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Now define the function f,: [0, 1)>R
J+(x) = lim ess sup f = lim ess inff;
+ -0 [x, x+<s§) f [x, xié]f’
S+ is continuous on the right in [0, 1).

For ¢>0 the level set (|f—f.|>¢) has no density points .
i i , (th
immediately from the definition of f+), therefore yF (this follows

f=/f, aein[o, 1].

We prove now that 1if,Il = Vf, (V denotes the classical total variatibn.)

) AN n 'e'} hEHCB -+ = L + ”f-{-” = Lf fOHOWS

Finally we remark that if f: [0, 1)~R is a function of bound iati
and continuous on the right, then fe]%% and IIfll = Vf. ounded variation

This completes the proof of our Theorem.
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In [4] the authors gave a simple proof for a minimax theorem, develo-
ping the ideas of [3] and considered a new concept of convexity in topological
spaces. The aim of the present note is to give negative answer for a problem
raised in [4] further investigate this area of questions. The just mentioned

negative answer is the _
THEOREM 1. There exist f;, fo€ C([0, 11X [0, 1]) such that

2
(1) VXy, %V ay, =00+ =1 IxeXvyeY fix, y)= 2« fi(xp )

=1

@) ¥ RV Y By fr=0 Bty = 1 3VEV YXEX Sl D)= 3 By 70

hold and there is no point (x,, ¥o) € X X Y with the property
) Jilko, o) =Flx, o) ¥ x€X,

ToXe» Vo) =LoXp, ¥)  VYEY. ‘ ,

We remark that the usual concavity of the functions f;, £, (in x resp. y)
is necessary for (3) in some sense, namely

THEOREM 2. Let fy, f, : I; X I, ~R be continuous functions with the property:
for any pair f1, fs of continuous functions, where f! is partially concave in its
i-th variable, the pair (f,+f}, fo-+T) satisfies (3). Then f; is partially concave in
its i-th variable too.

However, the Nikaidé-Isoda theorem — i.e. the (3) for a pair of par-
tially concave functions — is true using the convexity introduced in [8] for
pairs of partially quasiconcave functions, nevertheless in this case the con-
vex sets may be very different from the usual ones. This is the statement of

THEOREM 3. Consider I" the cube of n dimensions endowed with the con-
vexity structure introduced in [8] and two continuous functions f(x, ¥), g(x, ¥):
Inx In R and suppose that f is quasiconcave in x i.e. the set

(4) {x:f(x, y)=C}C I,
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is convex for any y,€ I" and C<R,

) g is quasiconcave in y.

Then there exists a point (x,, ¥,) € I"X I* such that
S0, Yo)=1(x, ¥,) vxelr
8(Xo, Yo)=g(xo, ¥) vyel

1. Proor of the THEOREM 1. We need a sequence of remarks.
R.1. Suppose hy, h, : I, ~R are continuous functions satisfying

(6) VX, %E€L VA€[0, 113x,€1;:
Ay (%) + (1= Ay () = Py (),
Ay (1) + (1= A)y(cp) = ho(,).

Define f, : I; X I,~R as follows: for u¢|0, 1] = I, denote f, = (1 —‘u)hl-l-yhzl

and for x¢ I, denote f,(x, u) = f.(x). Then (1) hoids for f, because
M) +(1=2)fule) = (1— @)(Ahy(x)+ (1 — My () +
+ u(2a0cy) + (1= AYa65)) = (1 — )y () + ha(Xo) = Fulo)-

R.2. The maximum places of the functions f,(-, u) = f, are in the points
(x, u) for which the scalar product of (fy(x), hy(x)) and (1—g, w) takes its
zrllaxmur)n, i.e. which maximalize the projection of (hy(x), y(x)) on the line of
— 8, H).
Now we are in the position to give the counterexample. Define first
the pair (hy, h,) : I; ~R? as follows. Let

om0 (a(t)-(3.1)

el (es) () -6)
(hy(1), By(1)) = (1,0)
and let (hy, h,) be linear in the segrmients [O, %}, [%, %}, [%, %], [%, 1].
It can be easily checked that (f,, i,) satisfies (6), hence (1) holds for its linear

extension f; defined in R.1. It is obvious by R.2. that there exist a o€l
and an open interval I{C I, such that: '

Cy = A{(X0y Yo) € Ly X Iy fy(X0s Yo) = max fi(x, yo)} =

= ({1}X10, 1o]) U((1:\ 1) X {to}) U ({0} X [ 110, 1).

