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0. Introduction

i Suppose E is a complex Banach space and D C E is the open unit ball of E.
Then the linear geometry of E is completely determined by the holomorpic structure of
the open unit ball D, more precisely (compare (13]): Two complex Banach spaces are

_isometrically isomorphic if and only if the corresponding open unit balls are biholomor-

phically equivalent. In the linear theory it is standard to consider besides the norm on
E other topologies like the weak topology w or w* if E has a predual. The question
might come up which of the holomorphic transformations of the open unit ball D of E
are also continuous in these other topologies.

In this note we study thie special case of complex Banach spaces E where there
are many biholomorphic automorphisms of the open unit ball, more precisely where the
group Aut(D) of all biholomorphic automorphisms is transitive on D). It is known [11]
that these Banach spaces can be algebraically characterized by a certain ”ternary-type”
structure {called JB*-triple) given by a (uniquely determined) Jordan triple product
{zyz)}. For instance, the underlying Banach space of every C*-algebra A is a JB*-triple
and {zyz} = (xy"z + 2y"x)/2 in this case.

In section 3 of this paper we answer the question from above in the following way
(compare 3.6 and 3.7): There is a closed linear subspace C C E such that g € Aut(D)
is weakly continuous if and only if g(0) € C. C is a characteristic (triple) ideal in E
and consists precisely of all a € E such that the a-squaring map ga: v {zaz} on K is
weakly continuous on bounded subsets. We denote this set by Cont,(E). In section 2 we
compute this space for various examples. It turns out, that the elements of Cont,(F)
are closely related to compact operators on Hilbert space.

Notation For every complex Banach space E denote by L(£) the Banach algebra of all
bounded linear operators on E and by GL(E) the subgroup of all invertible operators.
K(E) is the subalgebra of compact operators and ‘H(E) C L{E) is the R-linear subspace
of hermitian operators on E. By L(£, F) we denote 'the Banach gpace of all bounded
operators £ — F. For every locally compact topological space S we denote by Cy(S)
the space of all continuous complex-valued functions on S vanishing at oo endowed
with the sup-norm. In case S is compact we simply write C(S). For every topological
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group G we denote by G? the connected identity component of G. Although we consider
various topologies on Banach spaces the notion of boundedness always refers to the norm
topology.

Acknowledgment The second author thanks the University of Santiago de Compostela
for the hospitality during a one week visit in October 1990.

1. Preliminaries

_ We recall that a JB*-iriple (compare [11]) is a complex Banach space £ together
with a continuous mapping (called Jordan triple product)

ExExE—E (z,y, 2) — {zyz}
such that for all elements in E the following conditions J; — J; hold, where for every
z,y € E the operator zoy on E is defined by z — {zyz}):

Ji {zyz} is symmetric bilinear in the outer variables z, z and conjugate linear in the
inner variable y,

Jo {ab{zyz}} = {{abz}yz} - {z{bay}z} + {zy{abz}}, (Jordan triple identity)
Js zoz € L(E) is a hermitian operator with spectrum > 0,
Jy [[{zzz}l] = |l=l.

It is known ([11] p.523) that in this definition condition Jy can be replaced by
|lzoz|| = ||z||* and that

(1.1) oyl <l - llvll

holds for all z,y € E (compare [6]). The simplest example of a non-trivial JB*-triple is
the complex line C with triple product {ryz} = z7z. More generally, every C*-algebra
A t;‘ecomes a JB*-triple in the triple product {zyz} = (zy°z+zy"z)/2 - we denote it by
AJT,

A linear subspace I C E is called a subtriple it {/II} C I and an ideal in E if
{EEI} + {EIE} C I. For every closed ideal /] C E the quotient Banach space E/I
is again a JB*-triple in the obvious triple product and the canonical projection is a
homomorphism, Here by a homomorphism h: E — F of JB*-triples we understand just
a linear mapping h satisfying ‘

h{zyz) = {(he)(hy) (h2)}

for all ,y, z in E. Every homomorphism E — C is called a character on E. By [11] p.
505 every character is continuous.

