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ON THE CONVERGENCE OF EIGENFUNCTION
EXPANSION IN THE NORM OF SOBOLEFF SPACES

1. JOO (Budapest)

1. Let S,cR (n=3; k=1, ...,I) be manifolds of dimension dim S,=m,=
=n—3 having smooth projection to R™x, ie. there exist coordinates (&, y)=
=&, covs Ems V15 ooos Ya-m,) and functions ¢@%€Ct(R™—~R" ™) such that

5= {EVER v, = @ IVA@ = Tl 5= US,.

Let geC=(R™\S) be a real-valued function, for which
1) ID*g(x)] = Cldist(x, $)]"~*, (x€R", 0= |o = 1),

holds, for some 7=0.

Consider the Schrddinger operator Lo=—A44q(x)+:, D(Ly)=Cg(R". Such
operators occur as the Hamiltonian of molecules [6—12]. E.g., in the case of Li
(or Hp) molecule we have n=6, m=3, xCR® yeR3, g(x,y)=c x|+ |y ™2+
+eglx—y|7Y, H=—A+g(x,y)-. In the case of homogeneous and isotropic space
the manifolds S}, are subspaces in R".

It is easy to see that for dim S=r—3 we have g€L} (R") if t=3/2. Indeed,
taking into account

171 [dist (x, SYI = [dist (x, S| = 3 [dist (v, S)],
F=1 E=1

it is enough to prove this for §=85,, dim S=m=n—3,
S = {(éa y)éR": yj = (p](é)i IV(DJ({')! = CJ; J = 19 '“9n—_m}'

Using the coordinate transformation (&, y)—(¢, 2), z;=y;—¢;(£) we have for the
Jacobian D(&, z)/D(&, y)=1 and for any O0=ncCy(R")

@ Sla@Pnxdx = [d¢ [ (& z4+0@)n(E z+0©)dz,
R™ R™ Rr-m

where @ =(¢,, ..., Pn-n)EC(R">R""™). On the other hand for any x=(¢, y)ER”
and u=(, (£))€S we have

=@l =1y—0@|+le@ -0 @ =y—0®)|+|Ve ()| E-¢ =
= C(ly—o®l+IE-¢)),
y—@ @) =2Cly—@ @)+ E—£%) = 2C%x~ul,

hence
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ie. ly—o@|=Cdist(x, S), consequently

|4, z+9(©)| = C[dist (€, 2+ (@), )]~ = Clal~
According to (2) we have
©) R[ lg()Pn(x) dx = ckl“ ¢ [ 1z *n(E z+p©)dz <=

Rn-m

if 21<n-—m. But we assume in this work that m=n—3, i.e. n—m=3 and hence
for ©<3/2 we get 2t<3=n—m. It follows from Lemma 3 of the present
work that the operator L, is bounded below, ie. (Lyf,/)=(—4f.f )+ )=
=(VF, VO +(gf,.f)= —c(f, f) for every feCy(R" and hence, by a theorem of XK.
O. Friedrichs [3] the operator L has a selfadjoint extension L with L= —¢l. Denote

L= f A dE, the spectral expansion of L and consider for any f€L,(R") the expan-

sion 102,1 f
It is proved in {5]: if t=1 and O=s=1, then {E;f~flas@y—0 as i—oo.
H*(R™ denotes the space of functions from L,(R"), with the norm [6, 2.3.3]

[ flasrmy: = 1T =P f | ymy = [+ €3 f Ol Larmy-

Later on this theorem was extended in [4] for t=1 and 0=s=2. The localiza-
tion of E; was investigated in [8]. Our aim is to prove the following

THEOREM. Suppose 1€[0,3/2) and 0=s=2 or €[0,1/2) and O_S_s<-;~—r.
Then, for any feH*(R") we have

@ 1B f=flswry =0 as A oo

It follows from Lemma 3 below — among others — taking into account the
Kato—Rellich theorem [11, X.2] that the operator L; is essentially selfadjoint,
further D(Ly)=D(L)=H?(R"). Our theorem seems to be true for arbitrary

7€{0, 3/2) and 0§s<—27—-—r but our Lemma 9 is not enough to prove this. Accord-
ing to the ideas of L. L. Staché [15] this last result does not seem to be refinable,
namely we can not replace 7=3/2 or s:—;:--—r.

The author is indebted to professor §. A. Alimov and to V. S. Serov for
their valuable suggestions.

