ON SOME CONTINUITY PROPERTIES OF DERIVATIONS AND HOLOMORPHIC AUTOMORPHISMS OF JB*-TRIPLES

José M. ISIDRO¹

To honour *her* memory Salamanca, August 27, 1990

0. Introduction and preliminaries

Some twenty years ago, W. Kaup [10], [11], introduced a "ternary-type" structure known as JB*-triple systems. This structure turned out to be the natural algebraic-metric setting for the study of bounded symmetric domains in complex Banach spaces, and has been intensively studied for the last ten years (see [9] for a survey). To some extent, JB*-triples behave as C*-algebras or as JB*-algebras, of which they are a generalization. In particular, in dual JB*-triples (called JBW*-triples), besides the norm topology, one can consider the weak*, the strong*, the Mackey and the weak topologies (denoted by n, w*, s* t* and w, respectively). Automatic continuity properties of the triple product (and of derivations) with respect to the topologies n and s* have been recently investigated by Barton-Friedman in [2] and Rodríguez Palacios in [12]. A thourough discussion of the continuity properties of the triple product with respect to the toplogy w* has been made in [16]. In particular, this latter study has given a purely W*-algebra structure characterization of compact operators in complex Hilbert spaces [16, prop. 4.2].

However, the weak topology on a JB*-triple seems to have never been considered in this context. It is the purpose of this note to make a study of the weak-weak continuity properties of both triple product, derivations, and holomorphic automorphisms of a non necessarily dual JB*-triple E. To be precise, if τ is one of the above mentioned topologies, we prove:

- 1. Everywhere defined derivations of E are automatically τ - τ continuous if and only if all surjective linear isometries of E lying in the connected identity component are τ - τ continuous. The latter property holds for any of the topologies w*, s*, τ *, w, n.
- 2. Holomorphic automorphisms of B_E are automatically τ - τ continuous if and only if the following two conditions hold: (a) For all $a \in E$, the mapping $Q_a: x \longrightarrow xa^*x$ is τ - τ continuous on B_E . (b) All surjective linear isometries of E lying in the connected identity component are τ - τ continuous. These two properties hold for s^* , τ^* , and n.
- 3. Counterexamples to the *joint* τ - τ continuity of the triple product, and to the automatic τ - τ continuity of holomorphic automorphisms of B_E , are given for τ =w* and τ =w. In particular, we discuss the joint w-w continuity of the triple product in the classical JB*-triples $C_0(\Omega)$, $L(\mathcal{H})$ and $c_0(\mathcal{H})$, whre Ω is a locally compact space, \mathcal{H} is a complex Hilbert space, and $c_0(\mathcal{H})$ is the ideal of compact operators on \mathcal{H}

We take from [10] and [11] the notation and basic results.

¹Lecture delivered at University College, Dublin, on December 11, 1.990

1. Continuity of derivations and automorphisms

We recall that a JB^* -triple is a Banach space E with a mapping $E \times E \times E \rightarrow E$, called the *triple product* and denoted by $\{.,.,.\}$, such that the following conditions $J_1,...,J_4$ hold:

 (J_1) {x, y, z} is jointly continuous, linear and symmetric in the external variables x, z, and conjugate linear in the internal variable y.

For fixed a,b in E, and fixed A,B in $\mathcal{L}(E)$, the symbols a \Box b and [A, B] represent the operators $x \rightarrow \{a, b, x\}$, x in E, and AB-BA, respectively. Then

- (J₂) The *Jordan identity* holds: for all a,b,x,y in E, $[a \square b, x \square y] = \{a, b, x\} \square y x \square \{y, a, b\}.$
- (J_3) For x in E, $x \square x$ is a hermitian positive element of the Banach algebra L(E).
- (J_A) For x in E, one has $||x|| = ||x||^2$.

Let E be a JB*triple. Homomorphisms and isomorphisms can be introduced in the obvious manner. The set of surjective linear isometries of E, denoted by Isom(E), coincides with the set of its automorphisms. E is said to be a JBW*-triple if E is a dual Banach space. In that case, it has a unique predual E_* , and we refer to w*=: $\sigma(E, E_*)$ as the weak* topology on E. Automorphisms of a JBW*-triple are w*-w* continuous. The bidual E** of E is a JBW*-triple whose triple product extends that of E. A derivation of E is a linear mapping δ defined on a (non necessarily closed) subtriple $\mathcal{D}(\delta)$ of E such that

$$\delta\{\mathbf{x},\,\mathbf{y},\,\mathbf{z}\} = \{\delta\mathbf{x},\,\mathbf{y},\,\mathbf{z}\} + \{\mathbf{x},\,\delta\mathbf{y},\,\mathbf{z}\} + \{\mathbf{x},\,\mathbf{y},\,\delta\mathbf{z}\} \qquad (\mathbf{x},\!\mathbf{y},\!\mathbf{z}\!\!\in\!\mathcal{D}\!(\delta)).$$

We write Der(E) for the set of everywhere defined derivations of E. Any $\delta \in Der(E)$ is bounded [2, cor. 2.2]. Isom(E) is an *algebraic subgroup* of the linear group $\mathcal{L}(E)$; therefore [6], it is a Banach-Lie group whose Lie algebra is Der(E). We set $Isom_0(E)$ for the connected identity component in Isom(E).

Any C*-algebra, and any JB*-algebra, \mathcal{A} can be considered as a JB*-triple E with the triple product given respectively by

$$2\{x, y, z\}=: xy*z + zy*x$$
 $\{x, y, z\}=x\circ(y*\circ z)-y*\circ(z\circ x)+z\circ(x\circ y*)$ $(x,y,z\in A)$ and any *-derivation of A induces a derivation of the associated JB*-triple.

- 1.1 Definition. A linear topology τ on a JB*-triple E is said to be admissible if τ is coarser than the normed topology n.
- 1.2 Proposition. Let E be a JB*-triple, and let τ be an admissible topology. If $\delta \in Der(E)$ is a derivation, then the following statements are equivalent:
 - (i). The mapping δ is $\tau\text{--}\tau$ continuous on E.
 - (ii). The one parameter group $t{\to}\Delta_t{=}{:}{exp}$ t $\delta,$ t \in R, consists of $\tau{-}\tau$ continuous

automorphisms of E.

Proof: "i \Rightarrow ii" One has $[\exp t\delta](x) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \delta^n(x)$, $t \in \mathbb{R}$, $x \in \mathbb{E}$. By assumption each map

 $x \to \frac{t^n}{n!} \delta^n(x)$, $x \in E$, $n \in N$, is τ - τ continuous on E, and the convergence of the series is uniform for $||x|| \le 1$ because δ is bounded. Thus, the limit mapping $x \to [\exp t\delta](x)$ is τ - τ continuous on the unit ball $||x|| \le 1$, hence also on E.

