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On the Univalency of Regular Functions (*).

DEN V. JURIEV

Alla Scuola Italiona della Geometria Algebrica dedicato

Summary. — This paper is devoted to the various criteria of the univalency of reqular functions.
We establish a new criterion by means of the methods of the infinite dimensional algebraic
geometry. It is formulated ewplicitely in terms of the coefficients of the Taylor expansion of a
regular function in contrast to the known ones. To do it we need to use the coefficients of the
Shapovalov form for the Virasoro algebra which are well-known in the representation theory
of the infinite-dimensional algebras and groups. Also we find the expression for the univa-
lency radius of a. regular function which is analogous to Cauchy-Hadamard formula for the
regularity radius (the radius of the convergence). Besides that we discuss some questions of
the numerical computation of the univalency radius. :

1. — Some preliminary remarks ahd historical review.

The class S, one of the most mysterious object of the geometrical theory of func-
tions of a complex variable, consists of functions f(2), univalent and regular (holomor-
phic) in the unit disk' D, = {ze C: |2| <1}, normalized by the conditions f(0)=0,
£'(0) = 1[1]. Each such function realizes a conformal mapping of the disk D, onto a
domain in the complex plane C with the unit conformal radius. Transversely, for each

_domain of such kind there exists exactly one function f(2) from the class S, whose im-
age coincides with it. For a visuality one might consider elements of the set S as the

equiangular maps for the southern hemisphere of the Riemann sphere [2].

The more detail information about the class S and conformal mappings one should
get in the monographs [1,3,4]. The applications are discussed in [5]. .

The family of functions f(z) which belong to S may be regarded as an infinite di-
mensional complex manifold, The alternative point of view is stated, for example, in
the paper [6]. The arguments of that paper are very similar to ones for the negative
answer on the question «Are the diffeomorphism groups the Lie groups?» whereas

‘the results of the paper [7]. Nevertheless, we hold to the point of view that in spite of

a great number of papers, devoted to the definition of the infinite dimensional mani-

(*) Entrata in Redazioney il 31 agosto 1989; versione riveduta il 27 luglio 1990. -
Indirizzo dell’A.: T.F.F.A., Dipartimento di Matematica, M. V. Lomonosov Universita di
Mosca, 119899 Mosca, URSS.
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fold (P. DE LA HARP, L. A Harris, W. Kaup, J. M. ISIDRO, J. A. LESLIE, H. OMORI,
J. M. SOURIAU, B. I. ROSENFELD et al.), our idea about it is very diffuse. So we think
that the class S satisfies our intuitive definition of the infinite-dimensional mani-

fold. .

The coordinate system upon S is determined by the coefficients C15C2,C8y -0 Cpyone
of the Taylor expansion of a function f(2) v
o)) f@=z+ 2%+ 2’ +cgzt+ ... Fe2" T4 L

The.z expansion defines the imbedding of the class S into the space C, [2] of formal
series of the form (1). Hence S may be identified with a domain in Co[#]. Because of
‘the Bieberbach-de Branges inequalities [8, 9]

[en] <m+1

* one might also regard the domain S as a bounded one.

In the thirties of this century there were discovered the variational formulae for -

the class S. There exists many variants of them, but all are based on the simplest one,
which belongs to M. SCHIFFER [10]. More general case was considered by G. M.
GoLUzIN [3]. Recently, there was discovered in the theory of representations of the
infinite-dimensional groups that some kind of the variational formulae is closed, i.e.
the corresponding variations form the Lie algebra, and, moreover, they canbe expo-
nentiated to the action of an infinite-dimensional group. Namely, there was proved in
the paper [11] that the group Diff, S! of diffeomorphisms of a circle, preserving an
orientation, transitively acts on S. The stabilizer of an arbitrary point is isomorphic to
S*. The infinitesimal action, counted in[12], gives the variational formulae on the
class S, analogous to ones of M. SCHIFFER, as it was shown in [13]. Moreover, the for-
mulae of boundary variations correspond to the action of singular fields. These formu-
lae can be extended to the space C,[z] by an analyticity. This fact of the complex
analysis should be related to the recent discovery of the Virasoro algebra action on
the universal Teichmiiller space [14], obtained by M. L. KoNCEVICH [15] and provok-

ing in 1987-1988 a serie of investigations (Yu. I. MANIN, A. A. BEILINSON, V. A.
SCHECHTMAN, E. ARBARELLO, DE Concing, V. Kac, C. Procest, E. WiTTEN, L. AL-