Like in the C*-algebra case those JB*-triples are of particular interest in which the
points can be separated by characters. By definition the JB*-triple E is called abelian
or commutative if EoE C L(E) is a commutative set of operators. Clearly, AT isa
commutative JB*-triple for every commutative C*-algebra A. On the other hand, to
every JB*-triple E and every a € E there is a closed abelian subtriple of E containing
a. By {11) p. 507 the abelian JB*-triples are up to isomorphism exactly the spaces

CX. = (f €Co(S): flts) =1f(s) forall teT)
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where T:= {t € C : |t| = 1} and § is a locally compact T-principal fibre bundle.
Furthermore the characters on Cg' (§) are just the point evaluations h(f) = f(s) at
points 8 € S. From this the following result is an easy consequence (realize that the
homomorphic image of an abelian subtriple is contained in a closed abelian subtriple
and get the statement for abelian triples by lifting back characters - compare also [1]):

1.2 Proposition Let h:E — F be a homomorphism of JB*-triples. Then hisa
contraction, i.e. |h(z)]| < |zl for all z € E. In particular, h is continuous. Furthermore
the image of h is closed in F and h induces an isometry E/I = h(E).

1.3 Corollary Let E be a JB*-triple and I, F C E closed subtriples. Then also I + F
is a closed subtriple if I is an ideal in E. ,
Proof Apply (1.2) to the canonical projection E - E/IL . O
Let E be a JB*-triple and denote by Aut(E) C GL(E) the subgroup of all triple
automorphisms of E. The elements of Aut(E) are precisely the isometries in GL(E).
Aut(E) is a real algebraic subgroup of GL(E) in the sense of [7] and in particular a real
Banach Lie group. The Lie algebra aut(E) of Aut(E) can be identified with the space
of all derivations of E, i.e. of all linear mappings §: E — E with

6{zyz} = {(6x)ay) + {a(8y)z} + {ap(62)}

for all z,y,z € E. All derivations on E are automatically continuous (compare {2]). By

(11} p. 523 we have

(1.4) aut(E) = iH(E) .
Notice, that by polarization the Jordan triple identity J; is equivalent to iaoa being
a derivation of the triple product for every a € E. For every z,y € E in particular the
operator exp(roy — yoz) is in Aut(E). The subgroup generated by all such elements
is denoted by Int(E), the group of all inner automorphisms of E. Int(E) is a connected
normal subgroup of Aut(E).

A JB*-triple E is called a JBW*-triple if E is a dual Banach space (compare [9],(3]).
In that case it has a unique predual E, and we refer to w*: = o(E, E,) as the weak*-
topology on E. Every automorphism of a JBW*-triple is w*-w*-continuous. The bidual
E** of any JB*-triple E is a JBW*-triple whose triple product extends that of £ and
is separately w*-continuous. For every norm closed ideal I C E the w*-closure J of I
in E** is an ideal in E** with JNE=1. Often this can be used to reduce the study of
ideals in JB*-triples to the special case of JBW*-triples. We give two examples:
First recall the definition of a JB*-algebra (sometimes also called a Jordan C*-algebra).
"This is a complex Jordan algebra B with a complete norm and conjugate-linear involu-
tion * such that the Jordan product zoy and the derived triple product

(1.5) {J:yz}=a:o(y"oz)—y'o(zoin)+zo(a:oy‘)

satisfy the conditions Js — Jo where

Js lzoyll < flell - Hlylly
Jo (zoy) =ylox”
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Every C*-algebra A with product ay becomes a JB*-algebra A7 in the Jordan
product zoy = (zy + yz)/2 and every JB*-algebra B becomes a JB*-triple BT in the
triple product (1.5). The identity A’ = (A7) is easily verified. In case the JB*-algebra
B has a unit e Jordan product and involution on B are recovered from the Jordan triple
product on BT by zoy = {wey} and 2" = {exe}. For every JB*-algebra B the bidual
B** is a JB*-algebra with unit. '

For all three structures (i.e. C*-algebras, JB*-algebras, JB*-triples) the notion of
ideal exists and behaves very well by passing from one structure to the other, more
precisely '

1.6 Lemma Let B be a JB*-algebra, E = BT the corresponding JB*-triple and I C B
a closed linear subspace. Then the following two conditions are equivalent

(1) I is a (Jordan algebra) ideal in B, ie.IoBCI,

(2) I is a (triple) ideal in E, i.e. (EEI}+{EIE}CI.