"ii \Rightarrow i" Since δ is bounded, one has [13, th. 13.36]

$$\lim_{t\to 0} \|\delta x - \frac{1}{t} (\Delta_t - \operatorname{Id}) x\| = 0 \qquad (x \in E)$$
 (1)

uniformly for $\|x\| \le 1$. As τ is admissible, i.e. $\tau \le n$, (1) entails

$$\tau \lim_{t \to 0} [\delta x - \frac{1}{t} (\Delta_t - Id)x] = 0 \quad (x \in E)$$
 (2)

uniformly for $\|x\| \le 1$. As each transformation $\frac{1}{t} (\Delta_t - \mathrm{Id})$, $0 \ne t \in \mathbb{R}$, is $\tau - \tau$ continuous on E, its uniform τ -limit (which is δ), is $\tau - \tau$ continuous on $\|x\| \le 1$ and also on E.

- 1.3 Corollary. For a JB*-triple E and an admissible topology τ , the following statements are equivalent:
 - (i). Each derivation $\delta \in \text{Der}(E)$ is τ - τ continuous
- (ii). Each surjective linear isometry of E lying in $Isom_0(E)$ is τ - τ continuous. Proof: Since Der(E) is the Lie algebra of Isom(E), there are a neighbourhood \mathcal{N} of 0 in Der(E), and a neighbourhood \mathcal{M} of Id in $Isom_0(E)$, such that $exp: \mathcal{N} \to \mathcal{M}$ is a homeomorphism. Assume (i) holds. By proposition 1.2, $\mathcal{M}=exp(\mathcal{N})$ consists of τ - τ continuous automorphisms of E. Thus, (ii) follows from the fact that the connected component $Isom_0(E)$ is generated by any neighbourhood of the identity. The converse is a consequence of 1.2.

To give examples, we recall the definition of some admissible topologies on E. An element $0 \neq u \in E$ is said to be *tripotent* if $\{u, u, u\} = u$. Each tripotent u produces a topologically direct sum decomposition

$$E = E_0(u) \oplus E_{1/2}(u) \oplus E_1(u)$$

where $E_k(u) = \{x \in E; u \square u(x) = kx\}, k \in \{0, 1/2, 1\}, \text{ is the k-eigenspace of } u \square u \in \mathcal{L}(E).$ Here, $E_1(u)$ is a JB*-algebra in the product and involution given by

$$x \circ y =: \{x, u, y\}$$
 $x^{\#} =: \{u, x, u\}.$

Let E be a JBW*-triple, and let $\phi \in E_*$ be a weak* continuous functional. Then there is a tripotent $u \in E$, called the *support* of ϕ , uniquely determined by the fact that $\phi|_{E_1(u)}$ is a faithful positive functional on the JB*-algebra $E_1(u)$ and $\phi(u)=\|\phi\|=1$. Under those conditions [1, prop. 1.2]

$$||x||_{\phi}^{2} =: \phi\{x, x, u\}$$
 $(x \in E)$

is the square of a seminorm, and the $strong^*$ topology on E, denoted by $s^*(E, E_*)$, is defined by the set $\{\|.\|_{\varphi}; \varphi \in E_*\}$. If $w=:\sigma(E, E^*)$ and $\tau^*=:\tau(E, E_*)$ are the weak, and the Mackey topology associated to the duality $\langle E, E_* \rangle$, then by [2, th. 3.2], one has the diagram

$$\sigma(E, E_*) \le s^*(E, E_*) \le \tau^*(E, E_*) \le n$$

$$\leq \sigma(E, E_*) \le n$$

1.4 Corollary. Let E be a JBW*-triple, and denote by τ be any of the topologies w*, s*, τ *, w, n. Then

- (i). Each surjective automorphism Ψ of E is τ - τ continuous
- (ii). Each derivation $\delta \in Der(E)$ is τ - τ continuous.

Proof: For $\tau \neq s^*$, (respectively, $\tau = s^*$), the definition of τ involves only the Banach space (respectively, the JB*-triple) structure of E. Surjective automorphisms of E are isometric, hence they preserve both the Banach space and the JB*triple structure of E. Thus, surjective automorphisms of E are τ - τ homeomorphisms for any topology $\tau \in \{w^*, s^*, \tau^*, w, n\}$, and (ii) follows from (i) by proposition 1.2.

The following result, which is more or less known, is now recovered in a unified manner.

1.5 Corollary. If \mathcal{A} is a W*-algebra or a JBW*-algebra, and δ is a *-algebra derivation with $\mathcal{D}(\delta)=\mathcal{A}$, then δ is τ - τ continuous for any $\tau \in \{w^*, s^*, \tau^*, w, n\}$. Proof: We shall distinguish between the W*-algebra, or the JBW*-algebra, \mathcal{A} and its associated JB*-triple, denoted by \mathcal{A}^{\wedge} . For $\tau \neq s^*$ there is no distinction between the τ -topology on \mathcal{A} and the τ -topology on \mathcal{A}^{\wedge} as remarked before, and by [12, prop. 3] this is also true for $\tau = s^*$. Each *-algebra derivation with $\mathcal{D}(\delta) = \mathcal{A}$ induces a triple derivation of \mathcal{A}^{\wedge} , and the result follows from corollary 1.4.

2. Continuity of holomorphic automorphisms

Let E and B_E be an arbitrary JB*-triple and its unit open ball. We recall that a holomorphic automorphism of B_E is a bijection Φ of B_E onto itself such that both Φ and Φ^{-1} are holomorphic mappings. The set $Aut(B_E) = \{\Phi: B_E \to B_E: \Phi \text{ is an automorphism}\}$ is a topological group with the usual law of composition and the topology of uniform convergence on B_E [17, th.4.3].

A holomorphic vector field $X:x \to X(x)$, $x \in B_E$, is said to be *complete in* B_E if, for each $x \in B_E$, the maximal solution of the initial value problem

$$\frac{d}{dt} f(t, x) = X[f(t, x)]$$
 $f(0, x)=x$ (1)

is valid on the whole real line R. We set aut(B_E)=:{ $X:B_E \rightarrow E$; X complete in B_E }. The solution of (1) is denoted by

$$f(t, x)=: [\exp tX](x) \quad (x \in B_E, t \in R).$$

For $X \in aut(B_E)$ and $t \in \mathbb{R}$, the mapping $f(t,\cdot):x \to f(t,x)$ satisfies $f(t,\cdot) \in Aut(B_E)$ and $t \to f(t,\cdot)$ is a continuous one-parameter subgroup of $Aut(B_E)$ whose infinitesimal generator is

$$X(x) = \frac{d}{dt} |_{0} f(t, x) \quad (x \in B_{E}).$$

For $a \in E$, we let a-a* denote the vector field $x \rightarrow a - \{x, a, x\}$, $x \in E$. By [10] and [11], $Aut(B_E)$ is a Banach-Lie group whose Lie algebra is $aut(B_E)$, and $\{a-a^*; a \in E \} \subset aut(B_E)$. As usualy, we write $Aut_0(B_E)$ for the connected identity component of this group. The following result is taken from [16, lem. 2.3]

2.1 Proposition. If E is a JB*-triple and $a \in E$ satisfies $4||ta|| < \pi$, then the mapping $f(t, x) = [\exp t(a-a^*)](x)$ is the uniform norm-limit on \bar{B}_E of the series $\sum_{n=0}^{\infty} t^n a_n(x)$ where

$$a_0(x)=:x,$$
 $a_1(x)=:a-\{x, a, x\},$ $a_{n+1}=\frac{1}{n+1}\sum_{j+k=n}\{a_j(x), a, a_k(x)\},$ $(n\geq 1),$ (2).