VAREZ-GAUME, C. GoMEZ, C. REiNa, G. Moorg, C. Vara, A. Morosov, A. S.
SCHWARZ et al.). '

So the dornain S is an infinite dimensional homogeneous domain. As an abstract
homogeneous space Diff, S*/S! appeared in the mathematieal literature at the end of

the seventies—the beginning of the eighties.It appeared in the paper [16], devoted to .

the theory of the Hill's equation [17], as a coadjoint orbit of the Virasoro-Bott group.
As such it is the symplectic manifold (see [18]). The various modes of such representa-
tion define the two-parameter family of symplectic structures wy, ,[19,20]. Coupled
with the complex structure {w;, .} forms the family of the Kéhler metrics wj, ,[11].
This construction is reminiscent of the Cayley-Klein realization of the Bolyai-
Lobachevsky space. One can get more detail information from the pa-
pers[12,13].
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The Kihler metrics, as it will be proved below, are the infinite dimensional
analogs of Bergman metrics on bounded homogeneous domains (see [21]). It should be
also mentioned that there exists the unique invariant K&hler-Einstein metric on
Diff, S*/S*[22,23] with the ratio of parameters ¢/h = 26. If the metric w,, , isn’t ein-

steinian, the group of all biholomorphic isometrieés of S coincides with Diff, S1[24]. .

Moreover, we suppose that S is very like as the infinite dimensional circular domains
which were investigated intensively in the seventies by N. WALLACH, R. GREEN-
FIELD, J.-P. VIGUE, E. VESENTINI, H. UPMEIER, W. KAUP, R. BRAUN, J. M. ISIDRO
et al. [25], so a biholomorphic automorphism of S, stabilizing the point f,(2) = 2, is
linear in Cy[2], preserves the modules of the coefficients and coincides with a rotation
of S*. So Diff, S* is also the group of all biholomorphic automorphisms of S and,
therefore, the group of all biholomorphic isometries for the Einstein metrie, too. Note
that S is an example of an infinite dimensional homogeneous bounded domain that is-
n’t a symmetric one. = '

Independently, the manifold Diff, S'/S! have appeared in string theories[22, -

26,23] as a geometrical background for the string field-theory (W. SIEGEL, T. BANKS,
M. PeskiN, E. WITTEN et al.). There is a voluminous litérature devoted to this mani-
fold. More detail information about the recent achievements in this direction one
should get from the paper of the author[27]. ’

Unfortunately, we have a very uncomplete information about the structure of the
class S, especially in terms of the coefficients ¢;, ¢z, 3, ... ¢, ... (see f.e. the mono-
graph [28]). To advance in such description we shall establish the new criterion of the
univalency in terms of ¢, ¢z, ¢, ... ¢, ... using the Kodaira imbedding of the infinite
dimensional manifold Diff, S*/S* into the infinite dimensional projective spaces.

2. — The necessary conditions of the univalency.

This paragraph is devoted to the brief review of the necessary conditions of the
univalency. ' : C

The simplest one is the condition of the Iocal univalency. A regular function f(2) is
univalent in some neibourhood of the point a, iff f'(a) # 0. Hence, if a function f(2) be-
longs to the class S, its derivative turn into zero nowhere in the unit disk. Of course,

- the local univalency doesn’t guarantee the global univalence of the function in the

disk. For example, the function f(2) = exp (Rz), where R > =, isn’t univalent in the
disk, though the condition of the local univalency holds in every point of the
disk. : :
- The next condition is the geometrical one on the image of the boundary S! of the
disk D,. If the function f(2) is univalent in D, , then the image of S! is the Jordan
curve. This condition is also sufficient. '

In general, a necessary condition of the univalency is a property, as a rule an in-
equality, which an univalent function satisfies.

