Now define the function f_+ : $[0, 1) \rightarrow \mathbb{R}$

$$f_+(x) = \lim_{\delta \to 0} \underset{[x, x+\delta]}{\text{ess sup}} f = \lim_{[x, x+\delta]} \underset{[x, x+\delta]}{\text{ess inf}} f;$$

 f_+ is continuous on the right in [0, 1).

For $\varepsilon > 0$ the level set $(|f - f_+| > \varepsilon)$ has no density points, (this follows immediately from the definition of f_+), therefore

$$f = f_+$$
 a.e. in [0, 1].

We prove now that $||f_+|| = Vf_+$ (V denotes the classical total variation.) Indeed, for each $n \in \mathbb{N}$ $\tilde{f}_n \leq Vf_+$ a.e., hence $||f_+|| \leq Vf_+$; $||f_+|| \geq Vf_+$ follows from Proposition 3 and the fact that f_+ is continuous on the right at each point of its domain.

Finally we remark that if $f: [0, 1) \rightarrow \mathbb{R}$ is a function of bounded variation and continuous on the right, then $f \in B_0^1$ and ||f|| = Vf.

This completes the proof of our Theorem.

REFERENCES

[1] I. Joó and A. B. Nersesjan: On the rate of equiconvergence of the spectral resolutions of certain functional-differential operators in specific classes of functions of bounded variation, DAN SSSR, 264(1982), 1049 – 1052.

[2] N. Dunford, J. T. Schwartz: Linear operators Part 1., Interscience, New York, 1958.

ANSWER TO A PROBLEM OF M. HORVÁTH AND A. SÖVEGJÁRTÓ

Bv

I. JOÓ

Department for Analysis, L. Eötvös University, Budapest (Received March 2, 1984)

In [4] the authors gave a simple proof for a minimax theorem, developing the ideas of [3] and considered a new concept of convexity in topological spaces. The aim of the present note is to give negative answer for a problem raised in [4] further investigate this area of questions. The just mentioned negative answer is the

THEOREM 1. There exist $f_1, f_2 \in C([0, 1] \times [0, 1])$ such that

(1)
$$\forall x_1, x_2 \forall \alpha_1, \alpha_2 \ge 0 \ \alpha_1 + \alpha_2 = 1 \ \exists x \in X \ \forall y \in Y \ f_1(x, y) \ge \sum_{j=1}^2 \alpha_j f_1(x_j, y),$$

(2)
$$\forall y_1, y_2 \in Y \ \forall \beta_1, \beta_2 \ge 0 \ \beta_1 + \beta_2 = 1 \ \exists y \in Y \ \forall x \in X \ f_2(x, y) \ge \sum_{k=1}^2 \beta_j f_2(x, y_k)$$

hold and there is no point $(x, y_0) \in X \times Y$ with the property

(3)
$$f_1(x_0, y_0) \ge f_1(x, y_0) \quad \forall \ x \in X,$$

$$f_2(x_0, y_0) \ge f_2(x_0, y) \quad \forall \ y \in Y.$$

We remark that the usual concavity of the functions f_1 , f_2 (in x resp. y) is necessary for (3) in some sense, namely

THEOREM 2. Let $f_1, f_2: I_1 \times I_2 \to \mathbb{R}$ be continuous functions with the property: for any pair f_1', f_2' of continuous functions, where f_i' is partially concave in its *i-th* variable, the pair (f_1+f_1', f_2+f_2') satisfies (3). Then f_i is partially concave in its *i-th* variable too.

However, the Nikaidó-Isoda theorem - i.e. the (3) for a pair of partially concave functions - is true using the convexity introduced in [8] for pairs of partially quasiconcave functions, nevertheless in this case the convex sets may be very different from the usual ones. This is the statement of

Theorem 3. Consider I^n the cube of n dimensions endowed with the convexity structure introduced in [8] and two continuous functions f(x, y), g(x, y): $I^n \times I^n \to \mathbf{R}$ and suppose that f is quasiconcave in x i.e. the set

(4)
$$\{x: f(x, y_0) > C\} \subset I^n,$$

20

is convex for any $y_0 \in I^n$ and $C \in \mathbb{R}$,

(5) g is quasiconcave in γ .