Proof: The scalar power series $\alpha(t) =: \sum_{0}^{\infty} \alpha_n t^n$ with coefficients $\alpha_0 =: 1$, $\alpha_1 =: 2$ || and

$$\alpha_{n+1} = \frac{1}{n+1} \sum_{j+k=n} \alpha_j ||a|| \alpha_k \qquad (n \ge 1)$$

dominates $z_x(t) =: \sum_{n=0}^{\infty} t^n a_n(x)$. But $\alpha(t)$ satisfies $\frac{d}{dt} \alpha(t) = ||a|| + ||a|| \alpha^2(t)$, $\alpha(0) = 1$, i.e.,

 $\alpha(t)=tg(\frac{\pi}{4}+t ||a||)$. By Cauchy's dominated convergence criterion, $z_x(t)$ is uniformly

convergent and satisfies $\frac{d}{dt} z_X(t) = a - \{z_X(t), a, z_X(t)\}, z_X(0) = x, i.e., z_X(t) = f(t, x).$

2.2 Corollary. Let a be an element of a JB*-triple E, and let τ be an admissible topology on E. If the mapping Q a is τ - τ continuous on B_E, then for each $t \in \mathbb{R}$, the holo morphic automorphism $\Phi_t(x)$ =:[exp $t(a-a^*)$](x) is τ - τ continuous on B_E.

Proof: Constant maps and the identity are τ - τ continuous, and an induction argument shows that the coefficients a_{n+1} , $n \in \mathbb{N}$, in (2) are τ - τ continuous on B_E . By proposition 2.1, for small values of t one has

$$\Phi_{t}(x) = \sum_{n=0}^{\infty} t^{n} a_{n}(x)$$

where the series is norm-convergent, hence also τ -convergent, uniformly for $\|x\| \le 1$. Since the terms are τ - τ continuous functions, so is its uniform limit.

2.3 Theorem. Let E be a JB*-triple, and let τ denote an admissible topology on E.

Then the following statements are equivalent:

proposition 2.1, for small values of t (say ltl≤T), one has

- (i). All holomorphic automorphisms $\Phi \in \operatorname{Aut}_0 B_E$ are τ - τ continuous on B_E .
- (ii). These two conditions hold: (a) All surjective linear isometries $L \in Isom_0(E)$ are τ - τ continuous. (b): For all $a \in E$, the mapping Q_a is τ - τ continuous on B_E . Proof: " $i \Rightarrow ii$ ". Since $aut(B_E)$ is the Lie algebra of $Aut(B_E)$, there are a neighbourhood \mathcal{N} of 0 in $aut(B_E)$ and a neighbourhood \mathcal{M} of Id in $Aut_0(B_E)$ such that $exp: \mathcal{N} \rightarrow \mathcal{M}$ is a homeomorphism. Suppose i) holds. Then clearly condition (a) also holds. Let $a \in E$ be small enough to have $a \in \mathcal{N}$. Then $\Phi_t(x) = :[exp \ t(a-a^*)](x), \ x \in B_E$, $t \in \mathbb{R}$, is a one parameter group which, by assumption, consists of τ - τ continuous transformations. By

$$\frac{1}{t} [\Phi_t(x) - Id(x)] - a_1(x) = \sum_{n=0}^{\infty} t^{n-1} a_n(x) \quad (x \in B_E)$$

hence,

where K does not depend on $x \in B_E$. Since each transformation $\frac{1}{t} [\Phi_t - \Phi_0]$, $t \neq 0$, is $t-\tau$ continuous, so is its uniform limit $x \to a_1(x) = a - \{x, a, x\}$ on B_E , and condition (b) holds for all $a \in \mathcal{N}$, hence for all $a \in E$.

"ii \Rightarrow i". Let $\Phi \in \operatorname{Aut}_0(B_E)$ be given. By [17, th.4.3], one has $\Phi = L \circ M$ where L is a surjective isometry of E with L \in Isom₀(E) and M=[exp (a-a*)] for some a \in E. By assumption, L is τ - τ continuous and, by corollary 2.2, so is M, whence the result follows.

2.4 Corollary. If E is a JBW*-triple and τ is any of the topologies s*, τ *, then any holomorphic automorphism $\Phi \in \operatorname{Aut}(B_E)$ is τ - τ continuous on B_E .

Proof: By theorem 2.3 and corollary 1.4, it suffices to show that, for all $a \in E$, the mapping Q_a is τ - τ continuous on B_E , which is a consequence of [12, th. and note added in proof].

The continuity properties of $\Phi \in \operatorname{Aut}(B_E)$ with respect to $\tau = w^*$ or $\tau = w$ are completely different from what preceeds, as shown in the following section.

3. Weak continuity of holomorphic automorphisms in spin factors

We recall that a $spin\ factor$ is a Hilbert space $\mathcal H$ with a conjugation -, endowed with the triple product and the norm

{a, b, x} =: (a, b)x + (x, b)a - (a,
$$\bar{x}$$
) \bar{b} ||| x |||² =: ||x||² + (||x||² - |(x, \bar{x}) |²) \bar{d}
The norm in a JB*-triple is uniquely determined by the triple product, and it is essential

to note that |||.||| and ||.|| are equivalent though they do not coincide [5, th.7.3]. If $E=(\mathcal{H}, \{.,..\}, |||.|||)$ is a spin factor, one has $E_*=E^*=\mathcal{H}$ as vector spaces, and so there is no distinction between the weak* and the weak topologies on E. The equalities $s^*(E, E_*)=-\tau^*(E, E_*)=n$ also hold in this case. The conjugation on the Hilbert space \mathcal{H} underlying to E is a surjective R-linear isometry, hence in order to study the w^*-w^* continuity of Q_a we may assume that $a=\overline{a}$. Fix any non null $a=\overline{a}\in\mathcal{H}$. Then the orthogonal complement of Ca in \mathcal{H} is a selfconjugate space, and due to $\dim\mathcal{H}=\infty$, one can choose an orthogonal sequence $\{x_n, n\in \mathbb{N}\}\subset\mathcal{H}$ with

$$\parallel \mathbf{x}_n \parallel = 1$$
, $\mathbf{x}_n = \overline{\mathbf{x}}_n$, $\mathbf{x}_n \perp \mathbf{a}$, $(n \in \mathbf{N})$.

Since the norms |||.||| and ||.||| are equivalent on E, $(x_n)_{n\in\mathbb{N}}$ is a bounded w*-null sequence. If Q a is w*-w* continuous, then $\{x_n, a, x_n\} = -a$, $(n\in\mathbb{N})$, is also w*-null, and so a=0. We have proved [16, prop. 4.3]:

3.1 Proposition. Let E be any spin factor with dimE= ∞ . Then the triple product of E is *not jointly continuous* with respect to the weak* (or the weak) topology on E. The only weak*-weak* (or weak-weak) continuous holomorphic automorphisms of B_E are surjective isometries.