‘The most famous ones are the Bieberbach inequalities [8] on the Taylor coefficients
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Ciy Ca, Cgy .. Cp, .. O & function f(z) =2 + ;22 + 22 + a2 + ... + c2** 1+ ...
|Ck[ <k+1.

. One should mention that our notation differs from the common one.

~ In 1907 KoEBE proved that |c; | < const; in 1916 BIEBERBACH proved that |¢;| < 2
and conjected that |¢,] <= + 1; in 1923 LOWNER proved the conjecture for n = 2; in
1925 LITTLEWOOD obtained the inequality |c,| < e(n + 1); in 1955 GARABEDIAN and
'SCHIFFER proved the Bieberbach inequalities for #» =8 and HAYMAN proved that
le,| <m+1,if n=n(f); in 1967-1968 PEDERSON and OZAWA obtained the Bieber-
bach inequalities for #» =5 and in 1972 PEDERSON and SCHIFFER for » = 4; in 1972
FI1z-GERALD proved that |c,[|<1.081 (n+1) and in 1978 Horowirtz that
le,| < 1.0657 (n + 1); finally, in 1984 DE BRANGES proved the Bieberbach inequalities
for all n.

The Bieberbach conjecture had given the tremendous 1mpetus to the theory of
univalent functions. There were devised a lot of methods to attack it, which formed
the recent look of the theory.

Besides the Bieberbach inequalities there emst many other interesting ones. One
of them is the Robertson inequality. Let S® be the class of all odd functions from S;
that is the class of functions

@) =(fe))2=2+ 0(2) S 4 ePS 4 .+ ePe% 4

where f belongsAto S. .

The naive analog of the Bieberbach conjecture as it was shown in 1933 by FEKETE

and SzeEG) is false. But in 1936 M. ROBERTSON conjectured that the inequali-
ty [29]

7
31621 <n

~ holds for every f from S®. The Robertson inequalities implies the Bieberbach ones,

since
: ® .0 _
o=, e

and therefore
& @
Jeal < 3 (61741,

The Robertson inequalities was given much less attention then the Bieberbach
ones. Before their proof by DE BRANGES in 1984 they was proved only for » = 2 and
n=3. :

The next class of mequaht1es is connected with the logarithmic coefficients of a
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function f from S; that

log (f(z)/z) = i 202",

In 1965-1967 N. A. LEBEDEV and I M MiLN estabhshed the followmg inequali--

ty [30,31]
1+§‘, |22 < (n + 1) exp (n+1)“1k§:1(n+1—*k)(k|gk|2—k‘1) .
=1 : = o

‘From this inequality the Bieberbach and the Robertson ones follow: modulo the
next '

En:(n+l—k)k[gk[2< i(n+1—k)/k .,
= !

it is called the Lebedev-Milin inequality. It was proved by DE BRANGES in 1984,
Our brief review on the necessary conditions is finished and we turn to the criteria

~ of the univalercy.

3. — Criteria of the univalency.

There exist many criteria of the univalency but in general they are ecjuivalent to

the simplest one, proposed by H. GRUNSKY in 1939 [32]. It was improved by many

authors during the fourties—the sixties (G. M. GoLUzIN, Z. NEHARI, I. SCHUR,
M. ScHIFFER, CH. POMMERENKE, J. JENKINS et al.).
In the modern notation the Grunsky criterion has the form

E—Z;Z>0

where Z; is so-called Grunsky matrix. Z; is infinite and symmetric. Its matrix ele-

ments are -defined by the next formula

z—m

I
(zf)mn;\/m/ndet3€ ;2 [1/f...1/f"* dz.

1)

An another Wﬁy to define the matrix elements is the next expansion

nMs

]kz]w

log'b((f 2 —f w))/(z - 7:”)).= g
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Terms with j # 0, k& # 0 coincide with the matrix coefficients of Z;. Cj, and Cy, are the
logarithmic coefficients.