Each of these two conditions implies

(3) I is x-invariant, i.e. I* = I.

In case B = AY for a C*-algebra A condition (1) is also equivalent to

(4) 1 is a (two-sided associative) ideal in A, i.e. IA+ Al C L.

Proof (1) = (3) follows from [16] p. 98 and also gives (1) = (2). The implication (2)
= (1) can easily be shown by passing to the bidual. Finally, (1) = (4) follows from (16)
p. 107. [m}

The essential part of the following proposition (i.e. the direction (1) = (3)) can be
found in [5] p. 330. We provide here an alternate proof:

1.7 Proposition Let E be a JB*-triple and I C E a closed linear subspace. Then the
following conditions are equivalent:

(1) [ is invariant under all operators zoz, T € E,

(2) I is invariant under the group int(E) of all inner automorphisms,

(3) I is an ideal. ‘

Proof (1) = (2) is obvious from the definition of Int(E) and the fact that (1) implies
{EEI} C I by polarization. :

(2) = (1) Suppose [ is Int(E)-invariant. Int( E) contains the real one-parameter subgroup
exp(itzox) for every z € E. Differentiating by ¢ implies that J is invariant under the
operator izoz and hence under zoz.

(1) = (3) Suppose I C E satisfies (1) and hence {EEI} C I. We have to show {EIE} C
I. After passing to the bidual of E' we may assume without loss of generality that E is a
JBW*-triple. But then the closed unit ball of E has an extreme point e. By {14] p. 190
the element e is a complete tripotent in E, i.e. {eee} = e and E = E1 @ E>, where E) is

" the k-eigenspace of the hermitian operator 2ene for k =1,2. From (1) we get I = 1 &1,

with I: = INEy. E is a Jordan algebra in the product zoy: = {zey} and clearly / is an
algebra ideal in E. The subalgebra E, C E is a JB*-algebra with unit e and involution
a— a* = {eae}. By 1.6 the algebra ideal I C Ey is s-invariant. For y € £, the formula
(1.5) with y replaced by y* is nothing but the Jordan triple identity, i.e. {ELE} C I.
Because of {E;E1E;} = 0 we therefore only have to show {E\LE)} C I. For every
z,y € E1 the element F(x,y): = 2{zye} € E2 satisfies F'(z,y) = F(y,z)". This implies
for every y € I; the inclusion F(z,y) € /2 and in particular {xyr} = 2F(z,y)ox € I
(compare [12] p. 469 and also [15] p. 75), i.e. (E:1, By} C I;. The only missing inclusion
{Er111Eq} C Iy now is obtained in the following way: For every « € Ey,y € /1,0 € E,




Weak Continuity of hulon;orphic automorphisms
the first three terms in the equation
{ea* (wve)) = {(ea’z}ve} - (v{a*ey)e) + {zya)

belong to / by what has been proved so far, i.e. {xya} € la. 0

In referring to [16] p. 107 in the proof of 1.6 we implicitely used already the notion
of an M-ideal, which is defined for arbitrary Banach spaces. Exploiting this a little more

we get from 1.7.

1.8 Corollary Let E be a JB*triple with E = AT for some JB*-algebra A. Then for

every closed linear subspace I C E the following conditions are equivalent

(1) I is invariant under all derivations of E,

(2) I is invariant under the group Aut’(E) (= the connected identity-component of
Aut(£)),

(3) I is an M-ideal in the underlying Banach space of E,

(4) I is an ideal in E. .

Proof (1) <= (2) is obvious from the fact that aut{£) is the Lie algebra of the

connected Lie group Aut?(E).

(1) < (3) = (1) follows from {16 p. 101 uging 1.6 and 1.4.

(1) = (4) follows from 1.7 since every operator izoz is a derivation of E. ]

1.9 Definition A linear subspace I C E is called characteristic if it is invariant under

all automorphisms of E.

Notice that by (1.7) every characteristic closed linear subspace in E automatically
is an ideal in E.
1.10 Example Let S be a locally compact topological space and E:= Co(S). Then

the ideals 1 C E are well known to be precisely the subsets I={a€ E: a|T =0} with
T C S a closed subset. The ideal I is characteristic in E if and only if T' is invariant

under all homeomorphisms of S.