Note that, by [3, th. 2.1], the triple product is *separately* weak*-weak* continuous on E since any spin factor is a JBW*-triple.

4 Weak continuity of holomorphic automorphisms in the spaces $\mathcal{C}_0(\Omega)$

In this section, we establish that the multiplication $(f, g) \to f \cdot g$ is jointly weak-weak continuous on bounded subsets of $C_0(\Omega)$. We apply this result to prove that all holomorphic automorphisms of the unit ball $B_{C_0(\Omega)}$ are weak-weak continuous. Here, Ω is a locally compact σ -compact Hausdorff space, and $C_0(\Omega)$ is the Banach algebra of continuous complex valued functions on Ω that vanish at infinity, with the norm of the supremum. We denote by $\mathcal{B}(\Omega)$ the σ -algebra of Borel subsets of Ω , and by $\mathcal{M}(\Omega)$ the space of complex valued Borel measures on Ω . If $\mu \in \mathcal{M}(\Omega)$ and $S \in \mathcal{B}(\Omega)$, $|\mu|(S)$ denotes the variation of μ on S. Then $\mathcal{M}(\Omega)$ with the norm $|\mu|=:|\mu|(\Omega)$ is a Banach space which is isometrically isomorphic to the dual $C_0(\Omega)^*$ of $C_0(\Omega)$ in the representation $\mu \to <\mu$, >, where $<\mu$, $f>=:\int_{\Omega} f(\omega) d\mu(\omega)$ for $f \in C_0(\Omega)$ and $\mu \in \mathcal{M}(\Omega)$. The space of measures is also a module over the ring $C_0(\Omega)$ in the product

$$\mathrm{g}\mu(\mathrm{S}){=:}\int_{\mathrm{S}}\ \mathrm{g}(\omega)\mathrm{d}\mu(\omega) \qquad (\mathrm{g}{\in}\,\mathcal{C}_0(\Omega),\,\mu{\in}\,\mathcal{M}(\Omega),\,\mathrm{S}{\in}\,\mathcal{B}(\Omega)).$$

4.1 Theorem. If Ω is a locally compact σ -compact Hausdorff space, then the multiplication $(f, g) \rightarrow f \cdot g$ is jointly weak-weak continuous on bounded subsets of $C_0(\Omega)$.

Proof: Since only bounded subsets of $C_0(\Omega)$ are involved, we can restrict our consideration.

derations to the unit ball $B_{\mathcal{C}_0(\Omega)}$. We have to show that , if $(u_i)_{i\in I}$ and $(v_i)_{i\in I}$ are nets in $B_{\mathcal{C}_0(\Omega)}$ weakly convergent to u and v respectively, $(u,v\in B_{\mathcal{C}_0(\Omega)})$, then $(u_i\cdot v_i)_{i\in I}$ is weakly convergent to u·v, that is, $(u_i\cdot v_i-u\cdot v)_{i\in I}$ is a weakly null net. Due to the identity

$$u_{i} \cdot v_{i} - u \cdot v = (u_{i} - u) \cdot (v_{i} - v) + (u_{i} - u) \cdot v + u \cdot (v_{i} - v),$$

it suffices to prove that the three nets $(u_i-u)\cdot v$, $u\cdot (v_i-v)$, and $(u_i-u)\cdot (v_i-v)$, $i\in I$, are weakly null. We divide the proof into two steps.

Step 1. Since $\mathcal{M}(\Omega)$ is a module over the ring $C_0(\Omega)$, we have $\alpha=:v\cdot\mu\in\mathcal{M}(\Omega)$, and as $(u_i-u)_{i\in I}$ is weakly null,

 $\lim_{i\in I}<\mu,\ (u_i\text{-}u)\cdot v>=\lim_{i\in I}\int_{\Omega}\ (u_i\text{-}u)\cdot v\ d\mu=\int_{\Omega}\ (u_i\text{-}u)\ d\alpha=\lim_{i\in I}<\alpha,\ u_i\text{-}u>=0.$ Similarly,

$$\lim_{i \in I} \langle \mu, u \cdot (v_i - v) \rangle = 0.$$

Step 2. Let us write f_i =: u_i -u and g=: v_i -v, i \in I, and assume that $(f_i,g_i)_{i\in I}$ is not weakly null. Then there exists a μ \in $\mathcal{M}(\Omega)$ such that the net of complex numbers $(<\mu, f_i, g_i>)_{i\in I}$ is not convergent to zero. Hence there exists a number $\epsilon_0>0$ and there exists a sequence of indices $(i_n)_{n\in \mathbb{N}}\subset I$ such that (by writing f_n and g_n instead of f_{i_n} , g_{i_n})

$$|\langle \mu, f_n \cdot g_n \rangle| \ge \varepsilon_0$$
 $(n \in \mathbb{N})$ (1).

As Ω is σ -compact, there is a sequence $(K_n)_{n\in \mathbb{N}}$ of compact subsets of Ω such that $K_n \subset K_{n+1}$ for $n\in \mathbb{N}$, and $\bigcup_n K_n = \Omega$. In particular, there is a compact set $L \subset \Omega$ such that

$$|\mu|(\Omega \setminus L) \le \frac{1}{6} \varepsilon_0 \tag{2}.$$

To each point $\omega \in L$, we associate the Dirac measure on ω , $\delta_{\omega} \in \mathcal{M}(\Omega)$; since the subnet $(f_n)_{n \in \mathbb{N}} \subset (f_i)_{i \in I}$ is weakly null,

$$\lim_{n\to\infty} <\delta_{\omega}, \, f_n> = \lim_{n\to\infty} f_n(\omega) = 0 \qquad (\omega\in L) \tag{3}.$$

As $|\mu|(L) < \infty$, the Egoroff theorem applies [7, th. 11.32]; hence there exists a partition A, B of L such that

$$|\mu|(B) \le \frac{1}{6} \epsilon_0$$
 and $\lim_{n \to \infty} f_n(\omega) = 0$ uniformly for $\omega \in A$. (4).

In particular, there exists an index $n_0 \in \mathbb{N}$ such that (note that the case $|\mu|$ (A)=0 may be disregarded)

$$\sup_{\omega \in A} |f_n(\omega)| \le \frac{1}{6|\mu|(A)} \varepsilon_0, \qquad (n \ge n_0)$$
 (5).