The geometrical interpretation of the Grunsky criterion was given in[13]. Let H
be the space of the real-valued smooth I-forms w(exp (it)) d¢ on the circle such as

. f w(exp (i) dt = 0

Let H°® be its complexification, H¢ (H¢)—its transversal subspaces, containing
I-forms wu(exp (it)) dt, which have the holomorphic extensions in D,(D_). H =
= 0(S8')/Const, namely f@) e 08" > df(z)e H®. HS = 0(D..).

- There are defined the symplectic and the pseudohermltean structures on H°:

(f@, 92) = §f@) dg(a),

(f@), 9@) = § 1) dg(a),

| Let Sp(H¢,-C) and UHS, HE) be the group of the invariance of these structures,
Sp(H, R) =Sp(H?, @ﬁU(H H?).

Let’s consider the grassmannian Gr (H°¢)—the set of all complex Lagrange sub-
spaces in H°. Gr (H°) is the infinite dimensional homogeneous space with the group of

f@), g(z) e O(SY).

transformations Sp (H°, C). The infinite-dimensional grassmannians were intensively

investigated in the eighties after the paper of M. SaTo[33] (see also [34]) (M. SaTo,
Y. Saro, E. Date, M. JiMBo, M. KAsHIWARA, T. Mwa, G. SEGAL, G. WiLson, A.
PRESSLEY et al.).

Let’s consider the action of Sp (H R) on Gr(H®). There exist the well-improved
theory of actions of real semisimple groups on the homogeneous spaces of their com-
plexifications (I. I. PYATETSKII-SHAPIRO, F. I. KarPELEVICH, M. L. GrAEY, J. A.
WoLF). The orbit of the point H is the open subspace R in Gr (H°), which is isomor-
phic to Sp(H,R)/U.

The manifold R is an infinite dimensional classical homogeneous domain of the
IIIrd type[85]. Such domains were investigated during the seventies—the eighties
by N. WaLLacH, R. GREENFIELD, E. VESENTINI, J.-P. ViGug, H. UPMEIER, W.
Kaup, R. BRAUN, J. M. ISiDRo, L. L. STaCHO, L. A. HARRIS et al. R can be imbedded
in Hom (H¢, HS) so that the elements of R are represented by the symmetric matri-
ces Z such asE’ Z7Z > 0. _

The\representatlon of Diff, S' in H° determines the monomorphism Diff, S! —
— Sp(H, R). Hence, Diff, S* acts in R. This action’s orbit of the initial point coincides
with Diff, (S 1)/PSL (2, R). Therefore, we has the mapping M — R. There corre-
sponds the subspace Vi={2f'()-f " *(2)dt, k = 1} to the point f(z) of M.

The matrix corresponding to V¢ is the Grunsky matrix. The mapping f— Vi is so-
called Krichever mapping, constructed by him in 1977.

The Grunsky criterion immediately follows from™the construction above. It seems

i
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after a modification it would be possible to ebtain t]ge Lebedev-Milin inequalities

from it. : _ ‘
As it was said above there exist many other criteria besides the Grunsky one as

Goluzin criterion or Nehari criterion, but all of them are the modifications and the

generalisation of the Grunsky one.

4. - Some facts from the representation theory of the infinite dimensional

groups, infinite dimensional geometry and harmonic analysis.

It seems to be convenient to list in this paragraph some necessary facts from the’

representation theory of the infinite dimensional groups, the infinite dimensional ge-
ometry and the harmonic analysis which are concerned the group of differomorphisms
of a circle, its Lie algebra—the algebra of vector fields on a circle, their central exten-
sions—the Virasoro-Bott group and the Virasoro: algebra, the flag manifold of the V1-
rasoro-Bott group M = Diff, S*/S™.

