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Abstract. Given a complex Hilbert space H, we study the differential geometry of the
manifold M of all projections in V' = L(H). Using the algebraic structure of V, a
torsionfree affine connection V (that is invariant under the group of automorphisms of
V) is defined on every connected component 90t of M, which in this way becomes a
symmetric holomorphic manifold that consists of projections of the same rank r, (0 <
r < o00). We prove that 9 admits a Riemann structure if and only if 9% consists of
projections that have the same finite rank = or the same finite corank, and in that case V
is the Levi-Civita and the Kihler connection of 9. Moreover, 9t turns out to be a totally
geodesic Riemann manifold whose geodesics and Riemann distance are computed.
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1. Preliminaries on JB-algebras

1.1. Introduction

In [5] Hirzebruch proved that the manifold of minimal projections in a finite-dimensional
simple formally real Jordan algebra is a compact Riemann symmetric space of rank 1,
and that any such space arises in this way. Later on, in [15] Nomura established similar
results for the manifold of minimal projections in a topologically simple JH-algebra (a real
Jordan-Hilbert algebra). The results in [1], [6] and [7] lead to the idea that the structure
of a JBW-algebra V' might encode information about the differential geometry of some
manifolds naturally associated to it [12]. In particular, that the knowledge of the JBW-
structure of V' is sufficient to study the manifold of projections in V. Every JBW-algebra
can be decomposed into a sum of closed ideals V = V; ® Vi; @ Viyy of types I II, -
and II respectively, and for our purpose it is not a hard restriction to assume that V is
irreducible. JBW-algebras of type III are not well understood. A typical example of
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a type II JBW-algebra is L*[0, 1] whose lattice of projections is modular. Namely, it
consists of characteristic functions of Lebesgue measurable subsets of [0,1] and form a
discrete topological space since we have |[x1 — xz| = 1 whenever x1 # xa2. Thus we
have to consider JBW-algebras of type I and we shall assume them to be factors, hence
factors of type I, for some cardinal number 1 < n < oo. Those of type I, called spin
factors, are Hilbert spaces ([3] th. 6.1.8) hence they are included in the work of Nomura.
Factors of type I,, with 3 < n < oo are certain spaces of matrices ([3] th. 5.3.8) and
so they are included in the work of Hirzebruch. Thus essentially we have to consider
the JBW-algebra V: = L(H)s, of the selfadjoint operators on a Hilbert space H over
some of fields R, C, H ([3] th. 7.5.11). Here we make such a study in a systematic
manner without the use of any global scalar product in V, in the complex case. With
minor changes it applies to the other two fields.

The set M of all projections in V' can be identified with the set of all closed subspaces
of H, which is a Grassmann manifold G(H) in a classical way [10]. It is known that
G(H) has several connected components 9t, each of which consists of projections p in
V that have a fixed rank r, 0 < 7 < 0. An affine connection V, that is invariant under
the group Aut °(V) of automorphisms of V/, is then defined on each connected component
Mt with only the help of the JBW-structure. With it, 90t becomes a symmetric totally
geodesic real analytic manifold. Moreover, it is possible (and in fact easy) to integrate
the differential equation of the geodesics corresponding to initial conditions defined by
purely algebraic equations. For r = 1, 9 is the complex projective space P(H).

Motivated by the above, we ask whether it is possible to define a Riemann structure on
01, and a necessary and sufficient condition for this to happen is established. The tangent
space to 90T at a point p is the range of the %-Peirce projector of V' at p, and 9t admits a
Riemann structure (if and) only if Py »(p)V is (homeomorphic to) a Hilbert space. In [7]
it has been proved that the latter occurs if and only if the rank of p or the corank of p (the
rank of 1 —p, where 1 is the unit of the algebra V) is finite. M is an ortho-complemented
lattice, and the mapping p ~— p*: = 1 —pis an involutory homeomorphism. In fact, this
involution is a real analytic diffeomorphism of M, hence it suffices to study the connected
manifolds 90t with » < oo which leads us again to the work of Nomura. Namely, consider
the algebras of finite rank operators, of Hilbert-Schmidt operators, of compact operators,
and of bounded operators on H, respectively, and the inclusions

F(H) C Lo(H) C L(H)o C L(H)

The first three of these algebras have the same set of projections, which is exactly the set
of finite rank projections in £(H). However, the topologies induced on F(H) by L,(H)
and L(H) do not coincide (unless dim H < o), and a priori there is no reason to expect
that they should coincide on the set of projections (we shall see that this happens).

We then study the Riemann manifolds 9t for » < oo without the help of any global
scalar product in these algebras. A scalar product in the tangent bundle to 90T is needed, -
of course, but it is locally provided in a canonical way by the JBW-algebra structure of
V. We begin with a discussion of the subalgebras V[a, b] generated in V' by certain pairs
of elements (a, b). These subalgebras, that play a fundamental role in our study, turn out
to be Jordan isomorphic to Sym (R, 2), the algebra of 2 x 2 symmetric matrices with real
entries and the usual Jordan matrix product, and therefore they are finite dimensional. By
choosing an appropriate basis in V[a, ] it is easy to integrate the differential equations of
the geodesics in 91.
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1.2. Preliminaries on JBW-algebras.

A Jordan algebra V is an algebra over R or C in which the following two identities hold
forallz, yin V:

€] zy=yz,  z°(zy) =z(z’)
Let V be a Jordan algebra. Then L(z) and P(z), (z € V), are defined by
@ L(z)y: =2y, Pl)y: =2L@*-Li=%y, @eV).

An element a € V is an idempotent if a®> = a. If V has a unit 1, then every idem-
potent a € V gives rise to a vector space direct sum decomposition of .V, the Peirce
decomposition:

V = Vi(a) ® Vi/2(a) © Vo(a), Vi(a): ={z €V: azx=kz},

where k € {1, 1 2 0} and the corresponding projectors Ex(a): V — Vi(a), called Peirce
projectors, are given by

(3) Ei(a) = P(a), Eip(a)=2L(a)—2P(a), Eo(a)=1-2L(a)+ P(a).

If the idempotent a is fixed and no confusion is likely to occur, we write Vi: = Vi(a)
and P: = Ey(a) for k € {1,1,0}. The Peirce multiplication rules hold

@ VowhocW, Wh={0}, WhcWh,
VoWV CVips, VipVipCW+W.

In particular, V; and V; are Jordan subalgebras of V, and [L(z) L(y)] = 0 forz € Vp and
y € V; with the usual commutator product [, ].
A JB-algebra is a real Jordan algebra with a complete norm such that the following

conditions hold
leyl < Mzlllivll, 020 == l2® < ll=® + 92

- A JB*-algebra is a complex Jordan algebra U with an algebra involution *: z +— z* and
a complete norm such that the following conditions hold

lzyll < lelllgh, Nzl =lzl,  Mzzz} = |zl
where the triple product {abc} is defined by {abc}: = (ab*)c — (ca)b* + (b*c)a and
satisfies the Jordan identity
&) {z{abc}y} = {{baz}cy} — {ba{zcy}} + {{bay}cz}.
The operators 20y € L(U) are defined by z — z0y(2): = {zyz}forz e U.