Since $(g_i)_{i\in I}$ is contained in $B_{\mathcal{C}_0(\Omega)}$, $\|g_n\| \le 1$ for $n \in \mathbb{N}$, and from (5)

$$\begin{split} &|\int_{A} f_{n} \cdot g_{n} d\mu| \leq \int_{A} |f_{n}| |g_{n}| d|\mu| \leq ||g_{n}|| |\int_{A} |f_{n}| d|\mu| \leq \\ &\leq (\sup_{\omega \in A} |f_{n}(\omega)|) \cdot |\mu| (A) \leq \frac{1}{6} \varepsilon_{0} \qquad (n \geq n_{0}) \end{split} \tag{6}.$$

From $|\mu|(B) \le \frac{1}{6} \epsilon_0$ and the boundedness of $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$

$$|\int_{\mathbb{R}} f_n \cdot g_n d\mu| \leq \int_{\mathbb{R}} |f_n| |g_n| d|\mu| \leq ||f_n|| \cdot ||g_n|| \cdot |\mu|(\mathbb{B}) \leq \frac{1}{6} \varepsilon_0 \tag{7}.$$

From (2) by a similar argument

$$\begin{aligned} &|\int_{\Omega-L} f_n \cdot g_n \mathrm{d}\mu| \leq \int_{\Omega-L} |f_n| \, |g_n| \, \mathrm{d}\mu| \leq ||f_n|| \cdot ||g_n|| \cdot ||\mu| (\Omega \setminus L) \leq \frac{1}{6} \, \epsilon_0 \qquad (n \in \mathbf{N}) \end{aligned} \tag{8}.$$
 Finally, by (6), (7) and (8), we have for $n \geq n_0$

$$|\langle \mu, f_n, g_n \rangle| = |\int_{\Omega} f_n \cdot g_n d\mu| \le |\int_{A} |+|\int_{B} |+|\int_{\Omega - L} | \le 3 \frac{1}{6} \epsilon_0 = \frac{1}{2} \epsilon_0 \quad (n \ge n_0)$$
 which contradicts (1) and completes the proof.

- **4.2 Corollary.** If \mathcal{A} is a commutative unital complex C*-algebra, then the multiplication $(x, y) \rightarrow x \cdot y$ is jointly weak-weak continuous on bounded subsets of \mathcal{A} . *Proof*: Use Gelfand's representation and theorem 4.1.
- 4.3 Corollary. If Ω is a locally compact σ -compact space, then all holomorphic automorphisms $\Phi \in \operatorname{Aut}(B_{\mathcal{C}_0(\Omega)})$ are weak-weak continuous in $B_{\mathcal{C}_0(\Omega)}$.

Proof: By theorem 4.1, the triple product of $C_0(\Omega)$ is jointly weak-weak continuous on bounded sets. Surjective linear isometries of any Banach space are weak-weak continuous; thus the result follows by theorem 2.3.

4.4 Example. If \mathcal{A} is the classical algebra l_{∞} of all bounded complex valued sequences, and we apply corollaries 4.2 and 4.3, we get:

All holomorphic automorphisms $\Phi \in \operatorname{Aut}(B_{l_{\infty}})$ of $B_{l_{\infty}}$ are weak-weak continuous.

5. Weak continuity properties of the triple product in the algebra $c_0(\mathcal{H})$

We would like to prove an analogous to theorem 4.1 for non abelian C*- algebras, i.e., essentially for the algebra $\mathcal{L}(\mathcal{H})$ of bounded linear operators in a Hilbert space \mathcal{H} . Unfortunately, no representation of the dual $\mathcal{L}(\mathcal{H})^*$ of $\mathcal{L}(\mathcal{H})$ is known. Thus, we consider the algebra $c_0(\mathcal{H})$ of compact operators in \mathcal{H} , whose dual space is well known.

We recall [14, § 1.15] that $a \in c_0(\mathcal{H})$ is said to be a trace operator if there is an orthonormal basis $(\xi_{\alpha})_{\alpha \in A}$ of \mathcal{H} such that $\sum_{\alpha \in A} \|a\xi_{\alpha}\| < \infty$. In that case, the sum $\|a\|_1 =: \sum_{\alpha \in A} \|a\xi_{\alpha}\|$ does not depend on the basis $(\xi_{\alpha})_{\alpha \in A}$ we consider in \mathcal{H} . We write $l_1(\mathcal{H})$ for the set of all trace operators on \mathcal{H} . Since for $a \in l_1(\mathcal{H})$, the sum $\sum_{\alpha \in A} \|a\xi_{\alpha}\|$ is finite, the family $\{\alpha \in A; a(\xi_k) \neq 0\}$ is countable and we order it into a sequence $(\xi_k)_{k \in \mathbb{N}}$; then any extension of $(\xi_k)_{k \in \mathbb{N}}$ to an orthonormal basis of \mathcal{H} is said to be associated to a. For $a \in l_1(\mathcal{H})$, the series trace(a)=: $\sum_{\alpha \in A} (a\xi_{\alpha} \mid \xi_{\alpha})$ has a well defined sum which does not depend on the basis $(\xi_{\alpha})_{\alpha \in A}$ and is called the trace of a. Also $(l_1(\mathcal{H}), \|\cdot\|_1)$ is a

Banach space and a two-sided ideal over the ring $\mathcal{L}(\mathcal{H})$. Thus, for $x \in c_0(\mathcal{H})$ and $a \in l_1(\mathcal{H})$, the series

$$\langle a, x \rangle =: \operatorname{trace}(x \cdot a) = \sum_{\alpha \in A} (xa\xi_{\alpha} | \xi_{\alpha})$$

is well defined, and $\langle a, \cdot \rangle$ is a continuous linear form on $c_0(\mathcal{H})$. Finally, the mapping $a \rightarrow \langle a, \cdot \rangle$ is an isometric isomorphism of $(l_1(\mathcal{H}), \|\cdot\|_1)$ onto the dual $c_0(\mathcal{H})^*$ of $c_0(\mathcal{H})$ and $l_1(\mathcal{H})$ is a module over the ring $c_0(\mathcal{H})$. We shall need the following lemmas.

- **5.1 Lemma.** If $(x_i)_{i \in I} \subset c_0(\mathcal{H})$ be a weakly null net, then:
 - (i). For any pair of vectors ξ , $\eta \in \mathcal{H}$ one has $\lim_{i \in I} (x_i \xi \mid \eta) = 0$.
- (ii). For any $a \in c_0(\mathcal{H})$, the nets $(a \cdot x_i)_{i \in I}$ and $(x_i \cdot a)_{i \in I}$ are weakly null. Proof: (i). Clearly $a = :(\cdot \mid \xi) \xi \in l_1(\mathcal{H})$, and we may assume $||\xi|| = 1$. Let $(\xi_\alpha)_{\alpha \in A}$ extend the singleton $\{\xi\}$ to an orthonormal basis of \mathcal{H} ; since $(x_i)_{i \in I}$ is weakly null,

$$0 = \lim_{i \in I} \langle a, x_i \rangle = \lim_{i \in I} \operatorname{trace} (x_i \cdot a) = \lim_{i \in I} \sum_{\alpha \in A} (x_i \cdot a \; \xi_\alpha \mid \xi_\alpha) = \lim_{i \in I} (x_i \; \xi \mid \xi).$$
 By polarizing we get
$$\lim_{i \in I} (x_i \xi \mid \eta) = 0 \text{ for all } \xi, \eta \in \mathcal{H}$$

(ii). Let $b \in l_1(\mathcal{H})$. Since $(x_i)_{i \in I}$ is weakly null and $l_1(\mathcal{H})$ is an ideal over $c_0(\mathcal{H})$,

$$\lim_{i \in I} \langle b, x_i \cdot a \rangle = \lim_{i \in I} \operatorname{trace}[(x_i \cdot a) \cdot b] = \lim_{i \in I} \operatorname{trace}[(x_i \cdot (a \cdot b))] = 0$$

which shows that $(x_i \cdot a)_{i \in I}$ is weakly null. The other half follows from trace $(x \cdot y) =$ trace $(y \cdot x)$ for $x, y \in l_1(\mathcal{H})$.

