a Nash equilibrium (xg, yo) € D x E such that

S1(x0, yo) = sup f1(x,yo) and f2(x0, yo) = sup f2(x0, ).

xeX yey



W.K. Kim, K.H. Lee / J. Math. Anal. Appl. 328 (2007) 1206-1216 1213

Therefore, we have

—f(xo0, y0) = f1(x0, ¥0) = f1(x,y0) = —f(x,y0) forallx e X,

and

f(xo, yo) = fa(xo0, yo) = f2(x0,¥) = f(x0,y) forallye?Y.

Hence

sup f(xo, y) < f(x0, yo) < inf f(x, yo),
yeY xeX

which implies

inf sup f(x, y) < f(x0, yo) <sup inf f(x,y).
XEXyEY yEYXEX

And the reverse inequality

sup f(x,y) = sup inf f(x,y)
yey yey x€X

is trivial, and so we obtain the conclusion. 0O

As another application of Theorem 2, we shall prove the following which is comparable to
the well-known minimax inequality due to Fan [7]:

Theorem 4. Let X be a non-empty compact convex set in a locally convex Hausdorff topological
vector space E and let f:X x X — R be a real-valued function on X x X such that

(a) for each y € X, the function x — f(x, y) is lower semicontinuous on X,
(b) for each x € X, the function y — f(x,y) is C-concave on X.

Then the minimax inequality

minsup f(x,y) < sup f(x,x)
xeX yex xeX

holds.

Proof. Let p :=sup, .y f(x, x). Clearly we may assume that ;& < co. Suppose the contrary, i.e.,

min sup f(x,y) > sup f(x,x)=pu.

XeX yeX xeX

Then, for each x € X, there exists y € X such that f(x,y) > u. For any y € X, we let

Uy)={xeX|fx,y)>n}

Then, by the assumption (a), each U(y) is (possibly empty) open in X and also we have
Uy€ x U(y) = X. Since X is compact, there exists a finite number of non-empty open sets
U(),...,U(y,) such that U?:l U(i)=X.Let {a; | i =1,...,n} be the partition of unity
subordinate to the open covering {U(y;) |i =1,...,n}of X, i.e.,

n
0<o(@) <1, Y ai(x)=1 forallxeX, i=1,...n
i=1

and if x ¢ U(y;) for some j, then o;(x)=0.
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For such {y1,..., y»} C X, since y — f(x,y) is C-concave, there exists a continuous map-
ping ¢, : A, — X satisfying the condition

f(x’¢n()‘-la-~")\n))2)‘-1f(x7y1)+"'+)‘-nf(x7yn)

forall (Aq,...,A;) € A, and for all x € X.
Now consider a continuous mapping ¥ : X — X, defined by

W (x):=¢u(a1(x),...,an(x)) forallxeX.

Since ¢, and each «; are continuous, ¥ is continuous on X. Moreover, ¥ maps X, which
is a compact convex subset of a locally convex Hausdorff topological vector space, into itself.
Therefore, by Lemma 1, there exists a fixed point x € X such that ¥ (x) = x.

On the while, by the C-concavity of f, we have

fo® @) 2 a1 (@) fx,y1) + -+ o (X) f(x,y) forallx € X;

and so we have

FED 2 @) f(E ). )

i=1

However, if x € U(y;) for some 1 < j < n, then we have f(x, y;) > u and j(x) > 0; and if
x ¢ U(yy) for some 1 < k < n, then o (x) = 0. Thus we have

p=sup f(x,x)> f(5,5) 2 ai(®)f(E, ) > i,

xeX i=1

which is a contradiction. This completes the proof. O

As we mentioned before, the generalized game described in [8,19] has an equilibrium if the
payoff function f; satisfies either CF-concavity or concavity. Indeed, many of the assumptions
made in the preceding theorems in [8,19] have been weakened and the existence of equilibrium
has been proved; however, it is hard to improve the equilibrium theorem by relaxing quasi-
concavity assumption of the payoff functions and the convexity assumption on the strategy space.
On the other hand, in this paper, we introduce a meaningful C-concavity, and prove a new Nash
equilibrium existence theorem. Since the Nash equilibrium is an useful tool in many areas of
mathematical economics including oligopoly theory, general equilibrium and social choice the-
ory, the C-concavity should be helpful in developing the theory of Nash equilibrium. Also note
that Theorem 1 can be improved to more general spaces by using Eilenberg—Montgomery’s fixed
point theorem without assuming the linear structure on X.

Finally, we shall give an example where Theorem 1 can be applied but previous results due to
Nash [18], Nikaido and Isoda [19], and Friedman [9] can not be applied.

Example. Let I' = {X1, X»; f1, f»} be a 2-person game where X| = (—1, 1], X, = [0, 1],
D =10,1] C Xy, E =[0, 1] = X,, and payoff functions be given as follows:

Ji1(x1,x2) :=x12x2 for every (x1,x2) € X = X1 x X»,

21, y2) :=y1/y2 forevery (y1,y2) € X = X1 x X».



W.K. Kim, K.H. Lee / J. Math. Anal. Appl. 328 (2007) 1206-1216 1215

Clearly, fi(-,x2) is not quasi-concave for any x» € [0, 1], and thus theorems of Nash [18],
Nikaido and Isoda [19], and Friedman [9] cannot be applied. For this game, the related total sum
of payoff functions H : X x X — R is given by

H((x1,x2), 01, y2)) = fi(x1, y2) + 201, x2) = x7y2 + y1/32,

for every ((x1,x2), (y1,y2)) € X x X. Then H(x, y) is continuous on X x X. For arbitrarily
given two points (x1, x2), (x3, x4) € X, we now define a continuous function ¢: A - D x E
by

$r(A, 1= 1) == (\/axd + (1 — a3, Aoz + (1 — A)m]z) forall A € [0, 1].

Then it is easy to see that ¢ is a continuous function on Aj. Also, for every A € [0, 1] and
(y1, y2) € X, we have

H(¢2(x, 1 =2), (1, ¥2))

= H((2} + (1 =03, [ivm + (1 = v T), 61 )
= (Axf 4+ (1= 0)x3)y2 + (Av/x2 + (1= 2)/x3) 1

> A(xTy2 +yiv/a2) + (L= 1) (632 + yiv/xa)

= AH((x1,x2), (y1, ¥2)) + (1 = D) H((x3, x4), (1, ¥2))-

For arbitrarily given n points (x1, x2), ..., (z1,22) € X, we can similarly define a continuous
function ¢, : A, = D x E by

¢n()\1’-~~a)\n) = (\/)\lx12+"‘+)\11112, [)\lx/x_2+"'+)\n\/5]2)

for all (Aq,...,A,;) € A,; then we can show the C-concave condition (1); and hence H is
C-concave on D x E. Therefore, we can apply the Theorem 1 to the game I"; and clearly, (1, 1)
is a Nash equilibrium for I". In fact,

1= fi(1,1) > fi(x1, 1) =x7 forevery x| € X1,
1= fo(1,1) = fo(1,y2) =/y2 forevery y; € X».
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