2. For the proof we need some lemmas.

Lemma 1. Let k=3, 1=p<k, 0=s<kfp. Then for any fELsp(Rk)
5 x| fi (x)liL,,mk) =C|f ﬂL;(Rk)
holds.

Here and below in this work C is a constant independent of f and not nec-
essarily the same in each occurrences.
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Proor. Using the notation [:=||[x|~*f(x)|}, & We get by Holder’s inequality

dtdr =

=fmwvmWh§pﬁwfw+wfvvl
Rk 4] 0

o e

(V fio Idx
= C( f(lxl_s |f(x)|)p dx)(P_l)/p( [Wf[p Jx|(=s+De dx)l/p -

= CI%-1r( f [VFIP|x[-s+Dr dx)l/l’,
Rk

hence
© 161~ @)L, = ClXI DV ] L, -
If 5 is an integer, then iterating (6) s times we get (5).

Now define

—k-—l, when 5 is an integer
4 4

k .

—{ otherwise.

4

Taking into account Theorem 4.3.2/2 of Triebel [6]:
L5 (RY) = (L,(RY), W (RY), s=0s, 0=<8<1;

we obtain

Q) T &, = CHf“L;(Rk) 0 =s5=s50, p<Kkis)
Now let s€(s,, k/p). It follows from (7) that for 1=p,<k/s,

® =Sl a9 = 1 gz o

holds. On the other hand, for any 1=p,<k/(s,+1) we get from (7)

©)
Dol =/ 0 22 oy = CHNAT0 G, a0 VF O], e + D =7 f ] o] =

= C[nfﬂ]‘sa(Rk) + ”f”L;"l"'l(Rk)] = CanLzol*'l(Rk)'

Taking into account (L,,, L} );=L3 (0<d<1, p~*=(1-8)ps*+dp;") (cf. Triebel
[6], 2.4.2/1) we obtain from (8) and (9) the estimate

(10) I ]x'_s“f(x)”Lg(R’*) = C“f”L;‘Io*'é(Rk) (V0<d<1.
Now, using (10) we prove (5) for s,<s<k/p. Define d=s—s5,. Itis easy to see
that 6€(0, 1). Indeed, if k/p is an integer, then 5=s—s0=[§— s)—(—jj——J]:l——a
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k . . k k
[s:—p——s, 0<s<1). If k/p is not an integer, then 5=(—;——s) ~ [;)—]< 1—¢. Con-
sequently, from (10) we get
x|~ f GO, ry = ”[xl_a(lxl_s"f(x)),in(R") =

=C| lx!—s"f ()] LI (R = Clf HL;(R") .
Lemma 1 is proved. ‘

LeEMMA 2. For any natural number k=3, 0=5<3/2 and feC.;" (RY

(11) I~/ Larey = Cl LS “H”(Rk)'

Proor. First we prove (11) for s=1. Using (6) at p=2 and taking into account
the inequality |x|~>*2=|x|"1+1 (0=2s—2=1) we get

I G a0 = CUIXI VSl =
= Clx 2V () Far + 1V F ) yao]-
Hence, taking into account the following estimate (Qf. [4, Lemma 1])
(12) xl =2 (D) Ewe = Clflmwo ey (k= 3, fEC(RY)

we obtain (11) for the case 1=s<3/2. If 0=s=1, then (11) follows from (5)
immediately. Lemma 2 is proved.

LemMA 3. For any 7€[0, 3/2) and >0 there exists C(e)>0 such that for
every fECF(R™) (n=3) the following estimate holds:

(13) lafit.zm = el flteen+CEIf Hﬁ(l;")-

Proor. Using (3) for n=|f[? applying (11) for k=n—m and taking into
account the inequality

(14) ab = sa2+4—18 B (a,b,e=0),
we get

laflzem = Clflman | f lnw = —28- 1 Moy + C @ Ty -

Hence, taking into consideration the estimate

. 1/ Itnwe = &l flEean +CED | f1Tamms
"we obtain .

laf “%2(11") = —;' I/ ﬂ%ﬂ(R")‘f'Sl C@EIlf “?JZ(R")"'C(EI) C@Elf “%Z(R")'

If we choose & so that & C(g)<1/2, then (13) follows. Lemma 3 is proved.

_COROLLARY. For any 7€[0, 3/2'),. ‘the operator Lq is essentially selfadjoint and
D(Lyy=D(L)=H?2(R".
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EIGENFUNCTION EXPANSION IN THE NORM OF SOBOLEFF SPACES 195

Proor. From (13) we obtain for any &>0 the estimate
(15) 1af) Lacrmy = ell(I=Df | yzry FC OIS | Larry -

Since I—4 is essentially selfadjoint and D(I—4)=HZ2(R"), the Corollary fol-
lows by Kato—Rellich’s theorem [11, X.2].