As Diff, S* we denote the group of all smooth diffeomorphisms of a crrcle, pre-
serving an orientation. Vect S'—its Lie algebra consisted of all.smooth vector fields
v(exp (it)) d/dt on the circle S 1 with the commutator

[v(exp (it)) d/dt, ulexp (it)) d/dt] =
| = 4exp (it)(v(exp (i) w' (exp (it))). — v'(exp (it)) u(exp (i) d/dt .
Let CVectS! be its complexification. In the basis l
o = iexp (kD) d/dt, k= =2,-1,0,1,2, .
the commutation relations have the form
[ens el = (0 — M) €yip.

I. M. GELFAND and D. B. FﬁCHS discovered in [36] that CVect S! has the unique cen-
tral extension. Independently, such result was obtained by M. ViRasoro[37]. The
commutation relations for the Virasoro algebra have the form

[(Lys Lyl = (m = 1) Ly o, + (m® —m)/12 -Z

where Z is the central element

There corresponds the infinite dimensional group Vir (the Virasoro-Bott group)
to the algebra vir as it was shown by R. BoTT [38]. There no correspond any groups to
algebras CVectS* and Cvir.

The algebras CVect S* and Cvir are graded algebras. For them there were defined
the Verma modules [39], investigated by many authors (V. G. Kac, B. L. FEicIN, D.
B. FUCHS et al).
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Now remind some facts from the Kéihlef geometry and the harmonic analysis on
Diff, S1/S*% ‘ 1

- 1) Each Kahler metric wj, . on Diff, S!/S! has the Kihler potential X, ., ie.
such real-valued function on Diff, S1/S' that - . :
| O, 5th, ¢ = (wy, c)#;-

The potential K}, , equals to hK! + ¢cK2, where K' and K Z are the Kihler potentials of
metrics wy o and wy, ;, respectively. K was calculated in [12]. It equals to log [g'()],
where g is the conformal mapping from D_ onto C\ f(D, ) such as g(®) = o, K2 was
caleulated in[13]. It is equal to log det (& — Z:Zp). ' :

2) There corresponds to .each Kihler metrie wy, . on Diff, S1/S* the line holo-

morphic bundle with the next properties [13]:

@) the algebra CVectS! or Cvir acts holomorphically on the bundle By .

b) 'Eh, ¢ is the hermitean bundle with the metric On, () =exp(—
- Ky, (f))drd, where X is the coordinate in a fiber; ’

¢) the curvature of the hermitean connection Vi in B, is equal to 2miwy, ,
the algebra Cvir acts in E), . by the covariant derivatives. : ' :

3) Let OE,, ) be .the space of the polynomial sections of £, .[13]. O(&), ,) is the
graded Cvir-module. Let O'(E}, ) be the space of the linear functionals p on O(E, ,)

with the property; if p(x) # 0 then deg(x) < . O'(E), ) is the Verma module for

Cvir [18].
4) Let’s fixe the basis

) 0oy e Oy — @,
gl % =gl | O

Cin O, ) in theﬁrivialisation of [13]. ‘The Virasoro algebra acts in it by the

formulae [183] o
L,=3,+ kgl(k + 16,0, p>0,
L= 3 kd+h, o
L= kgl ((k +2) ey ~ 2¢,¢) 8, + 2hey,

L_,= kzl-((k t3) ez — (des — cf) o, — by) 8, + hldcs — cf) + 0.5¢(c; — ed),

where by, are the Laurent coefficients of 1/f.
Let’s also fixe a basis

— 50 Qs a, -
eal,az, .._.a,‘_cllcz <ee Gyt

in O'(&), ;) dual to the basis ¢ % e, The Virasoro algebra generators in it has the

T R, B N L N R T L Y e
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form (13)

Loy=c+ 2 (k+Depd, p>0,

Ly= 2 ke 8y + 1,
k=1

Ly= (b +2)¢,041 — 2 kElckalak + 2hdy,
k=1 = )

Ly= 2 (k+8)c;Opsp—4 k21 €, 050y +
k=1 =
+ 3 0,828, — > cpbp(Br...0m...) + (43, — 82) + 0.5¢(55 — &)
k=1 k=1

! = ists the invariant herﬁitean

5) On the Verma module O'(E}, ) =V, . thgre exis
form (the Shapovalov form [40]). The factor of V. by thg kernel of the Shapogal%v
form is the irreducible module L, . with the highest .We1'ght (B L. FemeN, D. B.
FucHs). V, . is unitarisable iff ¢ > 1, b > 0. L, is unitarisable iff \ .