An element a € U is selfadjoint if a* = a. The the set of them, denoted by U, is a JB-
algebra, Conversely, if V' is a JB-algebra then there is a unique Jordan algebra structure
inU: =V &1V, the complexification of V, such that U, = V and there is a unique
norm in U that converts it into a JB*-algebra [19]. We refer to U as the hermitification
of V. The set Aut (U), of all Jordan algebra *-automorphisms of U, consists of surjective
linear isometries of U and is a topological group in the topology of uniform convergence
over the unit ball of U. By Aut°(U) we denote the connected component of the identity
in Aut (U). Every element in Aut°(U) preserves the real subspace V' and is uniquely
determined by this restriction.

Let U be a JB*-algebra. We write Pro (U) for the set of self-adjoint idempotents in U
and Tri (U): = {a € U: {a,a,a} = a} for the set of tripotentsin U. Clearly Pro (U) C
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Tri (U), and every non zero a € Tri (U) satisfies ||a|| = 1. Two elements a, b € U
are orthogonal if ab = 0. A projection ¢ € U is said to be minimal if @ % 0 and
Pi(a)U = C a, and we let Min (U) denote the set of them. For a JB*-algebra it may occur
that Min (U) = 0.

A JBW-algebra is a JB-algebra whose underlying Banach space V is a dual space,
which occurs if and only if the hermitification U = V @ 1V is a dual Banach space.
In that case U is called a JBW*-algebra, the predual U, of U is uniquely determined
and o (U, U.), the weak* topology on U, is well defined. Let U be the JBW*-algebra
U: = L(H) of bounded linear operators 2: H — H on a Hilbert space H. Then U is
a unital algebra with plenty of projections each of which admits a representation of the
form

a = Zieray, convergence in the weak* topology,

for some indexed family of pairwise orthogonal minimal projections. The minimal cardi-
nal of the set I is the rank of a and rank (a) = 1 if and only if a is minimal. The rank of
the algebra U is the rank of its unit element. A

A JB-algebra V is algebraically (resp. topologically) simple if {0} and V are its only
ideals (resp. closed ideals).

Although not surveyed here, we shall occasionally use some relationships between JB*-
algebras and their associated JB*-triples. Our main reference for JBW-algebras, JBW*-
algebras and JB*-triples are [3] and [18].

1.3. Manifolds of projections in a JBW-algebra.

Let V be a JBW-algebra and denote by U: = V & 2V its hermitification. Then U is
a JBW*-algebra and Pro (U) = Pro (V). In the Peirce decomposition of U induced by
a € Pro(U), the Peirce spaces are selfadjoint, that is Ui(a)* = Uk(a), and we have
Vi(a) = Uk(a)s where Pi(a), is the Peirce projector of a in the algebra V. For every
u € Vi/2(a), the operator

(6) G(a,u): =2(ula— o[u) € L(U)

is an inner derivation of the JBW*-algebra U and the operator-valued mapping ¢ —
exp tG(a,u), (t € R), is a one-parameter group of automorphisms of U each of which
preserves V. The set Pro (V), endowed with its topology as a subset of V, is not con-
nected, namely 0 and 1 are isolated points. We let M {p) denote the connected component
of p in Pro (V). It is known that M(p) is a real analytic manifold whose tangent space at
the point a is V;2(a), a local chart being given by

z +— [exp G(a, 2)] a, z€N,

for z in a suitable neighbourhood N of 0 in V;»(a). As a consequence, all points in M (p)
are projections that have the same rank as p. As proved in ([12] th. 4.4), M(p) can also
be viewed as a holomorphic manifold whose tangent space at the point a is Uy/2(a) a local
chart being given in a neighbourhood M of 0 € Uy 2(a) by

u +— [exp 2ulld] a, u€E M.

For a projection p, the operator S(p): = Id — 2Py2(p) € L(V), called the Peirce
reflection, is a symmetry, that is, a selfadjoint involution of V. Namely we have S(p)z =
z for z € Vi(p) + Vo(p) and S(p)z = —z for z € V}/2(p). Besides S(p) € Aut (V) and
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S(p)p = p, hence S(p) preserves the connected component M (p) which in this way is a
symmetric manifold.

We let D be the Lie algebra of all smooth vector fields on M(p). A vector field X is
now locally identifiable with a real analytic function X: N C Vy/2(a) — Vis2(a). We
always consider V;/2(a) as submerged in V. For a function X: M(p) — V, we let X,
denote the value of X at the point a € M(p). By X we represent the Fréchet derivative
of X at a, thus X/, is a continuous linear operator V;/5(a) — V. For two vector fields
X, Y € D we define

) (VxY)a: = Pip(a)(Y7(Xa)), a€ M)

It is known that (X, Y) — Vx Y is a torsionfree Aut °(U)-invariant affine connection on
the manifold M (p). For every a € M(p) and every u € Vi2(a) the curve Yau(t): =
[exp tG(a, )] a is a V-geodesic that is contained in the closed real Jordan subalgebra of
V generated by (a, u). Proofs can be found in [1].

The following key result is known.

Theorem 1.1, Let U be a JBW*-algebra. Then for p € Pro(U) the following conditions
are equivalent: (i) Uy/o(p) is a reflexive space. (ii) Uro(p) is linearly homeomorphic to a
Hilbert space. (iii) rankUyja(p) < co. For U: = L(H) these conditions are equivalent
to (iv) rank (p) < oo or rank(1 — p) < oo.
PROOF. .

The equivalence (i) <= (ii) <= (iii) is known [10]. The statement concerning
U = L(H) has been established in [7] as follows: ;From the expression of the Peirce
projectors, we have forallz € U :

Pi(p)z = 2(p0p— P(p))z =
(pz +zp) —2pzp = pz(1 —p)+ (1 —p)zp.

Hence pUy2(p) C Uyye(p) and = — pz is a continuous projector Uy 2(p) — p Ui 2(p)-
Similarly z ~— zp is a continuous projector Uy 2(p) — Uy/2(p) p and since pUy/2(p) N
Uy2p = 0 we have a topological direct sum decomposition Uy 7 (p) = X1®X,. Therefore
Uy/2(p) is reflexive if and only if so are the summands. But X;: = pUy2(p) = {pz(1 —
p): = € U} is reflexive if and only if rank (p) < oo or rank (1 — p) < oo as we wanted
1o see. ]

Suppose p € Pro (U) is such that rank (p) < oo. Since this condition is Aut°(U)-
invariant, all projections @ € M(p) satisfy it too, and the tangent space Uy/2(a)s =
Vi/2(a) to M(p) at any point a € M(p) is a Hilbert space. In ([2], prop. 9.12) one
can find an explicit expression for an Aut °(U)-invariant scalar product whose norm is
equivalent to || - || in Uyja(a). Since M(p) is connected, that scalar product, denoted
by (,")as is determined up to a positive constant coefficient that can be normalized by
requiring that minimal tripotents should have norm one. We shall not go into details as no
explicit expression of it will be used here.