Then there exists a point $(x_0, y_0) \in I^n \times I^n$ such that

$$f(x_0, y_0) \ge f(x, y_0) \qquad \forall x \in I^n,$$

$$g(x_0, y_0) \ge g(x_0, y) \quad \forall y \in I^n.$$

1. Proof of the Theorem 1. We need a sequence of remarks. R.1. Suppose $h_1, h_2: I_1 \rightarrow \mathbb{R}$ are continuous functions satisfying

(6)
$$\forall x_1, x_2 \in I_1 \quad \forall \lambda \in [0, 1] \exists x_0 \in I_1: \\ \lambda h_1(x_1) + (1 - \lambda)h_1(x_2) \leq h_1(x_0), \\ \lambda h_2(x_1) + (1 - \lambda)h_2(x_2) \leq h_2(x_0).$$

Define $f_1: I_1 \times I_2 \to \mathbb{R}$ as follows: for $\mu \in [0, 1] = I_2$ denote $f_\mu = (1 - \mu)h_1 + \mu h_2$ and for $x \in I_1$ denote $f_1(x, \mu) = f_\mu(x)$. Then (1) holds for f_1 because

$$\begin{split} & \lambda f_{\mu}(x_1) + (1-\lambda)f_{\mu}(x_2) = (1-\mu)\big(\lambda h_1(x_1) + (1-\lambda)h_1(x_2)\big) + \\ & + \mu\big(\lambda h_2(x_1) + (1-\lambda)h_2(x_2)\big) \leq (1-\mu)h_1(x_0) + \mu h_2(x_0) = f_{\mu}(x_0). \end{split}$$

R.2. The maximum places of the functions $f_1(\cdot, \mu) = f_{\mu}$ are in the points (x, μ) for which the scalar product of $(h_1(x), h_2(x))$ and $(1-\mu, \mu)$ takes its maximum, i.e. which maximalize the projection of $(h_1(x), h_2(x))$ on the line of $(1-\mu, \mu)$.

Now we are in the position to give the counterexample. Define first the pair $(h_1, h_2): I_1 \to \mathbb{R}^2$ as follows. Let

$$(h_1(0), h_2(0)) = (0, 1), \quad \left(h_1\left(\frac{1}{4}\right), h_2\left(\frac{1}{4}\right)\right) = \left(\frac{1}{2}, \frac{1}{2}\right),$$

$$\left(h_1\left(\frac{1}{2}\right), h_2\left(\frac{1}{2}\right)\right) = \left(\frac{1}{4}, \frac{1}{4}\right), \quad \left(h_1\left(\frac{3}{4}\right), h_2\left(\frac{3}{4}\right)\right) = \left(\frac{1}{2}, \frac{1}{2}\right),$$

$$(h_1(1), h_2(1)) = (1, 0)$$

and let (h_1, h_2) be linear in the segments $\left[0, \frac{1}{4}\right]$, $\left[\frac{1}{4}, \frac{1}{2}\right]$, $\left[\frac{1}{2}, \frac{3}{4}\right]$, $\left[\frac{3}{4}, 1\right]$. It can be easily checked that (h_1, h_2) satisfies (6), hence (1) holds for its linear

extension f_1 defined in R.1. It is obvious by R.2. that there exist a $\mu_0 \in I_2$ and an open interval $I_1' \subset I_1$ such that:

$$C_1 = \{(x_0, y_0) \in I_1 \times I_2 : f_1(x_0, y_0) = \max_{x} f_1(x, y_0)\} =$$

$$= (\{1\} \times [0, \mu_0]) \cup ((I_1 \setminus I_1') \times \{\mu_0\}) \cup (\{0\} \times [\mu_0, 1]).$$

We can define a continuous function $\varphi: [0, 1] \to I_1 \times I_2$ with $\varphi([0, 1]) \cap C_1 = \emptyset'$ $\varphi(0) \in \{0\} \times [0, \mu_0)$ and $\varphi(1) \in \{1\} \times (\mu_0, 1]$ such that the first coordinate func-

tion of φ is monotone increasing. In this case we can find an f_2 for which $C_1 \cap C_2 = \emptyset$ where

$$C_2 = \{(x_0, y_0) \in I_1 \times I_2 : f(x_0, y_0) = \max_{y} f(x_0, y)\} = \varphi([0, 1]).$$

Theorem 1 is proved.