We can define a continuous function ¢ : [0, 1]~ I, X I, with e([0,INDNC; = @
#(0)E{0}X [0, 1g) and @(1)€{1}X (o, 1] such that the first coordinate func-

e
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tion of ¢ is monotone increasing. In this case we caﬁ find an f, for which
C,NC, = @ where

Co = {(xos Yo) €11 X I3 : f(X0) Yo) = mixf(xmy)} = ‘P([Of 1]).

Theorem 1 is proved.

. 2. Proor of the THEOREM 2. One can prove by standard continuity
arguments the

Lemma 1. A continuous function f: [a, 8] R is concave if and only if
the set of maximum points of f+¢-id form a closed interval for any c€R.

Now for the proof of the Theorem 2 suppose in contrary — taking into
account the Lemma 1 — and replacing f; by fi-+c- pr, if it is necessary — that
there is an y, € I, for which fi(-, y,) takes its maximum in a,, a, and there is no
more maximum place between a; and a,. Let for y€l, ¢, = S}lp'fl(" y)—

—fi(+, ¥o)| — it is continuous in y. Consider the intervals (a;— 8, a;+9),
(ay— 9, ay+ 6); with |a,— a,| <248. Supposing I; = I, = [0, 1], define a func-
tion f: I;~R as follows: let f(0) = f(1) = 0, f(a;) = f(a,) = 1 and let f be

&
linear in [0, a,], [ay, @], [as, 1]. Now let for y<y, fy=f—Ty|z'd11—a2| and

2
for y=y, f, =f—% |idI,—ay|, turther let f = f,,. The function f{(x,ly) =
= fy(x) is continuous and partially concave in X, hence the function
Ji(, Yo) + (-, ¥o) takes its maximum only in a; and a,. If y <y, and [x—a,| >
>0, then fi(ay, ¥)+2e, =/1(x, ¥), hence denoting f; = fi+f{ we have fi(a,, )>

>fi(x, y) i.e. fi(+, y) has no maximum places outside of [a,—48, a,+6].
It follows that we can give a continuous function ¢ : I; I, such that Gr ¢

does not contain any (x,, y,) for which f(x,, Yo) = max fi(x, ¥,). Let
X

fix, ¥) = —c|p(¥)—y|. If c€R is large enough, then setting f, = f,+/5,

the maximum places of fy(x, - ) will be uniformly close to ¢(x) and hence there -

is no point (x,, y,) satisfying the assertion of the Theorem 2 with (f;+f7,
Jo+f3)- This contradiction proves the Theorem 2.

3. ProorF of the THEOREM 3. In the following the word ,,convex” will
be used in the sense introduced in [8]. We need

LEMMA 2. Suppose @CR” is compact and convex in the sense of [8].
Then @ is contractible to a point.

PRrooF. For n = 1 the statement is trivial. We shall prove it by induc- -

tion in n. Denote by x, the last coordinate function in R* and let x9 =
= max {x, : x€P}, R*~1 = {xeR™ x, = x3}. Finally denote by @’ the ortho-
gonal projection of @ on R"-%. It is obvious from the definition of the con-
vexity that @ = @NR*-1 and that &’ is convex in R*~* (in the sense of [8]).
Further x¢® implies [x, x"]C®, x” denote the projection of x. Therefore @’
is a strong deformation retract of @ by the map H:®XI1-D’ (x, {)~tx+
+(1-1)x’. By the induction hypothesis &’ is contractible, hence the Lemma
2 is proved.
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CoroLLARY. Let ®NR” be convex in the new sense and finitely genera-
ted (i.e. the convex hull of finitely many elements). Then @ satisfies the Brou-
wer fixed point property. '

Indeed, a finitely generated convex set is a polyhedron in R?, further by
Lemma 1 we have for any map f: & @ the equality A(f) = 1. Hence we can
apply the fixed point theorem of Lefschetz (see [6]). Lemma 2 is proved.