Definition 1.2. We refer to this Hilbert space norm as the Levi normin Uy /2 (a) and denote
itby ! - Ia
" Definition 1.3. We define a Riemannian metric g on M(p) by

9(X,Y)a: =(Xe,Ya)ay X, Y € DM(p), a€ M(p).
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Proposition 1.4. The affine connection in (7) is the Levi-Civita (respectively, the Kdhler)
connection on the real analytic (the holomorphic) manifold M(p).

PROOF.
Indeed, V is compatible with g, that is

Xg(Y,2)=g(VxY, Z2)+g(Y,Vx2), X,Y,Z € DM(p).

Moreover V is torsionfree, hence by ([13] th.1.8.11) V is the unique Riemann connection
on M(p). Remark that when M (p) is looked as a holomorphic manifold V is hermitian,
that is, it satisfies g(i Y, ¢ Z) = g(Y, Z), therefore V is the only Levi-Civita connection
on M(p). On the otherhand Vx Y =i Vx Y, hence V is the only hermitian connection
on M(p). Thus the Levi-Civita and the hermitian connection are the same in this case
and so V is the Kihler connection on M (p).

Theorem 1.5. The Jordan-Banach algebra Uy: = Lo(H) of compact operators and
Uy: = Ly(H), the Jordan-Hilbert algebra of Hilbert-Schmidt operators on H, have the
same set of projections and induce on it the same topology.

PROOF.

The first assertion is clear, and Pro (Up) = Pro (U) is precisely the set of finite rank
projections in L(H). It is also clear the above algebras have the same set of projections
of a given rank 7, (1 < r < 00), say P. Denote by Po and P the Banach manifold
structures defined on P according to our method and to Nomuras’ method, respectively.
The corresponding tangent spaces at a are

TP = {z € Up: 2ax = z}, TB2 = {y € Us: 2ay = y}.

Thus we have T,B2 C T5Po. On the other hand, a itself is a Hilbert-Schmidt operator and
as U, is an operator ideal, from z € Up and z = 2ax we get x € Us, hence T, B2 = T, %P0
as vector spaces. But both TP, and 7,9, are JB*-triples (subtriples of U and U,
respectively) with the same triple product. It is known that if a Banach space X admits a
JB*-triple structure, then the triple product determines the topology of X in a unique way.
This in our case implies that the topologies induced by Uz = L(H) and Up = Lo(H) on
the tangent space T3P coincide. But then also coincide the topologies induced on B by
these two algebras as they are locally homeomorphic to the same Banach space. |

2. Equations of the geodesics.

For any Jordan algebra V, we let V[u, v] denote the subalgebra of V' generated by (u, v).
By S := Sym (R, 2) we denote the Jordan algebra of the symmetric 2 x 2 matrices with
real entries and the usual Jordan matrix product. Recall that in S the set Pro (S) consists
of the isolated points 0, 1, and the one-parameter family of minimal projections

cos?d Llsin20
®) B(9) = (% sin20 sin26 ) ’ 0eR.

The elements A := B(0) and C := B(}) satisfy AcC=0and A+ C =1, where 1 is
the unit of the algebra S. The element

©) X = (‘1’ (1)) € S1/2(4) N812(C)

is a non zero tripotent and {4, X, C} is a basis in Sym (R, 2).
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Theorem 2.1. Let V be a unital Jordan algebra and let a # 0 andu denote, respectively,
a projection in V and a tripotent in Vi 3(a) such that au® = a. Then for Vl{a,u] the
following conditions hold: (i) V[a,u] = Span {a, u, v?}. (i) ¢ ;= u® — a is an idem-
potent such that ac = 0. (iii) u® = a + c is the unit in V{a,u]. (iv) There is a unique
Jordan isomorphism su: Via,u] — Sym(R, 2) that takes a, uw and c to A, X and C
respectively.
PROOF.

From u € Vija(a) we get au = u and by assumption au? = a. Define ¢ := u® - a.
Then the above results and the fact that u is a tripotent give

E=wP-al=u-2au?+a’=v’—-a=c
Therefore c is an idempotent and ac = a(u? ~ a) = au? — a = 0. Moreover
al=w-au’=ut—vla=v"-a=c

All this is collected in the following table
2

ola u ¥ ¢
afagzu a 0
u w u ju
u? T
c - c

which proves that the liriear span of the set {a, u, 42, c} is closed under the operation of
taking Jordan products, and that u? = a + cis the unit of V{a, u] Now it is clear that there
is a unique Jordan isomorphism ¢, u: V[a,u] — Sym (R, 2) with the desired conditions.
O

Remark 2.2. For a tripotent u € Vj/2(a), the minimality of a is a sufficient (but not
necessary) condition for {auu} = au’® = a to be true.

Indeed, by the Peirce rules u? € Vo(a) ® Vi(a) and Vo(a) Vi(a) = {0}, hence av® €
Vi(a) = Ra by the minimality of a, therefore au? = pa. Multiplication by u, the funda-
mental identities (1) and u® = u yield
1, 1

2y __ p— £ 2 = 72 I T e
u(au®) = pua 5 U u(au®) = (va)w 5% = 5%
hence 3u(p — 1) = 0 and 50 p = 1 since u # 0. Thus {auu} = au® = a. o

For pairs (a,u) consisting of a projection a # 0 and a tripotent u € Vi/2(a) with
au? = a it is quite easy to obtain the equation of the geodesic ,,.(t) as shown now. Let
us define a new product in V via z .y := {zay}. Then (V, .) is a unital Jordan algebra
with unit a. Forn € N and z € V we let (™ denote the n-th power of z in (V, .). Note
that z™ = 2™,

Theorem 2.3. Let V := L(H), and let a # 0 and u respectively be a projection in V
and a tripotent in Vi 5(a) such that au® = a. If %o is the geodesic with v(0) = a and
4(0) = u, then Yau(R) C Vla,u]. More precisely we have

1
(10) You(t) = (cos®t) a + (5 sin 2t) u + (sin®#) u®, teR.
PROOF.

Let G(a,u) = 2(ula — alu) € L(V). We have 7u(t) = [exp tG(a,u)]a for
all t € R, hence 7,4(R) is contained in the closed real linear span of the sequence
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(G(a,u)" a)nen. We prove that the assumptions »® = u and au® = a yield G(a,u)"a €
Via,u] forall n € N.
We have
G(a,u)a=u € V]a,u].

2 = g, hence

By assumption {auu} = au
Gla,u)u = 2{uau} - 2{auu} = 2(u® — a) € V[,
Gla,u)u® = 2{uau?®}-2{auu?}.

By the Peirce multiplication rules u® = {uau®} € {Vi2(a) Vi(a) Vo(a)} = 0. The
Jordan identity (5) and (2.2) give

{auu®} = {au{uau}} = {u{auu}a} — {{uaa}uu} + {ua{uua}} =
{uaa} — %{uuu} + {uaa} = %u € Via,y]

and G(a,u) u® € Vla,u].