2. Proof of the Theorem 2. One can prove by standard continuity arguments the

LEMMA 1. A continuous function $f: [a, b] \rightarrow \mathbb{R}$ is concave if and only if the set of maximum points of $f+c \cdot id$ form a closed interval for any $c \in \mathbb{R}$.

Now for the proof of the Theorem 2 suppose in contrary — taking into account the Lemma 1 — and replacing f_1 by $f_1+c\cdot pr_1$ if it is necessary — that there is an $y_0\in I_2$ for which $f_1(\cdot,y_0)$ takes its maximum in a_1 , a_2 and there is no more maximum place between a_1 and a_2 . Let for $y\in I_2$ $\varepsilon_y=\sup_{I_1}|f_1(\cdot,y)-f_1(\cdot,y_0)|$ — it is continuous in y. Consider the intervals $(a_1-\delta,a_1+\delta),(a_2-\delta,a_2+\delta);$ with $|a_1-a_2|<2\delta.$ Supposing $I_1=I_2=[0,1],$ define a function $f\colon I_1\to \mathbf{R}$ as follows: let f(0)=f(1)=0, $f(a_1)=f(a_2)=1$ and let f be linear in $[0,a_1],$ $[a_1,a_2],$ $[a_2,1].$ Now let for $y< y_0$ $f_y=f-\frac{2\varepsilon_y}{\delta}|idI_1-a_2|$ and

for $y > y_0$ $f_y = f - \frac{2\varepsilon_y}{\delta} |idI_1 - a_1|$, further let $f = f_{y_0}$. The function $f_1'(x, |y) = f_y(x)$ is continuous and partially concave in X, hence the function $f_1(\cdot, y_0) + f_1'(\cdot, y_0)$ takes its maximum only in a_1 and a_2 . If $y < y_0$ and $|x - a_2| > \delta$, then $f_1(a_2, y) + 2\varepsilon_y \ge f_1(x, y)$, hence denoting $\tilde{f}_1 = f_1 + f_1'$ we have $\tilde{f}_1(a_2, y) > f_1(x, y)$ i.e. $\tilde{f}_1(\cdot, y)$ has no maximum places outside of $[a_2 - \delta, a_2 + \delta]$. It follows that we can give a continuous function $\varphi: I_1 \to I_2$ such that Gr φ does not contain any (x_0, y_0) for which $\tilde{f}_1(x_0, y_0) = \max_x f_1(x, y_0)$. Let

 $f_2'(x, y) = -c|\varphi(x)-y|$. If $c \in \mathbb{R}$ is large enough, then setting $\hat{f_2} = f_2 + f_2'$, the maximum places of $\tilde{f_2}(x, \cdot)$ will be uniformly close to $\varphi(x)$ and hence there is no point (x_0, y_0) satisfying the assertion of the Theorem 2 with $(f_1 + f_1', f_2 + f_2')$. This contradiction proves the Theorem 2.

3. Proof of the Theorem 3. In the following the word "convex" will be used in the sense introduced in [8]. We need

LEMMA 2. Suppose $\Phi \subset \mathbb{R}^n$ is compact and convex in the sense of [8]. Then Φ is contractible to a point.

PROOF. For n=1 the statement is trivial. We shall prove it by induction in n. Denote by x_n the last coordinate function in \mathbb{R}^n and let $x_n^0=\max\{x_n:x\in\Phi\}$, $\mathbb{R}^{n-1}=\{x\in\mathbb{R}^n:x_n=x_n^0\}$. Finally denote by Φ' the orthogonal projection of Φ on \mathbb{R}^{n-1} . It is obvious from the definition of the convexity that $\Phi'=\Phi\cap\mathbb{R}^{n-1}$ and that Φ' is convex in \mathbb{R}^{n-1} (in the sense of [8]). Further $x\in\Phi$ implies $[x,x']\subset\Phi$, x' denote the projection of x. Therefore Φ' is a strong deformation retract of Φ by the map $H:\Phi\times I\to\Phi'$ $(x,t)\to tx+(1-t)x'$. By the induction hypothesis Φ' is contractible, hence the Lemma 2 is proved.