6 _ Ap-Bp+1)y-1
pp+1)7 T 4plp+1)

’

¢zl h=20 or ¢c=1-

'A B, p-integers, p =2, 1<A<p, 1<B<p-1 (Yu. A. NERETIN, D. FRIEDAN, Z.
Q;U, S. SHENKER, P. GopDARD, A. KENT, D. OLIVE) (see f.e.[41]).

5. — The new criterium of the univalency. -

- . . . 1
" LEMMA 1. — There exists the imbedding (the Kodaira imbedding)- of Diff, S*/S
into P(V™), where V™ is the space of all functionals on O(&}, .):

m e Diff, S!/S' > pe Vi™: Ve e OF; ) ((w(m) = 0)=(p@) = 0)).

The Kbdaira imbedding is Diff, S*—equivariant and isometric.

PROOF. — The lemma is an infinite dimensional analog of the A. Borel and A. Weﬂ
rtheorem, proved in 1954 for the compact semisimple Lie groups, anfi .the M. At13£z;
and W. Schmid theorem, proved in 1977 for the non-compact semisimple real Lie

groups. There are no any difference bétween their proof and proof of this lemma, so .

we doesn’t repeat the classical arguments.

e - = a e e T 3
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LemmA 2. - The Kodaira imbedding in the basis e, , ., has the form

f(Z)—'> ZOTn(Cly Cz2, Cg, ... Cp, );

efres?...cln
Tor, Gy ooy )= >, A2l

... M
e+ Fme,=n @ lag!. o, B

The Kodaira imbedding can be extended to the holomorphic imbedding of Cy[] in
PV, ‘

PROOF. — The statement evidently follows from the formula of Lemma 1 and the
definition of the basis €q, .- Q. ' )

REMARK. - The mapping of the analogous form has appeared in mathematies many
times in the finite dimensional case. Probably, the first example of such formula was
written by G. VERONESE. '

THEOREM (The cx*iteﬁon of the univalency). - Let Aq,...05,..5, be the coefficients of

the Shapovalov form for the unitarisable Verma module V4, ¢ for the Virasoro algebra.
The function

f@=z2+c2%+ 2+ ... +¢c,2" 0 + ..
is univalent in the unit disk [2] <1 iff

b,

i z o efekeh .
Aa,l...a,blu.b,,, 1 51 b1 < oo, -~
Qriee.Qpi0yl...0p!

PROOF. — One should mention that the sum of the left side of the inequality is the
Bergman kernfunction for S, which coincides with exp '(Kh, ¢). It is evident that the
kernfunction is finite on S. The statement of the theorem follows from the same argu-
ments as for the theorem of the non-existence of the finite-dimensional unitary repre-
sentations for a real semisimple non-compact Lie group. Namely, because of the infi-
nite length of geodesics on § in the case ¢ > 1, & > 0 the boundary value of the Kihler
potential is infinite, hence the values of the kernfunction is infinite, too.

REMARK. — This statement remains correct after the modifieation of the proof for
the Verma modules with the unitary factors. For example, the case ¢ =1 and % = 0
gives the Grunsky ecriterion. '

REMARK. — In the case ¢ > 1, h > 0 the criterion is also the condition of the regu-
larity, in the case ¢ =1, A =0 it isn’t so.

6. — The radius of the univalency.

The problem of the determining of the regularity radius of the power series was

solved in general by O. CHAUCHY in [42] and in full by J. HADAMARD in 1892 [43]. The

answer is the. next: the regularity radius of the series
| z+clzz+czz3+...+cnz’_”1+...
might be calculated by the formula . v o R

R = (limsup (| ¢, |)V/*) 1.