Note that a, u, u‘®) belong to different Peirce a-spaces, in particular they are linearly
independent unless u or u(® vanish. We have assumed u # 0 and if 1 is the isomorphism
in (2.1), then ¥~'u® = ¢~{uau} = {X AX} = C # 0. Therefore they form a basis of
Vl]a,u] and G(a,u) V{a,u] C V]a,u]. As a consequence -, ,(t) has a unique expression
of the form

"Ya,u(t) = fl(t)a + f1/2(t)u + fO(t)u(2)1 te R;

for suitable real analytic scalar valued functions fx(t), (k = 0, 1/2, 1). By taking the
derivative with respect to ¢ and replacing the expressions previously obtained for G(a,u) #
with z € {a, u, u®}, we get

fia+ f {/2(t)“ + f{,(t)u@) = Yau(t) = G(a, ) (Vau(t)) =

[i®)G(a,w)a + fi2(t)C(a,u)u + fo(t)G(a, u)u® =

=2f12(t)a + (f1(t) — fo(t))u+ 2f1/2(t)u(2),
whence we have the first order ordinary differential equation F'(t) = A(u)F(t) with the

initial condition F'(0) = (1, 0, 0), where A(u) is a 3 X 3 constant (that is, not depending
on t) matrix and F(t) is the transpose of (f1(t), fi/2(t), fo(t)). In fact

0 -2 0
A=1]11 0 -1].
0 2 0

One can easily check that the solution is the curve in (10). a
Motivated by this result, we shall now try to weaken the restrictions on u.
Proposition 2.4. Let V, a and u respectively be a unital JB-algebra, a projection in V
and a tripotent in Vy2(a). Then the following conditions hold: () p := au? is a projection
that satisfies p < a, u € Vy2(p) and pu?® = p. (ii) For u # 0 we have p # 0. (iii) If u and
v are orthogonal as tripotents in Vi 2(a), then p := au? and q := av? are orthogonal as
projections in V and pv = ug = 0.
PROOF.
To see that p is an idempotent it suffices to consider the subalgebra of V' generated by
a,u and the unit e, which is a special algebra. By the Peirce rules, u? € V; @V}, and so we
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may writt u? =z +yforz € Viandy € Vp. Thus p = az +ay = = € V; and pa = p.
On the other hand, since u is a tripotent 42 = u* and so using the Peirce rules again

p = au' = az® + 2a(zy) + ay® = 2 = p.

That is, p s a projection. Notice that (a—p)? = a—p and so a—p > 0. From u € Vy5(a)
and the fundamental formulas (1) we get up = w(au®) = (au)u® = juu®? = Lu hence
u € Vy2(p) and p # 0 if u # 0. To complete (i), we notice that
il =plz+y)=pr=p'=p

since p =z € Vj(a) and y € Vy(a).

Assume now that ullv = 0 and set p := au?, q := av?. (We recall that two tripotents
u and v are orthogonal if and only if {u,v,v} = 0 or equivalently {u,u,v} = 0.) Then
0 = {uve} = uv and also u?v = {u,u,v} = 0. Although »? is a tripotent and vu? = 0,
we remark that two tripotents e and f which are orthogonal in the algebra sense (ef = 0)
may not be orthogonal tripotents. However in our case

{u?,u?,v} = u*v — (vu®)u? + (vu?)u
and so u? and v are orthogonal tripotents. In particular, u?v? = {u?,v%,1} = 0.
Let

=uww=0

uz—:c+y€V1(a)+Vb(a), v =1’ +y € Vi(a) + Vo(a)
as before. Then 0 = w?1? = z2' + yy/' entails 2’ = ¥y’ = 0 and so
g = (av’)(av’) = [a(z + )] [z’ +¥)a] = (az)(2'a) = 2z’ = 0.
To complete the proof, consider the product pv = vp = v(u?a) = L(v)L(u?)a. Since v
operator commutes withu? andv € V4o(a), we have pv = L(v)L(u?)a = L(v?)L{v)a =
u?(va) = Ju®v = 0 as seen before. Similarly ug = 0. |
The followmg can be considered as a generalization of (2.1).

Theorem 2.5. Let V := L(H), and let a and u respectively be a finite rank projection in
V and a vector in Vy2(a). Then we have a finite direct sum decomposition

an Via,u] ~ @ Viag, uk])

where ag and ax, (1 < k < s), are projections with a = ag + Zax, ux are tripotents in
Vi/2(ax), the subalgebras V{ax, ux] are pairwise orthogonal and agu = 0.
PROOF.

The hermitification U := V @iV of V is JBW*-triple and, by the Peirce rules, Uy/2(a)
is a JBW*-subtriple which has finite rank by (1.1). Hence by [10] every element in Uy 2 (a)
has a unique spectral resolution, that is, a representation of the form z = pyu; +- -« + psus
where 0 < p1 < --+ < ps, the u; are pairwise orthogonal (possibly not minimal) non
zero tripotents in Uyy2(a) and s < r = rankUy2(a) < oo. If z is selfadjoint (that is,
z € Vis2(a)), then the uy in the spectral resolution of z are also selfadjoint. Indeed,
u;Cuy, = 0 for j # k, hence the successive odd powers 2%+! of z are

A = gy 4 p a2 0<i<s—-1).

and the Vandermonde determinant det(p2?) does not vanish since the Pk are pairwise
distinct. Therefore the uy are linear combinations with real coefficients of the powers

72+ € Vija(a) and so uk € Vi 2(a).
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Now we discuss the algebra Va,u]. Letu = §ug + -+ -+ &us with0 < & < --- < §;
be a spectral resolution of u, and let ai := auj for 1 < k < s. By (2.4) the projections ax
are pairwise orthogonal and satisfy

Yar<a, ux€ V;/z(ak), akui = Q (1 <k< 8).
Set
(12) ap := a — Lag, Vo = Rap.

Hence dim Vp = 1 at most. We shall see that V{a, u] ~ Vo@®@ V [a, ux] as an orthogonal
direct sum. For that purpose consider the successive powers u! of u which are given by
ut =g+ €, (1 < L < s), since the uy are pairwise orthogonal. A Vandermonde
argument shows that ux € Via,u] for 1 < k < s. Then ax = aui € Va,u] and
ao € V|[a,u). Therefore Vo®@ V [ax, ux] C Vla, u] On the other hand, from a = ao+Xay
and u = T&uy it follows Via,u] C Vo @ @ V[ax, ux] whence we get (11) as soon as we
show that the summands satisfy the required orthogonality properties .