Corollary. Let $\Phi \cap \mathbb{R}^n$ be convex in the new sense and finitely generated (i.e. the convex hull of finitely many elements). Then Φ satisfies the Brouwer fixed point property.

Indeed, a finitely generated convex set is a polyhedron in \mathbb{R}^n , further by Lemma 1 we have for any map $f: \bar{\Phi} \rightarrow \bar{\Phi}$ the equality $\lambda(f) = 1$. Hence we can apply the fixed point theorem of Lefschetz (see [6]). Lemma 2 is proved.

LEMMA 3. Let $\Phi \subset \mathbb{R}^n$ be convex and compact set. Define $T: \Phi \to P(\Phi)$ with the properties:

- $x \in \Phi \Rightarrow T(x)$ is convex;
- (b) T is continuous, that is for any $y \in \Phi$ the set $T^{-1}(y) = \{x \in \Phi : y \in T(x)\}$ is open in Φ .

Then there is an $x_0 \in \Phi$ such that $x_0 \in T(x_0)$.

Proof. We follow the proof of the Brouwer fixed point theorem (see in [7] in a slightly generalized form). The family $\{T^{-1}(y): y \in \Phi\}$ forms an open covering of Φ , hence there exists y_1, \ldots, y_s such that $U T^{-1}(y_i) = \Phi$.

Let $\langle y_1, \ldots, y_s \rangle$ be the convex hull of these points (in the new sense), and $A_i = \langle y_1, \ldots, y_s \rangle \cap T^{-1}(y_i); \langle y_1, \ldots, y_s \rangle$ is compact, therefore there is a continuous function $g = (g_1, \ldots, g_s): \langle y_1, \ldots, y_s \rangle \to \Delta_s$ (Δ_s denotes the standard simplex, i.e. $g_i \ge 0 \ \forall i$ and $\sum g_i \ge 1$) such that $\{g_i > 0\} \subset A_i \ \forall i$. Now define $h: \Delta_s \to \langle y_1, \ldots, y_s \rangle$ as follows: Let $\alpha = (\omega_1, \ldots, \alpha_s) \in \Delta_s$. The "segment" $\langle y_1, y_2 \rangle$ is a line from at last n classical segments, which starts at y_1 , ends at y_2 and don't intersect. Let $x_2 \in \langle y_1, y_2 \rangle$ such a point for which α_2 length $\langle y_1, x_2 \rangle = \alpha_1$ length $\langle x_2, y_2 \rangle^{\perp}$. Suppose that we have found the point x_i for a $2 \le i \le S - 1$. Let $x_{i+1} \in \langle x_i, y_{i+1} \rangle$ the point for which α_{i+1} length $\langle x_{i+1}, y_{i+1} \rangle = (\alpha_1 + \ldots + \alpha_i) \cdot \text{length } \langle x_i, x_{i+1} \rangle$. Finally, let $h(\alpha) = x_s \in \langle y_1, \ldots, y_s \rangle$. Since h is continuous, $h \circ g : \langle y_1, \ldots, y_s \rangle \rightarrow \langle y_1, \ldots, y_s \rangle$ has a fixed point x_0 by the Corollary. Let $\alpha = (\alpha_1, \ldots, \alpha_s) = g(x_0)$, suppose α_{i_1}, \ldots , $\alpha_{i_{k}}\neq 0$, and the other α_{i} – s are zeros. It is seen from the construction of h that $x_0 = h(\alpha) \in \langle y_{i_1}, \ldots, y_{i_k} \rangle$. On the other hand $g_{i_i}(x_0) = \alpha_{i_i} > 0$ implies $x_0 \in A_{i_i}$ $(j=1,\ldots,k)$, that is $\ddot{y}_{ij} \in Tx_0 \ \forall j. \ Tx_0$ is convex, hence $Tx_0 \supset \langle y_{i_1},\ldots,y_{i_k} \rangle$ $\ni x_0$. Lemma 3 is proved.