REMARK. For the essential selfadjointness of L, it is enough to prove the

estimate
laf ”Lz(R") =C|f ”HZ(R") I/ “HE-ﬁ(R"),
for some &=0, because

lafll L.z = el flazgm+C @) flar-smmn =
= ] flwrn +e.C@ONfa2am +C e CEONS | Lym -
LeMMA 4. For any f€H?#*(R")
(16) 1S | oz = Clf I g2crny-
Proor. Using (13) we obtain for any f€ H2(R")
1L I sz = 1= A+ S | Lyrmy = 14 | awmy Haf [ raemy =

= Cll flezwny + 1 flen] = Clfla2gny-
Lemina 4 is proved.

LEMMA 5. There exist constants C;=0 and C,>0 such that for every fe H*(R")

an ILf IZazm = Culflfemn — Coll flRam -

Proor. Using (14), applying the Cauchy-—Bunyakovsky inequality, further
taking into account the identity

_ 1L 1R umm = 14F (2 azmy —2(afs AF) +af [3ommy s
we obtain
I(af, 40| = 1af e 14 | Lz = el 4 1Tamn +C @ Ve S 1E@m
1L 13, = 14f H%Z(R")_'ZI(QJ‘; AN +lef HZ(R") =
= [ 4f |1z — &l Af 1 2arm —C @4 f | 1rm =

= (1-9)]4f 13,k —C @ af |1z
Now applying (13) for some & =0, it follows

ILf ”%2(1!") = (1-¢)|4f ”%2(12") -5 C@E|f H%lz(R") ~C(e e)|f II%Z(R”)-
On the other hand

14f | Loz = 1Af=f+f Iz = 1A= Dflrzm =1 f | Larm

consequently
| Lf “i(x") = (1 —& “alc(ﬁ)) If “%2(1{") —C(e el f i]%z(R")
and hence (17) follows if we set ¢=1/2 and g, is small enough. Lemma 5 is proved.

and
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LeMMA 6. There exists jty=>0 such that for any p=y, and feC3(RY) we have
(18) VLS Larmy = Cul flazmry (L= LApd).

The constant C, does not depend on f.
Proor. It follows from (17) using the spectral theorem that

/132 = CLIL Az + Coll fTrm =

=C ‘/'(,12+1)d(E,1f, H=cC f A+uPd(Ef, ) = CIL flL&m.

—Cy —Cy

if u=p, and u, is large enough, because in this case we have A2+1=(A+p)®
(A= —Cy, u=py). Lemma 6 is proved.

LemmA 7 [4, Lemma 6]. Let 4 and B be strongly positive selfadjoint operators in
the Hilbert space H. Suppose that the conditions

(19) D(B) < D(4),

(20) |4f | = CIBfln (feD(B)),
are fulfilled. Then for any 0€[0, 1] we have

@D |4°f|a = G| Bflu (feD(B)).

LemMa 8. For any p=py, se[O, —;——r] and feH*(R™)

(22) HLiFf lLarmy = Csll fllasczny-

Proor. First we prove (22) for 0=s=2. It is trivial for s=0 and it was proved
in Lemma 4 for s=2. Now apply Lemma 7 for A=L,, B=I—4, D(B)=H*R".
We obtain:

(23) 1L f lrawmy = Clf ey (0 =0 =1).
Now let 2<s<%—r. Using Lemma 1 we obtain for any p,<3/tr the estimate

@4 Ly s = ClL Vo + 1 oy Hla V] =
= C[]lf]lL%O(R")+ “f”L;o(Rn)] = C”fHL%D(R”)'

On the other hand, using Lemma 1 once again, we obtain for any p,<3/(z+1)
and f€L3 (R") the estimate

23) V2, Pl s = CO i o+ 70 iy o+
+19VF iy ) = CUF g gy 1t ) = €1 s guny-
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Using (24), (25), the equality (L,,, Lp,)s=L5 (0<5<1 pt=(1-08)pst+dprY) of
Triebel [6, 2.4.2/1] and taking into account that in our case p<3/(1:+5) we obtain
for any 6€(0,1) and feL%*°(R") the estimate

(26) ”Luf ”Lg(R") = C”f “Li*‘s(R")'