We have already shown that axa; = 0 = wu; for all k # j. By (2.4) we have
axu; = 0 = ajuy and so the subalgebras V'[ax, ux] and Va;, u,] are orthogonal for k # 7.
It remains to prove that agu = 0. By assumption u € Vy/»(a) and from u; € Vi 2(ax) we
getu € Vy/2(Xay), hence

1 1
Qu=0au= (a0+2ak)u=aou+(2ak)u=aou+§u

which completes the proof. O
Corollary 2.6. Let V = L(H), and let a and u be respectively a finite rank projection in
V and avector in Vyj(a). If a = ao + Zax and u = Sy, are the decompositions given in
(2.5) then
[exp tG(a,u)] a = ag + Ex[exp G (ak, ur)] ar
PROOF.
The linearity of G and orthogonality properties of the elements involved give
G(a,u) = G(ao,u)+ TikG(ax,ur) = LxG(ak, ux),
Glar,ur) Viajwy] =0,  (k#J).

Therefore G(a, u)" = TG (ax, ux)" for all n € N, and the claim follows from the defini-
tion of exponential mapping. O

3. Geodesics connecting two given points.

Proposition 3.1. Let V be a JB-algebra and let a, b be two projections in V with {aba} =
Xa and {bab} = ub for some real numbers A, . Then 0 < A\ = p < 1. Furthermore
A= 0ifandonlyifab=0,and A= 1if and only if a = b.

PROOF.
Projections are positive elements in V/, hence {aba} > 0 by ([3] prop. 3.3.6). Then
{aba} = Aa entails A > 0. But A < 1 since

A= | Xall = [{aba}]l < llal® b]] < 1.
By ([3] lemma 3.5.2) we have ||{ab%a}|| = [|{ba®b}|| for arbitrary elements a,b in V,

hence in our case
A = [[{aba}|| = [[{bab}|| = g
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Clearly A = 0 is equivalent to aba = 0 which by ([3] lemma 4.2.2) is equivalent to
~ab = 0. For arbitrary projections p, g, the condition pgp = p is equivalent to p < ¢,
therefore A = 1 yields aba = a and bab = b thatisa < band b < a and so a = b and
conversely. m]
Proposition 3.2. Let V' be a unital Jordan algebra and let a,b € V be two projections
such that P(a)b = Aa and P(b)a = Ab hold for some real number 0 < X\ < 1. Then
Jor V[a, b] the following conditions hold: (i) V'[a,b] = Span {a, b, ab}. (ii) There is a
unique Jordan isomorphism ¢.5: V{a,b] — Sym(R, 2) that takes a, b and ab respec-
tively to A, B(8) and A o B(6).

PROOF.

Set p: = ab. It follows from Macdonalds’ theorem that

1 1 1
2 = _ Z{ab? —{ba?
pi=30 {bab} + 4{ab a} + 4{ba b}
hence in our case p? = %(a + b+ 2p). The above results are shown in the following table

ola b P

ala p %(p+/\a)
bl- b 1o+ Ab)
pl- - 2(@@+b+2p)

This shows that the real linear span of the set {a, b, p} is closed under the operation of
taking Jordan products, and so V{a,b] = Ra © Rb & Rp. It is not difficult to check that
{a, b, p} is a basis for V[a, b] hence dim V[a, b] = 3. The other assertion is now clear. O
Remark 3.3. The angle § appearing in (3.2) can be expressed in terms of a, b. Indeed,
since ¢, preserves triple products and {A, B(6), A} = (cos® §) A we have A = cos? or
cos? 6 = || Py(a)b].

Remark 3.4. The conditions P(a)b = Aa and P(b)a = Ab with 0 < )\ < 1 are automat-
ically satisfied by any pair of minimal projections a,b with a # b and ab # 0. However,
minimality is not necessary in order to have them.

We use the isomorphisms 9s,: V{a,u] — Sym (R, 2) and ¢, 5: V]a,b] — Sym (R, 2)
to show that two distinct minimal projections a, b in V = L(H) can be joined by a
geodesic in 1,

Theorem 3.5. Let V = L(H) and let (1) be the set of minimal projections in V. If
a,b in (1) are such that a # b, ab # 0, and W := V[a, b] then there exists a tripotent
u € Wyyo(a) (unique up to sign) such that the geodesic t — ~,4(t) connects a with'b
in 9Y(1). Moreover, u is uniquely determined by the additional property b = ~y,,,(t) for
some t > 0.

PROOF. :

The pair of projections a, b determines uniquely the algebra V[a,b] and the Jordan
isomorphism ¢ap: Va,b] — Sym (R, 2) with the conditions in (3.2). In particular

_ [ cos’0 $sin20
9(b) = (% sin2 sin®@
for some f with 0 < § < 5. Letu = :; (X) where X, given in (9), is the unique (up to
sign) tripotent in S;/2(A4). Note that au® = a. By (2.3), Yau(R) C V[a,u] C V]a,b]isa
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geodesic whose image by the isomorphism au: V{a, 8] — Sym (R, 2) is
2; g
Woun®) = (g “iy)

Since G(a, w) is real linear on u, the definition of the exponential function gives ¥a,pu(t) =
Ya,u(tp) for all p and ¢ € R. In particular 7,,—u(t) = 7a,u(—%). A glance to the above
matrices shows that either b = 7,4 (6) or b = 7, —u(6) where 6 > 0. O
Corollary 3.6. With the notation and conditions in the statement of (3.5), there is a unique
vector v in W1ya(a) such that b = ~,,,(1) where v = 0 u for some tripotent w in W) 2(a)
with au® = a and some § with0 < 6 < 3.
PROOF.

As proved before, we have b = 7,,,(9) for a uniquely determined tripotent u € W1/(a)
with au? = a and the unique real number 6 given by cos? = || Py(a)b]|, 0 < 6 < §. Since

Ya,0u(1) = Ya,u(f) = b, the vector v: = 0 u clearly satisfies the requirements. a
Corollary 3.7. With the above notation, the set (1) is connected.
PROOF.

Fix any a € 9t(1). Then N;: = {b € 9(1): ab # 0} is an open set which is pathwise
connected by (3.5), hence N is also connected. But clearly N, = Mm(1). o

The set of projections in £(H) that have rank r is known to be connected for every fixed
r,1 < r < 00, [14]. In order to extend the preceding results, we let 90(r) denote such a
set. Suppose that V is a unital Jordan algebra with unit 1 and let py,- - - ,ps be pairwise
orthogonal idempotents with sum 1. Define V;;: = {p:Vp;}. Then V;; = Vj; and the
vector space direct sum decomposition, called the joint Peirce decomposition relative to
the family (px), holds:

1<i<j<n
Besides we have the following muitiplication rules
VijVea=0 if {i,j} 0 {k,1} =0,  Vi;Vjx C Vix (pairwise distinct s, j, k),
(a3) ViiVej C Vig + Vi (@i, 5).

Furthermore we have
(14) {VigViuWei} € Vig @4, 5, k), {Vi;jVixViy} =0 (pairwise distinct i, j, k).
Our goal now is to study Va, b], where a, b are projections in V' that have the same
finite rank. To simplify the notation we set W: = V/[a,b]. By ([16], lemma 2.5), if V'
is a topologically simple Jordan JBW-algebra and a, b are two projections in V' with the
same finite rank, then dim Va, b] < oc.
Let e be the unit of W. Since f = (a + b — €)? is a positive selfadjoint element, it has
a spectral resolution in W, Let it be

(15) (a+b—e)® =] )\e;

where the number of summands is finite, A; > 0 and the e; are non zero pairwise orthog-
onal projections in W. We can also assume that \; are pairwise distinct and thate = Xfe;
though the e; may then fail to be minimal in W. Let

(16) W=@Wy a=Zia,; b=IZyby
i
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respectively be the Peirce decompositions of W, a and b relative to the complete orthog-
onal system (e;). Then ([16], lemma 2.2) we have W, ; = {0} for all i # j.