5.2 Lemma. Let $b \in l_1(\mathcal{H})$, and $(\xi_{\alpha})_{\alpha \in A}$ be a basis associated to b. If $A \subset c_0(\mathcal{H})$ is a bounded subset, then for each $\varepsilon > 0$ there is an index $N \in \mathbb{N}$ such that

$$|\sum_{k=N+1}^{\infty} (ab\xi_k | \xi_k)| \le \varepsilon \qquad (a \in A).$$

Proof: We have $a \cdot b \in l_1(\mathcal{H})$ for all $a \in A$. From the boundedness of A, if M=: Sup IIaII,

$$\textstyle\sum_{k=1}^{\infty} |(a \cdot b \xi_k | \xi_k)| \leq \sum_{k=1}^{\infty} ||a|| \, ||b \xi_k|| \leq M \sum_{k=1}^{\infty} ||b \xi_k|| \qquad (a \in A).$$

Since $\sum\limits_{k=1}^{\infty}||b\xi_k||$ is finite, we can choose $N\in N$ so that $\sum\limits_{k=N+1}^{\infty}||b\xi_k||\leq \frac{1}{M}\,\epsilon.$

If E is an arbitrary JB*-triple and τ is an admissible topology on E, then we write $Cont_{\tau}(E)$ for the set of $a \in E$ such that Q_a is τ - τ continuous on B_E . One can prove, as in [16, lem. 2.2], that

5.3 Lemma. If E is an arbitrary JB*-triple, then $Cont_{\tau}(E)$ is a norm closed subtriple of E; actually it is a quadratic ideal, i.e.,

$$\{Cont_{\tau}(E),\,E,\,Cont_{\tau}(E)\}\subset Cont_{\tau}(E).$$

5.4 Theorem. Each mapping Q_a , $a \in c_0(\mathcal{H})$, is weak-weak continuous on bounded subsets.

Proof: We restrict our considerations to the unit ball $B_{c_0(\mathcal{H})}$ of $c_0(\mathcal{H})$. By the identity

$$\{x_i, a, x_i\} - \{x, a, x\} = \{(x_i - x), a, (x_i - x)\} + \{x, a, (x_i - x)\}$$

where x_i , x, $a \in B_{c_0(\mathcal{H})}$, $i \in I$, it suffices to prove the statements (i) and (ii) below:

- (i). If $(x_i)_{i \in I} \subset B_{c_0(\mathcal{H})}$ is a weakly null net and $u, v \in c_0(\mathcal{H})$, then $(\{u, v, x_i\})_{i \in I}$ is weakly null.
- (ii). If $(x_i)_{i \in I} \subset B_{c_0(\mathcal{H})}$ is a weakly null net, then $(\{x_i, a, x_i\})_{i \in I}$ is weakly null. Proof:(i). One has $2\{u, v, x_i\} = uv^*x_i + x_iv^*u$, $i \in I$, and the statement is an immediate consequence of lemma 5.1.
- (ii). We shall prove the statement in the special case in which a can be written in the form $a=(\cdot | \xi)\eta$ for some $\xi,\eta\in\mathcal{H}$. As a consequence, (ii) holds for all finite rank operators $a\in FR(\mathcal{H})$. The result follows then by the norm density of $FR(\mathcal{H})$ in $c_0(\mathcal{H})$ and lemma 5.3. Thus, let $a=(\cdot | \xi)\eta$. We have to show that, for each $b\in l_1(\mathcal{H})$, one has

$$\lim_{i \in I} \langle b, \{x_i, a, x_i \} \rangle = 0,$$

which is equivalent to

$$\lim_{i \in I} \text{trace } (\{x_i, a, x_i\}b) = 0$$
 (1).

If $(\xi_{\alpha})_{\alpha \in A}$ is a basis associated to b, the latter is equivalent to

$$\lim_{i \in I} \sum_{k=1}^{\infty} (\{x_i, a, x_i\} b \xi_k | \xi_k) = 0.$$

Let $\varepsilon>0$ be given. Since $(x_i)_{i\in I}$ is bounded, so is $(\{x_i, a, x_i\})_{i\in I}$, whence one can apply lemma 5.2. Let us fix $N\in N$ in such a way that

$$|\sum_{k=N+1}^{\infty} (y_i b \xi_k | \xi_k)| \le \frac{1}{2} \varepsilon \qquad (i \in I)$$
 (2)

where $y_i = \{x_i, a, x_i\}$ for $i \in I$. From the expression $a = (\cdot |\xi)\eta$, it follows that

$$\{x_i, a, x_i\}b = (\cdot \mid x_i * \xi)bx_i\eta \quad (i \in I).$$

Hence, to each fixed pair ϕ , $\phi \in \mathcal{H}$,

$$(\{x_i, a, x_i\}b\phi \mid \phi) = (x_i\phi \mid \xi) (bx_i\eta \mid \phi), \qquad (i \in I)$$

As $(x_i)_{i \in I}$ is weakly null, by lemma 5.1 the latter shows that $\lim_{i \in I} (\{x_i, a, x_i\}) b \phi | \phi) =$

0. Thus, in particular, for $\phi = \phi = \xi_k$,

$$\lim_{i \in I} (\{x_i, a, x_i\} b \xi_k | \xi_k) = 0 \quad (1 \le k \le N),$$

and so, there exists an index i₀∈ I such that

$$|\sum_{k=1}^{N} (\{x_i, a, x_i\} b \xi_k | \xi_k)| \le \frac{1}{2} \epsilon \qquad (i \ge i_0)$$
 (3).

Finally, from (2) and (3),

| trace ({x_i, a, x_i}b)| = |
$$\sum_{k=1}^{\infty} (\{x_i, a, x_i\}b\xi_k | \xi_k)$$
| \le |

$$\leq |\sum_{k=1}^{N}|+|\sum_{k=N+1}^{\infty}|\leq \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon \quad (i\geq i_0)$$

which completes the proof.

5.5 Corollary. All holomorphic automorphisms $\Phi \in \operatorname{Aut}_0(B_{\mathcal{C}_0(\mathcal{H})})$ are weak-weak continuous in $B_{\mathcal{C}_0(\mathcal{H})}$.

Proof: It follows immediately from theorems 5.4 and 2.3.