Now we are in the position to prove (22) for 2<s<—;-1. Set d:=s—2. Then

5<—;——r—2<§-, further we obtain from (26) that for any f€H*(R") we have
L, feH°(R". Using (23) and then (26) we obtain
”Lfmlzf ”Lg(R") = ”LZ/Z(Luf )”Lg(R") = C]IL”f HLg(R") = C”f ”Lgﬂ’(kﬂ) = C”f HH’(R")'
Lemma 8§ is proved.
LEMMA 9. Si{ppose’ 0=s=2, 0=1<3/2 or O=r<1/2 and O§s<—;—¥1. Then
for any p=p, and gc H*(R") we have
27 lela=m = CIL gl Ly

ProoF. (27) is trivial for s=0 and it was proved in Lemma 6 for s=2. Hence,
using Lemma 7 for B=L,, A=I—4, D(4A)=H*(R"), we obtain

(28). lelasrmy = CILY gl (0=5=2,0=1<7/2-7).

Now suppose 0=7<1/2 and 2<s<—;——r. Let d:=s5—2. Forany ge€Cg(RY
we have obviously by (28)
29) lelaszm = 1(I—=glaswn = CILI*(I— gl rymm =
= C[HLélzg”Lo R")+”L5/2(L ~q)gli,xn] = ClI Lz I(lezg)”Lz(R")+”sz/2(qg)HLz(R")'+
+HIL gl tymm] = ClILY 8 Lyam+ ”Lﬁ/ 2(92)] Ly
Now we estimate [|L5/?(gg)llz,- We obtain from (3) and (5)

(30) lagl Lormy = C”g”H'(R.") (0 =r1<3/2)
and

GD  lgdlman = 198l +1Vegl L, +lgdlr, = Clglroay ©=1<1/2).
We apply the interpolation theorem of Stein [13]. To. this suppose & is such that
7+0<3/2 and choose ¢=0 so that 7(6)=r, where 7(z):=z(0,5—¢)+(1,5—¢)(1 —2).
Define the operators 4, and T, as follows:

4,8:= [g()[ @/ (sgn g())g (x), T.g:= (I-4)"4,g.
From (30) and (31) we obtain for any g€Cg(R"):

Hng“Lg(R") = ”Azg”Lg(R") = Cl|g”H3/2“(R") (Rez = 0),
and :

| ng”Lz(R") = ”Azg"H’(R") =Clg ”H”/Z—E(R") Rez=1),
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hence by Stein’s interpolation theorem {13} we get for z=4:

ITs8lL, = Clglnoa-e,  1458]L, = Cllglnsre-s,
i.e. using also (14) we obtain
lgglmsrmy = ellglmram +C @) 8l Larn -
Hence and from (29) the desired estimate (27) follows. Lemma 9 is proved.
Proor oF THE THEOREM. Using (22) and (27) we obtain for f€ H*(R"):
I f—Exflas = Ly LI~ E)flgs =
= C|LPUT-ENf|r, = ClU~EXELL L, ~0 (4 —).
The Theorem is proved.

ReMARK. If the Sy ’s are subspaces, then we can state the Theorem for any
1€[0, 3/2) and se¢ [0, —;——r) because in this case we can prove Lemma 9 in a more
general form. This follows from the following fact: if g(z)eCg(R*™\{0}) is a func-
tion for which |D*g(z)|=C |z|~*~'® (z#0) holds, then g H*(R") for any s<-2]€-—

—1=:8. For the proof of this fact it is enough to show that gc H¥*(R¥) (here
H denotes the Nikol’skii’s class of functions), because taking into account the
well known imbeddings Hf *Cc Hf c B{5*c L3¢ our statement follows. We use here
the notations of [14]. For the proof we must show the estimate

I'= o®(Dg, f) := sup f |[42D%g| dz = O(r~1%) (supp g < Q).
lhj=t o

The desired estimate follows immediately for |z|<2h and |z|=2h, resp. from the
following estimates:

sup f|A,2,D’g(z)ldz = 4sup le“g(z)]dz =
|nl=t g [h =t .

2|
=Csup [ |z~ lHri-1gz = sup O(hk=>") =

|hl=t g

=01, @ = {2€9Q: |z| <2|h]};

40 = | 2 5ok =

=C 3 (D) () |hf, z*€lz—h, z+h],
e
hence
I'=sup | > [|D*+Pg|dz+0(r- 1) =
|k =t |6[=2 gv

A
= sup f |z]7*lel =241 gz Loy = O (- 1), Q"= {2€Q; |z| = 2|k}

[pj=t 2|h]
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