Weset Wi: = W;;,a;: =aj;andb;j: = bj; (1 < j < o) toshorten the notation.
The decompositions in (16) now read

7 W=@PW, a=3%0, b=
J

Since W = V'[a, b] is special, there exists a Jordan *-isomorphism w: W — 20 C % for
some associative algebra 2. Fix any such isomorphism. Then the elements A := w(a),
B := w(b) and F := w(f) satisfy
(18) AoF=AF =ABA=FA=FoA.
These results have been established in [16] in the context of JH-algebras, but a careful
reading reveals that no essential use of the scalar product in V' has been made.
Proposition 3.8. In the decomposition in (17) we have for j = 1,2, - - ,o: (i) The a; are
pairwise orthogonal projections and so are the b;. (ii) W3 = V[a;, b;], that is, W/ is the
subalgebra generated in W by a;,b;. (iii) P(a;)b; = Mja; and P(b;)a; = \;b;, where
the \; are as in (15).
PROOF. o ) ]

By (13) W/W? ¢ W7 and Wi W* = {0} for j # k, hence from a? = a we get

a* = (Za;)* = Zdl, a = Zag

Since the W* are direct summands in W we get a? = a;, and similarly b2 = b;.

As a, b and e are elements of @ Vi we have Ve, b] C @ V. Clearly Vi € W* since
ax, b € W* and so

W =Vla,b] C Vi C PW* =W.

Therefore Vi, = W* since the sum is direct.
To establish the relations in the last assertion, we set
fi=(a+b—e), (1Lj<oa)
and note that f; € W4. The orthogonality of the W7 and (15) yield
f=(a+b-e) = (Ta;+b;—e;)*=2(g; +b ~ ¢)* = Tf;
f=(@+b—¢)® = Tke;
hence f; = Aje;, (1 < j < o). Since W is a special we can transfer the above relations
via the Jordan isomorphism w: W — 28 C 2. The relations in (17) via w yield
AF=AcF = w(af) = w(E/\kaka) = w(E)\kak) = E)\kAk,
ABA = w(aba) = w(Eakbkak) = EAkBkAk
which via w™! gives P(ax)br = Acay because the W are direct summands. Similarly we
can prove P(bg)ax = praz with . = Ay ]

Due to P(ax)br = Arax the spectral values ) satisfy 0 < A\ < 1 and we have the
three following possibilities:

Case I: Ay = 0. This can not occur for more than one index, say &k = 0. Then
P(ag)bo = 0 and P(by)ao = 0, hence ap and by are orthogonal. We shall see below that in




110 J. M. Isidro and M. Mackey

this case rank ag = rank by, (say no). Thus W is isomorphic to the space of the diagonal

T wea(te)ea(h)

with the usual Jordan matrix operations. Here 1 is the no X no unit matrix.

Case I: A\, = 1. This can not occur for more than one index (say ¥ = 1). Then
P(a1)by = a; and P(b1)a; = by, which means that a; = b, hence rankae, = rankb,
(say n;) and W is isomorphic to the space of the diagonal matrices

1
W!'xR
1

Case III; 0 < M < 1. This may occur for several indices k (the corresponding A being
distinct). Then proposition (3.2) applies, hence W* is Jordan isomorphic to Sym (R, 2)
via the isomorphism in (3.2). It is now clear that ax and by are minimal in WE. Since
different W* are orthogonal, a and by, are also minimal in W, that is rank ax = rank b, =
1. Since by assumption a and b had the same rank, we can now conclude that rankap =
rank by as announced earlier. We can now summarize the discussion in the following
Theorem 3.9. Let V be a topologically simple Jordan JBW-algebra and let a, b be two
projections in V that have the same finite rank. If W°, W' and W* are the algebras
described above, then V[a, b] is Jordan isomorphic to the finite orthogonal direct sum

(19) Ve, tj=W'eW'e P W*
Osks£1
Given a, b in 9(r) we show that it is possible to connect a with b by a geodesic.

Lemma 3.10. Let the algebra V, the projections a, b and the decompositions a = Lay
and b= by be as in (17). Then Py(a)b = aba = Taibrar = TPF(ax)bx.

PROOF.
It follows from the facts that W is special and the W* are pairwise orthogonal.

Lemma 3.11. Let the algebra V, the projections a, b and the decompositions
a = ap+ a1 + Tozkz10k, b=bo + b1 + Tozr1bk

be given by (19). If Pi(a)b is invertible in the algebra W1(a), then ao = bo = 0, a; = by
and a;b, #0for0# k # 1.

PROOF.
It follows directly from the properties of the algebras W°, W and W* that were estab-
lished in discussion in (3.9) and the invertibility of P;(a)b. O

Theorem 3.12. Let V = L(H) and let a, b be two projections in V with the same finite
rank r. Assume that Py(a)b is invertible in the unital algebra Vi(a). Then there is a
geodesic that joins a with b in ().
PROOF.

We may assume g # b. Consider the algebra W: = V/[a, b] and the decompositions in
(19). By (3.11) the invertibility of P;(a)bin Wy (a) yields

ap= b =0, ay = by, rank (ax) = rank (bx) =1 for 0 # k # 1
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Thus W° = {0} in our case. Let us define 7;: R — W?! to be the constant curve
"(t): = a1 = b, and let r;: = ranka; = rankbd;. Clearly v, is a geodesic in the
manifold 90(r,) of the projections in W* that have fixed rank r;.

For 0 # k # 1 the projections a; and by are non orthogonal and minimal in W*,
Hence by (3.5) there is a geodesic, say 7, that joins a; with b, in 90t*(1), the manifold of
minimal projections in W*. This curve is of the form

'Yk(t) = Yak,uk (t) = [exP tG(ak»uk)] Qk, teR,

where G(a, ux) := 2(arTug — uxay) for a tangent vector uy, € Wlk/Z (ak) that is deter-
mined by the uniqueness properties established in (3.6). In particular bx = 7a, u, (1). We
claim that

¥(t) = n(t) + Sean(t), teR

is a geodesic that joins @ with bin 90t(r).