] J.M. hidro and W. Kaup

2. Weak continuity and squaring in JB*-triples

In the following let E be a JB*-triple. For every a € E then E becomes a Jordan
algebra in the product zoy: = {zay}. This product depends on the choice of the element
a and is uniquely determined by the corresponding squaring mapping ¢o: £ — E defined
by ga(z): = {zaz}.

With v the norm topology on E we call a locally convex topology t on E admissible
if it is coarser than v, i.e. t < v. We are mainly interested in the weak topology w =
o(E, E*) on E, which clearly is admissible.

In case E is a JBW*-triple we get further examples of admissible topologies on E
by w*= o(E, E.), 7 the Mackey topology associated to the duality (£, E.) and the
strong* topology 8* as defined in {2],[17]. These satisfly w* < s*< 7* < v and are all
invariant under Aut(E).

Suppose E is a JBW*-triple and tis a linear topology on £ with w*< t £ v. Then
in {18] the notion of a t-compact element was introduced - this is an element a € E such
‘that gq is w*-t-continuous on bounded subsets of E. By this - essentially for t =w* -
the compactness of arbitrary elements a € E can be characterized in terms of the triple
product structure without realizing a as an operator on a Hilbert space. llere we modify
the notion of t-compactness slightly and extend it to arbitrary JB*-triples E: For every
admissible topology t on E we denote by Cont,(£) the set of.all a € E such that g, is
t-t-continuous on bounded subsets of E. Then the following statement is obvious

2.1 Lemma For every closed subtriple F C E
Fn Conty(E) C Cont(F)

holds, where the restriction of t to F is again denoted by t.

In the same way as in [18] p. 175 one can show

2.2 Lemma Conty(E) is a norm closed inner ideal in E, i.e. a linear subspace C of E
with {CEC} C C.
As an application of (1.7) we get furthermore

2.3 Proposition Let E be a JB*triple and t 'an admissible topology on E which is
invariant under the group Aut{E) - for instance if t = w is the weak topology or, in case
E is a JBW*-triple, if t is one of w*, s* 7*. Then Conty(E) is a closed characteristic
ideal in E. . )

For the rest of this section we restrict t to the weak topology t = w. Since for every
JB*-triple E the triple product is w-continuous in every variable separately, an element
a € Eis in Cont,(E) if and only if the following is true: For every bounded net (£a)aca
converging weakly to 0 also the net (Ya)uea with yq: = {Zaazra} converges weakly to 0.

9.4 Lemma Let E be a JB*-algebra with unit e. Then the following three conditions

are equivalent

(1) Cont,(£)=E,

(2) For every bounded self-adjoint net (£a) in E converging weakly to 0 the same is
true for the net (%),
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(3) For every bounded net (z,) in E converging weakly to 0 the same is true for the
net (x5 04). '

Proof Since Cont,(E) is an ideal in E, condition (1) is equivalent to e € Conty(E). For
the proof of the remaining equivalences write 2o = Uy + itq With ua, v, self-adjoint.
Then z7, 0 Io = us + v2. a
Statement (3) in 2.4 is similar to a condition in [4] p. 60 characterizing the Dunford-
Pettis property of C*-algebras: By definiton a Banach space E has the Dunford-Pettis
property if for all weakly null sequences (z,) and (A,) in E and E" respectively
liy, o0 An(Zn) = 0 is true. One of the conditions occuring in [4] in case of a C*-
algebra A is the following: For every weakly null sequence (z,) in A also the sequence
(z}0z,) is weakly null, where o is the Jordan product. Two differences to (3) in 2.4 seem
10 occur here: 1. Instead of nets there are sequences. This can be formulated in terms
of sequentially continuity. 2. No boundedness is required. This is not a difference, since
by the principle of uniform boundedness the following holds: Every weakly convergent
sequence in a Banach space is norm bounded.

2.5 Definition For every JB*-triple E let CONT () be the set of all a € E such that
the squaring map gq: E — E is sequentially w-w-continuous on E or, equivalently, such
that for every weakly null sequence (z,) in E also the sequence ({znax,}) is weakly
null.