Certainly, the problem of the determinihg of the univalency radius. is less kno?vn.
Till the nowadays there wasn’t obtained such clear formula for the univalency radius.

In this paragraph we propose a variant of such formula which has the Cauchy-

Hadamard-like type. .
It should be convenient to mention the known results. The first belongs to E.

LANDAU [44]: if fz) <M in D, and M > 1, then -
R=M- M?-1)\2,

Some interesting estimates were obtained by T. UMEZAWA, 'Z. NEHARI, G. V.
KuzMINA (see f.e.[45]) and other authors.

. +1 :
THEOREM 2. — The univalency radius of z + ¢;2% + c32® + ... + ¢, 2" 1 + ... gquals

to the regularity radius of z + dy22 + dp2® + ... + d, 2™, where.

-— _bm
ef... cdC ... Tl

di= 2 Ay.ab. T
b o +...+na, =k . ! all...an!bll...bm.

b+ ... +tmb,=k

PRrOOF. — Considering the normal coordinates on S: ¢, (£) = ¢,¢" and using the first
theorem we obtain the statement of the Theorem 2.

COROLLARY. — The radius of the univalency of the function
f@)=z+ciax?+ced+egzt+ ..+, 4 L
is equal to

1/n\—1/2

= =5,
‘ 3 4 . el etk
lim su ) oGy Byon By 1
n_>oop 0+ .. M, =0 o ! kall...am!bll...bk.
bi+ ... +kb=m _
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7. — The numerical computation of the univalency radius.

All known methods of the univalency radius computations be are based on the al-
gorithms which are executed for each individual function [45].

Our method contains two parts. The first one is the computation of the Shapo-

valov form. The second one is the formation of the series z + dy2® + dg2® + ... +

+d,2**1 + ... for an individual function and its regularity radius determining.

In principle the most complicated part is the first one. But it can be executed one
time and the coefficients of the Shapovalov form may be tabulated. For this purpose
one should explore the Shapovalov form invariance. Then, the formulae for the Vira-
soro algebra action in Vi, o give the recurrent formulae for the Shapovalov form
coefficients. ' o - _

It is very difficult problem to investigate the asymptotic properties of the Shapo-
valov form for the determining of the rate of the convergence of the formuls for the
regularity radius of the series

e+ di2d +dye®+ L+ d et
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P.S. — The Theorem 1 was announced without any proof in [46].
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Méthode de compacité et de décomposition applications:
minimisation, convergence des martingales,
lemma de Fatou multivoque (*).4

CHARLES CASTAING

Summary. - New results of décomposition for bounded sequences in L} and in the space of inte};
grably bounded multifunctions with non empty convex weakly compact values ina Baznwacl
space E and its applications to problems of Minimization, convergence of martingales, Mul-
tivalued Fatou lemma are presented.

0. - Introduction.

On se propose de présentef dans ce papier quelques n(l)uveaux resul’.cats d.e degoir}_
position pour une suite bornée dans Lj et dans 'espace Ll des mu.ltlfonc’-tlons inté-
grablement bornées & valeurs convexes faiblement compzfctes non Vldes_d,un espace
de Banach séparable E. Ces résultats permettent d’obtenir de nouveaux I:esultats de
minimization, de convergence des martingales, du lemme de Fatou multivoque.

1. - Notations.

Soit (Q, F P) un espace probabilisé complet, £ un espace de Banach séparable.

On désigne par cfk(E) 'ensemble des parties convexes faiblement compactes non
vides de E et par Lixm(F) lespace des multifonctions .éf—rfzesurables X de Q
dans “cfk(E) telles que |X|: w—> sup {Jul: u e X(w)} soit .1nt/egrable sur Q. Un
ensemble H dans £l (F) est bornéde (resp. uniformément mtegml;le) si I'ensemble
{|X]: X e H} est borné (resp. wuniformément mtégmble) dans Lz (F). Enfin, on

(*) Entrata in Redazione ‘il 28 dicembre 1989, in forma finale ricevuta il 26 febbraio
1991. :
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