LEMMA 4. If $\Phi_1 \subset \mathbb{R}^n$ and $\Phi_2 \subset \mathbb{R}^k$ are convex sets, then $\Phi = \Phi_1 \times \Phi_2 \subset \mathbb{R}^k$ $\subset \mathbb{R}^{n+k}$ is also convex.

Proof. Given (x_1, x_2) , $(y_1, y_2) \in \Phi_1 \times \Phi_2$, we have to prove that $\langle x_1, y_1 \rangle_{\mathbb{R}^n} \times$ $\times \langle x_2, y_2 \rangle_{\mathbb{R}^k} \supset \langle (x_1, x_2), (y_1, y_2) \rangle_{\mathbb{R}^{n+k}}$ We apply induction in k. The case k=0 is trivial. Let x_2 , $y_2 \in \Phi_2 \subset \mathbb{R}^{k+1}$, and suppose that the k+1 — th coordinate of x_2 isn't greater than that of y_2 . Then $\langle (x_1, x_2), (y_1, y_2) \rangle$ starts from (x_1, x_2) and its first segment ends at (x_1, x_2^*) , where the k+1-th coordinate of x_2 is changed in x_2^* by that of y_2 . Obviously, $[(x_1, x_2), (x_1, x_2^*)] \subset \langle x_1, y_1 \rangle \times \langle x_2, y_2 \rangle$, $\langle (x_1, x_2^*), (y_1, y_2) \rangle$ goes in $\mathbf{R}^{n+k} \times \{y_2^{(k+1)}\}$. By induction hypothesis

$$\langle (x_1, (x_2^{(1)}, \dots, x_2^{(k)}, y_2^{(k+1)})), (y_1, (y_2^{(1)}, \dots, y_2^{(k)})) \rangle \subset \langle x_1, y_1 \rangle \times \\ \times \langle (x_2^{(1)}, \dots, x_2^{(k)}), (y_2^{(1)}, \dots, y_2^{(k)}) \rangle \times \{y_2^{(k+1)}\}.$$

Lemma 4 is proved.

Now we are in the position to prove Theorem 3. Define the function

$$T_n: I^n \times I^n \to P(I^n \times I^n)$$

$$(x', y') \mapsto \left\{ x'': f(x'', y') > \max_{x} f(x, y') - \frac{1}{n} \right\} \times$$

$$\times \left\{ y'': g(x', y'') > \max_{y} g(x', y) - \frac{1}{n} \right\}.$$

By the compactness of I^n , T_n is continuous (see Lemma 2). Lemma 3 shows that $T_n(x, y)$ is convex, hence there is an (x^n, y^n) such that $(x^n, y^n) \in T_n(x^n, y^n)$. We choose a condensation point (x^0, y^0) of the set $\{(x, y^n) : n \in \mathbb{N}\}$. Using once more the compactness of $I^n \times I^n$, we get by a standard argument that (x^0, y^0) has the required properties. The Theorem 3 is proved.

REFERENCES

- [1] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann., 100 (1928), 295 320.
- [2] Ky Fan, Minimax theorems, Proc. Acad. Sci. USA, 39 (1953), 42-48.
- [3] I. Joó, Note on my paper "A simple proof for von Neumann's minimax theorem", Acta Math. Acad. Sci. Hung. (to appear).
- [4] M. Horváth and A. Sövegjártó, On convex functions, Annales Univ. Sci. Budapest Sect. Math., 29 (1986), 193-198.
- [5] H. NIKAIDÓ and K. ISODA, Note on noncooperativec convex games, Pacif. J. Math., **5** (1955), 807 – 815.
- C. R. MAUNDER, Algebraic topology, New York, 1970.
- H. Komiya, Convexity on a topological space, Fund. Math., 101 (1981), 107-113. [8] I. Joó and L. L. Stachó, A note on Ky Fan's minimax theorem, Acta Math. Acad. Sci. Hung., 39 (1982), 401 - 407.

¹ If $\alpha_1 = 0$ and α_i is the first non-vanishing coordinate, we start with $\langle y_i; y_{i+1} \rangle$ instead of $\langle y_1, y_2 \rangle$.