It is easily verified that CONT(E) is a closed linear subspace of E invariant under
all automorphisms of E. With 1.7 we conclude

2.6 Proposition For every JB*-triple E the space CONT,,(E) is a closed characteristic
ideal in E containing Cont,(E).

2.7 Proposition Let A be a C*-algebra with unit and let E = A'T be the underlying
JB*triple. Then E has Dunford-Pettis property if and only if CONTy(E) = E. :

In [4] all W*-algebras with Dunford-Pettis property have been classified. These are
precisely the [*-sums of W*-algebras of type ,,, with sup,(ny) < co. Furthermore the
Dunford-Pettis property is inherited to C*-subalgebras. So in particular all commutative
C*.algebras have Dunford-Pettis property - a result originating from Grothendieck. As
a consequence we get

2.8 Proposition CONT(E) = E for every commutative JB*triple E.

Let us present also a direct proof. Since E is of the form c&¥(S) by section 1, we may
assume without loss of generality that E = C(2) for some compact space {2. It is enough
to show:

The algebra product (f,g) — fg is sequentially weakly continous on Ex E.

Proof We identify E* with the space M(Q) of all complex regular Borel measures on £}
{compare [8] p. 364). Suppose, the statement is false. Then there is an ¢ > 0, a regular
Borel measure ¢ > 0 on Q and a weakly null sequence (fy,) of real-valued continuous
funtions on € such that for all n

Ifall <1 and / fldu 26
n

() < 00 and lim, e fu(w) = 0 for all w € & imply by Egorov’s Theorem (compare
8] p. 158) the existence of a Borel set A C §2 such that the sequence (f) converges
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uniformly on A to 0 and such that y(B) < /2 holds for B: = Q\ A. lu particular there
is an index no with u(A) - f3(w) < €/2 for all n > ng and all w € A. But then,

/ fp < cfz wd [ frw < wB) < 2
A 8

for all n > ny produce a contradiction. 0

2.0 Remark Let ] C IR be an open interval and E:= Co(E). Then by 2.8 we have
CONT,(E) = E. Since Cont,,(E) is a closed characteristic ideal in E only the following
two posibilities can occur: Conty(E) = E or Cont,(£) = 0. We conjecture that the
latter is true. )

A connection with compact operators on' a Hilbert space is given by the following

2.10 Proposition Let H be a complex Hilbert space, E C L{H) a JB*-subtriple and
K(H) the ideal of all compact operators on H. Then E'N K(H) C Cont,(E).

Proof Denote by S the cloged unit ball of K{H) and put C:= Conty(E) for short.
Let {Za)aca be a net in E converging weakly 1o 0 with llzall < 1 for all a € A. Since
the finite rank operators are dense in K{ff) and (' is closed in E, it is enough to show
that every rank one hermitian projection a € £ is contained in ('. So tix such an a, i.e.
a(z) = (zle)e for some unit vector e € H. Then y,:= {roara.) € S fur all a. By [19] p.
69 the weak topology restricted to S is the same as the weak operator topology on S,
i.e. we have to show that for every £,7) € H the net (y.£in) converges in € to 0. But
this is obvious from

(Wab1m)] = Wzalle)dzaern)]l < €Y - |(zaem)] - O

The example E = C - id shows that in general in 2.10 equality does not hold. But
then the action of E on H is highly non-irreducible. For H infinite dimensional it is
known (4] that E = L(H) does not have the Dunford-Pettis property, i.e. CONT,(E) is
a proper ideal in E. But in case H is separable, K(E) i the only proper ideal # 0 in £
(compare {19] p. 65), i.e. CONT(E) = Conty(E) = K(H). More generally we have

2.11 Lemma Let H,K be complex Hilbert spaces. Then E:= L(H,K) is a JB*-
triple with respect to the triple product {ryz} = (xy"z + zy*z)/2 and CONT(E) =
Cont,,(E) = K(H, K) is the space of all compact operalors H— K.