6. Weak continuity properties of the triple product in the space $\mathcal{L}(\mathcal{H})$

In this section, we investigate the set $\operatorname{Cont}_{\mathbf{W}}(\mathcal{L}(\mathcal{H}))$ of the operators $\mathbf{a} \in \mathcal{L}(\mathcal{H})$ for which $\mathbf{Q}_{\mathbf{a}}$ is weak-weak continuous in $\mathbf{B}_{\mathcal{L}(\mathcal{H})}$. We recall [8, th. 4.2] that $\mathcal{L}(\mathcal{H})$ is a dual JB*-triple, and that any weak*-closed ideal M in a JBW*-triple E has an orthogonal complement \mathbf{M}^{\perp} which is an ideal,

$$E = M \oplus M^{\perp}$$
 $M \square M^{\perp} = M^{\perp} \square M = \{0\}.$

The canonical factor projection $\pi_M: \mathcal{L}(\mathcal{H}) \to M$ is a JB*-homomorphism, hence continuous. If $(\xi_{\alpha})_{\alpha \in A} \subset \mathcal{H}$ is an orthonormal basis in \mathcal{H} , then we write

$$a_{\alpha\beta}=:(.\mid \xi_{\alpha})\xi_{\beta}$$
 ($\alpha,\beta\in A$).

Any operator $a \in \mathcal{L}(\mathcal{H})$ can be represented uniquely in the form

$$a = \sum_{\alpha, \beta \in A} \lambda_{\alpha\beta} (. \mid \xi_{\alpha}) \xi_{\beta}$$

for some bounded family of scalars $(\lambda_{\alpha\beta})_{\alpha\beta\in A}\subset \mathbb{C}$. Here, the series is to be understood in the weak-operator topology of $\mathcal{L}(\mathcal{H})$.

6.1 Lemma. Let $a \in Cont_W(\mathcal{L}(\mathcal{H}))$, and let M be a weak*-closed ideal in $\mathcal{L}(\mathcal{H})$. Then $b =: \pi_M(a) \in Cont_W(M)$.

Proof: Let $(x_i)_{i \in I} \subset M$ be a bounded weakly null net in M. We have to show that

$$\lim_{i \in I} \langle \mu, \{x_i, b, x_i \} \rangle = 0$$

whenever $\mu \in M^*$. By the preceding remarks, we have

$$\{x_i,\,b,\,x_i\,\} = \{x_i,\,\pi_M a,\,x_i\,\} = \{\pi_M x_i,\,\pi_M a,\,\pi_M x_i\,\} = \pi_M \{x_i,\,a,\,x_i\,\}.$$

But $(x_i)_{i\in I}$ is also a bounded weakly null net in $\mathcal{L}(\mathcal{H})$, and clearly $\mu \circ \pi_M \in \mathcal{L}(\mathcal{H})^*$; thus, by the assumption $a \in \mathrm{Cont}_W(\mathcal{L}(\mathcal{H}))$,

$$\lim_{i \in I} \langle \mu, \{x_i, b, x_i \} \rangle = \lim_{i \in I} \langle \mu, \pi_M \{x_i, a, x_i \} \rangle = \lim_{i \in I} \langle \mu \circ \pi_M, \{x_i, a, x_i \} \rangle = 0$$
 as we wanted to show.

6.2 Proposition. We have $c_0(\mathcal{H}) \subset Cont_w(\mathcal{L}(\mathcal{H}))$.

Proof: By lemma 5.3, $\operatorname{Cont}_{\operatorname{W}}(\mathcal{L}(\mathcal{H}))$ is a norm closed quadratic ideal of $\mathcal{L}(\mathcal{H})$; hence it suffices to prove that, whenever $\xi \in \mathcal{H}$, we have $a = :(\cdot \mid \xi) \xi \in \operatorname{Cont}_{\operatorname{W}}(\mathcal{L}(\mathcal{H}))$. Let $(x_i)_{i \in I}$ be a bounded weakly null net in $\mathcal{L}(\mathcal{H})$, and let $\mu \in \mathcal{L}(\mathcal{H})^*$ be given. We have to prove that

$$\lim_{i \in I} \langle \mu, \{x_i, a, x_i \} \rangle = 0.$$

By Dixmier's theorem [15, $\S IV.3$, th.5], μ admits a unique representation of the form

$$\mu = \phi + \phi$$
 $\phi \in l_1(\mathcal{H}), \quad \phi \in c_0(\mathcal{H})^{\perp}$

i.e., ϕ can be identifyed to a trace operator $b \in l_1(\mathcal{H})$ and $c_0(\mathcal{H}) \subset \ker(\phi)$. From $a \in c_0(\mathcal{H})$ we get $\{x_i, a, x_i\} \in c_0(\mathcal{H}), i \in I$, and so

 $<\mu$, $\{x_i, a, x_i\}> = < \phi + \phi$, $\{x_i, a, x_i\}> = < \phi$, $\{x_i, a, x_i\}> = \text{trace } (\{x_i, a, x_i\} \cdot b)$ whence we can draw $\lim_{i \in I} <\mu$, $\{x_i, a, x_i\}> = 0$ as we did in the proof of theorem 5.4.

6.3 Proposition. Let $a \in Cont_W(\mathcal{L}(\mathcal{H}))$ admit a representation

$$\mathbf{a} = \sum_{\alpha, \beta \in \mathbf{A}} \lambda_{\alpha\beta} (. \mid \xi_{\alpha}) \xi_{\beta} \tag{1}$$

(weak operator convergence) for some bounded family $(\lambda_{\alpha\beta})_{\alpha\beta\in A}\subset \mathbb{C}$ and minimal pairwise orthogonal tripontents $(a_{\alpha\beta})_{\alpha\beta\in A}$. Then $a\in c_0(\mathcal{H})$.

Proof: By the pairwise orthogonality of $(a_{\alpha\beta})_{\alpha\beta\in A}$, the net of partial sums in (1) is norm bounded in $\mathcal{L}(\mathcal{H})$. The weak-operator topology agrees with the weak* topology on bounded sets, hence we may assume that (1) is w*-convergent to a. We can suppose that there is an infinity of coefficients $\lambda_{\alpha\beta}\neq 0$ (otherwise, we would obviously have $a\in c_0(\mathcal{H})$). Since $(\lambda_{\alpha\beta})_{\alpha\beta\in A}$ is bounded, it has at least a cluster point, and we claim that $\lambda=0$ is its only cluster point. Indeed, let λ be a limit point of $(\lambda_{\alpha\beta})_{\alpha\beta\in A}$, and choose a sequence $(\lambda_{nm})_{nm\in N}\subset (\lambda_{\alpha\beta})_{\alpha\beta\in A}$ such that $\lim_{nm\to\infty}\lambda_{nm}=\lambda$. Let M denote the weak* closed ideal generated by $\{(.\mid \xi_n)\xi_m; n, m\in N\}$ in $\mathcal{L}(\mathcal{H})$. Clearly the sequence $\{(.\mid \xi_n)\xi_m; n, m\in N\}$ is weak* summable in $\mathcal{L}(\mathcal{H})$, and the projection $b=\pi_M$ of a onto M is given by

b=:
$$w^* \sum_{nm} \lambda_{nm} (. | \xi_n) \xi_m$$
 (2).

We define a sequence $(x_{IS})_{IS} \in \mathbb{N} \subset M$ by

$$x_{rs} = :(. \mid \xi_r)\xi_1 + (. \mid \xi_1)\xi_s = a_{r1} + a_{1s}$$
 (r, s ∈ N).