LEMMA 3. Let OCR” be convex and compact set. Define T: & —~P(P)
with the properties:

(a) x€P = T(x) is convex;

(b) T is continuous, that is for any y€® theset T-1(y) = {x€P: yeT(x)} is
open in .

Then there is an x, € P such that x, € T(x,).

Proor. We follow the proof of the Brouwer fixed point theorem (see in
[7] in a slightly generalized form). The family {T-%(y) : y€®} forms an open
8

covering of @, hence there exists y,, ..., y, such that y T-(y,) = .
i=1

Let (5, -.., ¥s be the convex hull of these points (in the new sense), and
A=y o y9NT20); O -, Yo 1S compact, therefore there is a
continuous function g = (g, ..., g): Oy .-, ¥ ~4ds (4, denotes the
standard simplex, i.e. g;=0 Vv iand >g;=1) such that {g,>0}C 4, Vv i. Now
define h: A;~(yy, ..., ¥y as follows: Let « = (wy, ..., ¢ )€4d,. The | seg-
ment” (yy, ¥») is a line from at last n classical segments, which starts at y,,
ends at y, and don’t intersect. Let x,€(y;, »») such a point for which

%~ length (¥, Xp) = o - length (x,, y,)*,. Suppose that we have found the point -

x; for a 2=i=8-1. Let x;,;€{(x;, ;41 the point for which «,,-length
Kirn Visr) = (g + - . . + ;) - length (x;, x,, ;). Finally, let i(«) = x,€(yy, . . .,
-+, Yo . Since h is continuous, hog: 3y, ..., Y9 >y, - .., Yo has a fixed
point x, by the Corollary. Let o = (oy, ..., ) = g(X,), suppose e, ...,
i, # 0, and the other «; — s are zeros. It is seen from the construction of  that
Xo = h(@)€ Vs, -, Vi On the other hand g;,(x,) = «;;>0 implies x,€A,;;
(G=1,...,k), thatisy,;€Tx, ¥j. Tx, is convex, hence Tx,D (¥, - -, Vi)
5%,. Lemma 3 is proved. ‘

LEmma 4. If &;CR* and ®,CRF are convex sets, then @ = &, X@,C
CRr*k is also convex.

PROOF. Given (x;, X,), (1, Yo) €Dy X D,, we have to prove that (x;, y)rn X
X (X Vo) RED (X1, %), (V1, Yo))mn+k We apply induction in k. The case
k =0 is trivial. Let x,, ¥,69,CR*¥*1, and suppose that the k-1 — th co-
ordinate of x, isn’t greater than that of y,. Then ((xy, X,), (1, ¥»)) starts from
(1, xp) and its first segment ends at (x,, x§), where the k+ 1-th coordinate of

' It @ = 0 and q; is the first non-vanishing coordinate, we start with (¥;; ¥;+,)
instead of {3y, ¥2)-

M s u Ly
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x, is changed in x§ by that of y,. Obviously, [(x;, X,), (X, x;‘_)]c(xl, Yo X
X (o Yo (o X5), (1, 72)) goes in RP+.x {y,+ 9}, By induction hypothesis
we have

(G @8, 3870), 0 08, - N ) X
X(GE, ), 08, 8 X O ).
Lemma 4 is proved.
Now we are in the position to prove Theorem 3. Define the function
T, : "X In~P(I"x I™)

() = f )= mas 1) = ¢

1
x {y" g(>y") > max g(¥',y) — -n—}.
y

By the compactness of I, T, is continuous (see Lemma 2). Lemma 3 shows
that T (x, y) is convex, hence there is an (x, y") such that (x", 7)€ Tp(X™, ¥7).
We choose a condensation point (x°, °) of the set {(x,» y): n€N}. Using
once more the compactness of "X I*, we get by a_standard argument that
(x°, ¥°) has the required properties. The Theorem 3 is proved.
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