Proof Put C: = CONT(E) and K: = K(H, K) for short. Since the JB*-triples L(H, K)
and L(K, H) are isomorphic, we may assume dim H < dim K. Since £(H, K') is isomor-
phic to a subtriple of L(H & K) we get K C C by 2.10. For the proof of the opposite -
inclusion suppose there exists a non-compact operator a € C. There is a closed linear
subspace L C K with a(H) C L and dim L = dim H. Replacing £(H,K) by the sub-
triple £(H,L) we may assume without foss of generality that K = L and hence even
that K = H, i.e. E = L(H). We may assume furthermore that u is self-adjoint and -
after applying the functional calculus for Borel functions in a - that a is a projection on
H with infinite dimensional range R C . Replacing C(H) by the subtriple C(R) we
may finally assume that R = H and that a is the identity on H. For every pair of vectors
0,6 € H let tye € L(H) be the rank one operator defined by t,¢(¢) = (¢in)¢ for all
¢ € H. Fix a unit vector 7 € H. Then § — 1y defines a linear isometry H — E. For an
orthonormal sequence (£,) in H the corresponding sequence (zn) in £ with 2= t¢,



Weak Continuity of holomorphic automorphisms 9

converges weakly to 0 and violates condition (3) in 24, i.e. a ¢ C' in contradiction to
our assuinption. (]

The JB*-triples L(H, K) form the first out of 6 types of the so-called Cartan factors
(compare [12] p. 473). The types IT and I11 are defined as follows: Lete=1ore=—-1be
fixed and consider a complex Hilbert space H with conjugation j : £ — €, i.e. a conjugate
linear, involutory isometry of H. Then 2 — &' = jzj defines a transposition on L(H)
and E:= {z € L(H) : ' = ex} is a JB*-triple. Also in this case CONT,(E) = Cont,(E)
coincides with the subspace of all compact operators in E. The proof is similar to
the one of 2.11: In case ¢ = 1 clearly E is a JB*-algebra with unit in the product
roy = (ry + yr)/2 and we succeed as above with xn = lye, + 1,9 where. £, and 7
are self-adjoint in addition. In case ¢ = —1 and dim & = oo the JB*-triple E can be
realized als £(L) where L is an infinite dimensional (left) Hilbert space over the field H
of quaternions. Then the operators t, ¢ are again defined and have rank 1 over I and
rank 2 over C - but all arguments go through.

Cartan factors of type IV are the spin factors defined as follows: Let H be a complex

Hilbert space of dimension > 2 with conjugation & +— T. Then there is an equivalent
norm || o on H such that E:= (H,|| {) becomes a JBW*-triple in the triple product

{eyz}i= (iy)z + (z1y)z — (£12)y .

2.12 Lemma CONT,(E) = Cont,(E) = 0 for every spin factor E of inifinite dimen-
sion.

Proof Fix an arbitrary element a € Cont,,(E). Then dim(E) = oo implies the-existence
of an orthonormal sequence (z,) in H with z, = -, and z, L a, i.e. g.{z,) =7 for
all n. But then 0 = w — lim g4(z,) = @ and hence a = 0. ]

3. Holomorphic automorphisms

Let again £ be a JB*-triple in the following. In the section before we have studied
for every a € E the corresponding squaring operator gq: E — E. Of importance is also
the conjugate linear operator Q,: E — E defined by Qu(2):= {aza) = q.(a). Qa is
called the quadratic representation, it satisfies the fundamental formula

Qq.t) = QaQsQa

for all ¢,b € E (compare [15]). For every z,y € E the Bergman operator B(z,y) € L(E)
is defined by

' B(z,y) = id - 2z0y + Q:Qy -
In case ||zoy| < 1 the spectrum of B(z,y) lies in {z € C: |z -1} < 1}, in particular
the fractional power B(z,y)" € GL(E) exists for every r € R in a natural way (compare
[11] p. B17). .

In the following denote by D:= {z € E:||z|| < 1} the open unit ball of E. Then a
function f: D — E is called holomorphic if the (Fréchet) derivative f'(a) € L(E) exists
for every a € D. A holomorphic bijection g:D — D is called an automorphism of D if
also g~! is holomorphic. Denote by G:= Aut(D) the group of all automorphisms of D.
It is well known that the isotropy subgroup
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consists of all linear transformations in Aut(D) (restricted to D), ie. K = Aut(E). Asa
consequence of 1.1 we have ||zoe|| < 1 for every z,¢ € D. By [11] p. 515