Clearly $(x_{rs})_{rs \in \mathbf{N}}$ is bounded and weakly null

$$(x_{rs})_{rs \in \mathbb{N}} \subset 2B_{\mathcal{L}(\mathcal{H})}$$
 $\underset{r,s \to \infty}{\text{w}} x_{rs} = 0.$

Since the triple product in $\mathcal{L}(\mathcal{H})$ is separately weak* continuous, by (1) we have

$$\{x_{rs}, b, x_{rs}\} = \{x_{rs}, \sum_{nm} \lambda_{nm} a_{nm}, x_{rs}\} = w^* \sum_{nm} \overline{\lambda}_{nm} \{x_{rs}, a_{nm}, x_{rs}\}$$
 $(r, s \in \mathbb{N})$

The only non-zero summands above are

$$\lambda_{nm}\{x_{rs}, a_{nm}, x_{rs}\} = \lambda_{r1}a_{r1} + (\lambda_{rs}a_{11} + \lambda_{11}a_{rs}) + \lambda_{1s}a_{1s} \tag{3}.$$

By assumption $a \in Cont_W(\mathcal{L}(\mathcal{H}))$, hence by lemma 6.1, $b \in Cont_W(M)$, and as $(x_{rs})_{rs \in N}$ is bounded and weakly null in M,

$$\lim_{r, s \to \infty} \langle \mu, \{x_{rs}, b, x_{rs}\} \rangle = 0$$
 (4)

whenever $\mu \in M^*$. If μ is the functional associated to the trace operator $c=:(. \mid \xi_1)\xi_1$, we have (for r, s >1), $a_{rs}.c=a_{r1}.c=0$ and $a_{1s}.c=a_{1s}$, $a_{11}.c=a_{11}$. Thus, by (3)

$$<\mu$$
, $\{x_{rs}, b, x_{rs}\}> = trace[\{x_{rs}, b, x_{rs}\}.c] =$
= trace $(\overline{\lambda}_{1s}a_{1s} + \overline{\lambda}_{rs}a_{11}).c = \overline{\lambda}_{rs}$

and so, by (4)

$$0 = \lim_{r, s \to \infty} \langle \mu, \{x_{rs}, b, x_{rs}\} \rangle = \overline{\lambda}_{rs}$$

Since $(\lambda_{nm})_{nm\in\mathbb{N}}$ was convergent to λ , we have $\lambda=0$. As the origin is the only limit point of $(\lambda_{\alpha\beta})_{\alpha\beta\in\mathbb{A}}$, the set of indices $\alpha\beta\in\mathbb{A}$ such that $\lambda_{\alpha\beta}\neq 0$ is countable, and can be arranged into a decreasing sequence $|\lambda_1| \geq |\lambda_2| \geq ... \downarrow 0$. By the orthogonality of the tripotents $(. \mid \xi_n)\xi_m$, $(n, m\in\mathbb{N})$, the weak* closed subtriple E they generate in $\mathcal{L}(\mathcal{H})$ is commutative, hence isomorphic to an abelian von Neumann algebra, which in turn is isomorphic to l_{∞} , and clearly

$$a=w*\sum_{nm} \lambda_{nm} (. | \xi_n) \xi_m \in E.$$

Thus, we have norm convergence and this series defines a compact operator. This completes the proof.

6.4 Corollary. One has $Cont_W(\mathcal{L}(\mathcal{H})) = \mathcal{L}(\mathcal{H})$ if and only if $dim(\mathcal{H}) < \infty$.

Proof: The identy operator has the representation $\mathrm{Id} = \sum_{\alpha \in A} (. \mid \xi_{\alpha}) \xi_{\alpha}$. If we had $\mathrm{Id} \in \mathrm{Cont}_{\mathbf{W}}(\mathcal{L}(\mathcal{H}))$, then by proposition 6.3, $\mathrm{Id} \in c_0(\mathcal{H})$ and so $\dim(\mathcal{H}) < \infty$.

6.5 Corollary. The multiplication in $\mathcal{L}(\mathcal{H})$ is jointly weak-weak continuous if and only if $\dim(\mathcal{H}) < \infty$.

Proof: If $(x, y) \to x.y$ is jointly weak-weak continuous, then so is $x \to x^2 = \{x, 1, x\}$, $x \in L(\mathcal{H})$, whence $1 \in \mathrm{Cont}_W(L(\mathcal{H}))$, which, by corollary 6.4 gives $\dim(\mathcal{H}) < \infty$. The converse is known.

REFERENCES:

- 1. BARTON, T.J. & FRIEDMAN, Y., Grothendieck's inequalities for JB*-triples, J. London Math. Soc. 36, (1987), 513-523.
- 2. BARTON, T.J. & FRIEDMAN, Y., Bounded derivations of JB*-triples, Quart. J. Math. Oxford, (2) 41, (1990), 255-268.
- 3. BARTON, T J. & TIMONEY, R. M, Weak* continuity of Jordan triple products and application Math. Scand. 59, (1986), 177-191.
- 4. HANCHE-OLSEN, H. & STORMER, E., *Jordan operator algebras*, Monographs and Studies in Math., 21, Pitmann, London 1984.
- 5. HARRIS, L. A., A generalization of C*-algebras, Proc. London Math. Soc. (3) 42, (1981), 331-361.
- 6. HARRIS, L.A. & KAUP, W. Linear algebraic groups in inifinite dimensions, Illinois J. Math., 21, (1977), 666-674.
- 7. HEWITT, E. & STROMBERG, K., Real and Abstract Analysis, Graduate Yexts in Math. 25, Springer-Verlag, New York, 1965.

- 8. HORN, G. Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987), 117-133.
- 9. ISIDRO, J.M., A glimpse at the theory of Jordan Banach triple systems, Rev. Mat. Univ. Complutense Madrid, 2 número suplementario, (1989), 145-156.
- 10. KAUP, W. Algebraic characterization of symmetric Banach manifolds, Math. Ann., 228, (1977) 39-64.
- 11. KAUP, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z., 183, (1983), 501-529.
- 12. RODRIGUEZ PALACIOS, A. On the strong* topology of JBW*-triple, to appear in Quart. J. Math, Oxford.
- 13. RUDIN, W., Functional Analysis, Mc Graw Hill, New York, (1973).
- 14. SAKAI, S., C*-algebras and W*-algebras, Ergb. der Math., 60, Springer-Verlag, Heidelbrg-N. York (1971).
- 15. SCHATTEN, R., Norm ideals of completely continuous operators, Ergb. der Math., 27, Sprin ger-Verlag, Heidelbrg-N. York (1970).
- 16. STACHO, L. & ISIDRO, J.M., Algebraically compact elements in JBW*triple systems, Acta Sci. Math. (Szeged), 54, (1989), to appear.
- 17. VIGUE, J. P. & ISIDRO, J.M., Sur la topologie du groupe des automorphismes analytiques d'un domaine cerclé borné, Bull. Sci. Math., 2 série, 106, (1982), 417-426.

José M. ISIDRO
Departamento de Análisis Matemático,
Facultad de Matemáticas
15706 Santiago de Compostela,
SPAIN.