By construction we have v, (R) C W¥. But these subalgebras are pajrwise orthogonal,
hence (%) is a projection of rank r = r; + Ek,ﬂrk for all t € R, that is, v is a curve in
MM (r) and obviously v(0) = a, y(1) = b. It remains to show that -y is a geodes1c, which
amounts to saying that -y is of the form

(20) v(t) = [exp tG(a, u)] a, teR,

for some tangent vector u € W/o(a), and it is almost clear that u := u; + T3 ui will do.
Indeed, the orthogonality of the W* and the expression of the Peirce projectors Py, (ax)
and Py/3(a) for special Jordan algebras easily yield the inclusions Wlk/,‘,(ak) C Wya(a)
and so
u = u + S € Wip(ar) ® D Wia(ar) € Wipe(a)
k#£1
Still we have to check that the equality in (20) holds. To do this, notice G(W7, W*)(W) =
{0} for j # k, which is an immediate consequence of (6), the orthogonality properties
of the W7 and W = @W7. As a consequence G(a,u) @ = £G(a;,u;) a; = Sw; where
= G(aj,u;) a; € WI. Then

Gla,u)a G(a,u) G(a,u)a = G(a,u)Zw; =
E_,-G’(a_,-,uj) kak = EjG(aj,uj) w; = ZjG(a,-,uj)%j

and by induction G(a, u)" a = X;G(aj,u;)" a; for all n € N, hence
[exp 8G(a, w)] a = Xjlexp tG(a5u5)] a;

which completes the proof. ||

Remark 3.13. The geodesic constructed in (3.12) satisfies certain normalizing conditions.
Indeed, the pair (a, b) determines uniquely (up to order) pairs (ax, bx) via the spectral
resolution of (a + b — €)? in the unital algebra Wa, b]. In turn, these (ax, bx) determine
in a unique way tangent vectors ux € Wy 2(ax) such that by = Y4, 4, (1) for1 < k < 7.
Finally u = ¥xz1ux. These properties single out the curve «y in the class of geodesics that
connect a with b.
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4. Geodesics are minimizing curves.

Throughout this section U stands for the algebra L(H) and V denotes its selfadjoint
part. Our next task will be to show that the geodesic s,y joining a with b in 9(r) is a
minimizing curve. That will require some calculus. Let a be fixed in 9%(r), and let | - |
denote the Levi norm in V; 2(a) (see 1.2). —~ PV
Notation 4.1. We set N;: = {Ba)v € M(r) :{v is invertible in V(a) }. Clearly N, is
an open neighbourhood of a in M(r) and {N;: @ € 9M(r)} is an open cover of M(r).
By B,: = {r € Vija(a): ||zl < 3} we denote the open ball in Vj/5(a) of radius 3
centered at the origin. Using the odd functional calculus for the JB*-triple V}/2(a) (see
[11]) one can define a mapping p: B, — Vi2(a) by

1) u— p(u): = tanu, u € B,.

Then p is a real analytic diffeomorphism of B, onto Vi/2(a) whose inverse, also defined
by the odd functional calculus, is

u+— o(u): = arctanu, u € Vi2(a).
Definition 4.2. We define ®,: Ny — Vij2(a) and Vq: Viz(a) — V by
22) o,(v): = 2(Pi(ay) ' Pya(a)y,
(23) V,(u): = [exp G(a,0(u))]a,

Lemma 4.3. With the above notation, ®, and ¥, are real analytic V-valued functions.
Furthermore ®,(N,) C Viy2(a) and ¥o(V1/2(a)) C Na.
PROOF.

For v € N,, Pi(a)v is invertible in V;(a). Hence the mapping v — (Pi(a)v)~" is well
defined and real analytic in A,. Clearly v — P, 2(a)v is real analytic, hence the product
of these two functions, that is, ®, is also real analytic and by the Peirce multiplication
rules ®,(Na) C Vija(a).

As said before u +— tan(u) is a real analytic V-valued function, and so is u +—
G(a,tan(u))a since G is a continuous real bilinear mapping. The exponential u +—
exp G(a,tan(u)) is an operator-valued real analytic function, hence by evaluating at a
we get ¥, a real analytic function. Let u € Vj/3(a). We have the decompositions

a = ap + Tk, u = Spbrx,
given by (11) with the properties in the statement of theorem (2.5). The odd functional
calculus and orthogonality gives
arctan u = Difux, where 0y := arctan&.

Hence G(a, o(u)) = Zx0xG(ax, ux). Again using the orthogonality properties
G(ax, ur)V]aj, u;] = 0 for k # j we see (recalling the proof of 2.3) that

U, (u) = [exp G(a,0(u))] a = Tilexp 0:G(ak, uk)] ax =

24

@4 Yk (0082 Bk) ax + Ek(% sin 20k)uk + Y (sin2 Gk)'uf).
An inspection of this formula shows that Py (a)¥,(u) = Zx(cos® Oi)ax. Since arctanu €
B,, we have that max 6, = || arctanu| < %. In particular, P,(a)¥,(u) is invertible in
Vi(a), that is ¥, (u) € Nj. Therefore ¥o(Vy2(a)) C N, which completes the proof. O
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Proposition 4.4. With the above notation, ®,: Na — Viya(a) is a real analytic diffeo-
morphism of N, onto Vy5(a) whose inverse is V.

PROOF.
First we show that ®, is invertible in a suitable neighbourhood W C A, of a. Let us

use the following self-explanatory notation
B,(v) =2 (Pi(a)v) ™" Prya(a)(v): = 2f(v) g(v).
Note that f(a) = a and g(a) = Py/2(a)(a) = 0. Thus for k € Vi2(a) we have
&), (a)h =2 (f'(a)h) 9(a) + 2f(a) g'(a)h = 2aPyja(a)h = h,

that is ®,(a) = Id which by the inverse mapping theorem proves the first claim. Let
v € Vijo(a) and u € B, be related by v = tan(u). A glance at (24) shows

Py(a)¥a(u) = S(cos® ) a  and Pl/g(a)\Ila(u)=2k(% sin 204) us.

Therefore since ug € Vi/2(ax),

8,0, (u) = 2 (Pi(@)¥a(w) " Pij2(a)¥a(u) = 2 Ti(tan Ok) arux = Skt = u.
Hence ®,¥, = Id. In particular ¥, is the right-inverse of ®,, and the inverse of @,
at least in W. By (4.3), the mappings ®,¥: Vy/2(a) — Vij2(a) and ¥, P, : N, = N,
are well defined and analytic in their respective domains. By (3.12) any point in N, can
be joined with a by a geodesic that is contained in N,, hence N, is an open connected
set. Since ¥,®, = Id in W, we have ¥,®, = Id in N, by the identity principle. This
completes the proof. |
Proposition 4.5. The family of charts {(Na, ®a): a € M(r)} is an atlas which defines
the manifold S(r). '

PROOF.
It is easy to check that the above family is a real analytic atlas whose manifold structure
is denoted by M(r)'. To see that M(r)’ is the same as M(r), recall that

f: U C Vypla) — M(r) ®,: M(r) — Vije(a)
ur f(u): = [expG(a,u)]a v B, (v): =2 (Pl(a)'v)_1 Pyja(a)v

are local charts of 91(r) and 9(r)’ at the point a. The composite map F' := &, o f can
be written in the form

F(u) = @a[f(w)] = 2 (Pi(a)f @)~ Piya(0) (w) = G(w) H(u)
with self-explanatory notation. Then G(0) = 2a, H(0) = Pipz(a)a = 0, H'(0) =
Py/5(a). Therefore, for h € V1/2(a) we have
F'(0)h = (G'(0) k) H(0) + G(O)H'(0)h = G(0)H'(0)h = 2a Pyj2(a)h = h.