(3.1) ga(2):= a+ B(u,a)'*(1 + zoa)"'2

defines an automorphism g, € G with go(0) = ¢, ga(—a) =0 and g_, = g7 This
means in particular, that G acts transitively on D and that every g € G has a unique
representation g = gnA, where a = ¢(0) and A € Aut(£). In [13] p. 132 it has been
showu, that every g € G has a holomorphic continuation into an open neighbourhood
of D C E. With 3.1 we get a quantitative improvement

3.2 Proposition Every g € G has a holomorphic continuation to the open ball with
radius r = ||a|| !, where a = g(0).

Proof ||z}] < r implies ||zaal| < 1 by 1.1. Therefore 3.1 defines go and hence also
g = gaX holomorphically on the ball with radius r. u]

3.1 also gives a way how to recover the triple product on £ from the group G =
Aut(D) - more precisely

3.8 Lemma For every a € D choose au automorphisin g € Aut{ D) with g(-a) = 0.
Let L:= g'(0) € GL(E) be the first and Q. = ¢"'(0): ' x £ — E be the second derivative
of g at the origin. Then for all x,y € I/ the triple product is given by

{ray} = -L7'Q(z,y).

Proof Let
o(z) =y mulz)
k=0

be the expansion of g as sum of k-homogeneous polynomials pi around 0 € D. Because
of g(—a) = 0 we have a representatiou of the form g = Aga for some A € K = Aut(E).
This implies p1 = AB(a,a)'/? and p; = ~AB(a,a)/?qa. - 0

Let us now fix an admissible topology t on E and let Cont,(E) be as before.

3.4 Lemma For every a € Cont(E) the mapping
(3.5) ‘ ExE—E definedby (z,y)— B(z,a)y

is ¥3-t-continuous on bounded subsets.
Proof Obvious from the definiton of Cont,(£) and the Jordan triple identity

Q.Quy = 2{{yaz}ar} ~ {yu{saz}}.. O

Denote by GL(E) the group of all linear transformations g of £ such that g and
g~ are L-t-continuous on bounded subsets of £ and put Aut(£): = Aut{E£)NGL(E). In
the same way let Aut(D) be the group of all y € Aut(D) that are t-t-homeornorphisms
of D.
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3.6 Theorem For every admissible topology t on the JB*-triple E the group of all
biholomorphic t-t-homeomorphisms of the open unit ball D C E is given by

Auty(D) = {gar: @ € DN Conty(E), A € Auty(E)} .

Proof Fix an element a € D N Cont,(E). Then f(2): = (1+ zoe)™'z = S (~zna)kz
defines a t-t-continuous function on D, since the convergence of the sum is uniform on D
and every summand is t-t-continuous. By (3.5) the operator B(e,e) also is t-t-continuous.
The spectral radius of B(a,a) — id is bounded by llell? < 1. Therefore also B(a,a)'/?
is {-t-continuous as norm-convergent power series in B(a,a) — id. This shows that g, is
{-t-continuous for every a € D N Cont,(E). Finally gl = g-q gives Aga € Aut (D) for
every a € D n Cont,(E) and A € Auty(E).

For the proof of the opposite inclusion choose an arbitrary g € Aut(D) and put a:=
9(0). Then h: = g~! satisfies h(—b) = 0 for b= —a. First and second derivative of h at
the origin are t-t-continuous as a locally uniform limit of t-t-continuous mappings. This
implies by 3.3 that g, is t-t-continuous and hence that a € Conty(E). By the first part
of this proof this implies that A= gl € Aut(E) ) (|

3.7 Corollary Suppose t is an admissible topology on E with Aut((E) = Aut(E) - for
instance, if t = w is the weak topology or - in case of a JBW*-triple - if t is one of the
topologies s*7*w*. Then for every biholomorphic automorphism g of D the following
conditions are equivalent

(1) g is t-t-continuous on D

(2) g(0) € Conty(E).

Proof Suppose (1) holds. Then g = g, with a € D n Cont(E) and A linear. Then
9(0) = a shows (2). The other implication also follows easily. O

As an application of 2.12 and 2.10 we get finally

3.8 Corollary Let E be a spin factor of infinite dimension. Then the only w-w-
continuous biholomorphic automorphisms of the open unit ball of E are the surjective
linear isometries.

3.9 Corollary Let H be a complex Hilbert space and E:= K(H) the space of all
compact operators on H. Then every biholomorphic automorphism of the open unit
ball of E is w-w-continuous.
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