Thus F'(0) = Id. The remaining part of the proof is similar. O
We are in the position to prove that geodesics in 90(r) are minimizing curves. For that
we consider 20t(r) as defined by the atlas {(NVs, ®a): a € M(r)}.

Theorem 4.6. Let 9 (r) be the manifold of projections in V' = L(H) that have fixed finite
rank r. Let a € M(r) and N, be as defined in (4.1) Then for every b in N, the geodesic
joining a with b is a minimizing curve for the Riemann distance in N..
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PROOF.
We may assume a 3 b. The diffeomorphisms B, —2 Vis2(a) 2o N, give a unique
pair (u,v) € B, x Vy2(a) such that

v=tan(u) Y,(v)=0b

There is a unique normalized geodesic s,y that joins a with b in the manifold 9t(r) and
has initial velocity u = ¥a,4(0) € B,. In particular we have

b= Y4(p(u)) = Yau(1) = [exp G(a,u)]a.

and the exponential mapping exp: B, — 9(r) is a homeomorphism of B, onto the
open set N, in M (r). This will allow us to apply the Gauss lemma ([13] 1.9). For that
purpose, we show that y, ,(t) belongs to A for all ¢ € [0, 1]. Indeed, the segment [0, 1] u
is contained in B,, hence its image by ¥, o p lies in the set \/;. We shall now see that

Polp(tu)] = 1au(®),  t€[0,1].
Lett € [0,1] and setv;: = tan(tu). The odd functional calculus gives
Uu(v) = [exp G(a,tu)] a = [exp t G(a, u)] a = Yau(t)

as we wanted to see. For the Riemann connection V in 91(r), the radial geodesics are
minimizing curves (by the Gauss lemma). Hence it suffices to see that 7, is a radial
geodesic, which is a consequence of the fact v,,4[0,1] C N O

It is now reasonable to ask what can be said about the neighbourhood N,. We refer to
O,: = {b € M(r): P,(a)b is not invertible in V;(a)} as the antipodal set of a. Clearly
O, is a closed subset of Mi(r).

Proposition 4.7. Let 9(r) be the manifold of all projections in V = L(H) that have a
given finite rank r. Then for any a € 9N(r) the antipodal set of a has empty interior.

PROOF.

Leta € M(r) and set K: = a(H) C H. Note that dim K = ranka = r < oo.
The operators in Vj(a) = aVa can be viewed as operators in £(K), therefore the deter-
minant function is defined in V;(a) and an element z € V;(a) is invertible if and only if
det (z) # 0. The function b — det(P;(a)b) is real analytic on M(r). If O, has non empty
interior, then det(P;(a)b) vanishes in a non void open subset of 9(r), which is con-
nected, therefore by the identity principle the determinant function would be identically
null which is a contradiction. 0

We let &(r) denote the subgroup of Aut (U) generated by the set of Peirce reflections
0y, where p € M(r). Each o, preserves M(r) and induces a real analytic symmetry of
this manifold.

Proposition 4.8. Let V = L(H). Then 9N(r) is homogeneous under the action of any of
the groups Aut® (V') and S(r).
PROOF.

Let a, b be any pair of points in M(r) witha # b. If b € N, then by (3.12) there is a ge-
odesic 7,,4(t) = [exp tG(a,u)] a that joins a with bin 9(r). But g(t): = [exp tG(a,u)]
is an element of Aut °(V) for all £ € R. Now consider the case b ¢ N,. By (4.7) the an-
tipodal set of a has empty interior, hence W N N, # 0 for every neighbourhood W of b
in M(r). If c € W NN, then we can connect a with ¢ and ¢ with b by geodesics in D(r)
hence we connect a with b by a curve in 2t(r). This completes the proof for Aut °(V').
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Consider a pair of points @, b in 9(r) such that b € Nj. Then it is easy to find a
symmetry o, that exchanges a with b. Namely, there is a geodesic that connects a with
bin M(r), say v: t — y(t), t € R. Thus @ = (0) and b = (1). Define the geodesic
middle point of the pair (a, b)asc: = +(}), and let o, be the Peirce reflection with center
at ¢. Clearly o, preserves the curve -y and exchanges a with b.

Now let a, b be arbitrary in 9(r). Since 9M(r) is a connected locally path-wise
connected topological space, it is globally path-wise connected. Thus there is a curve
T:t+— D(t), t € [0,1], that joins a with b in 9t(r), and a standard compactness argu-
ment shows that there is a finite sequence of points {1, -+ ,z,} in I such that z; = a,
«, = b and each consecutive pair of the z; can be joined by a geodesic in 9(r). For each
pair (x,Zx4+1) consider the geodesic middle point ¢ and the corresponding symmetry
exchanging z; with 2.;. Then the composite g o - - - 0 o, lies in &(r) and exchanges a
with b. O

Corollary 4.9. Let a, b € M(r). Thenb € O, ifand only if a € O,

PROOF.

Let o be a symmetry that exchanges a with b. The relation b € O, is equivalent
to Py(a)b is not invertible in V;(a), which applying o is converted into P,(b)a is not
invertible in V3 (b) thatis a € O,. O

We are now in the position to compute the Riemann distance in 97(r).

Theorem 4.10. Ler 90(r) be the manifold of all projections in V = L(H) that have a
given finite rank . If a, b are points in D(r) and v,u(t) is the normalized geodesic
connecting a with b in O(r) then the Riemann distance between them is

d(a, b) = (z;60)’

where 6 = cos~ (|| Py(ax)bk||?) and || - || stands for the usual operator norm.

PROOF.

Discard the trivial case a = b. Consider first the case b € N,. By (3.12, 3.13) we have
b = 7au(1) for some tangent vector u = Tux where ux = Okvk, 0 < O < 3, (1 <
k < r), and the v, are pairwise orthogonal (in the JB*-triple sense) minimal tripotents
in Wi/2(ax). Hence the v are pairwise orthogonal in the Levi sense (see [2] prop. 9.12
and 9.13) and so, if | - |, denotes the Levi norm in the tangent space Vj/2(a), we have
|uj2 = £762 (recall that minimal tripotents satisfy [[v]| = |vla = 1). Therefore since the
Levi form is Aut °(V)-invariant and Aut °(V) is transitive in 20t(r),

1
2

|;ya,“(t)|'7a,u(t) = I"yayu(o)la = Iu|a = (2'1-0’2‘)

forallt € R, hence
1 1
d(a,b) = /0 o Oyt = [ula = (S562).

Here 6 = cos™! (||P1(ak)bk||)% and | - || is the JB*-triple (that is, the usual operator)
norm. In the case b € @,, consider a sequence (b;)jen, With b; — bin 2t(r) and ab; # 0
for all j. Applying the above to each j and taking the limit we get the result. ()
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