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1. Introduction

Bicircular projections and their generalizations have received a lot of attention recently. A basic

problem is to determine the structure of these mappings on a given Banach space.

LetX be a complex Banach space and let P : X → X be a linear projection, that is a linearmapping

with the property P2 = P. By P wedenote the projection Id − P, where Id is the identity operator onX .

A projection P is called bicircular if themapping P + λP is an isometry for everymodulus one complex

number λ. The study of bicircular projections is motivated by complex analysis and it is initiated in a

series of papers by Stachó and Zalar [24–26].
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Abounded linear operator T : X → X is said tobehermitian if eiθT is an isometry for everyθ ∈ R. A

projection onX is a bicircular projection if and only if it is a hermitian projection, as shown by Jamison

[20, Lemma 2.1]. Since many results concerning hermitian operators are known, this observation

enables characterization of bicircular projections in numerous complex Banach spaces.

The notion of bicircular projectionswas generalized by Fošner, Li and the author in [16], by requiring

that, for a linear projection P, the mapping P + λP be an isometry for some modulus one complex

number λ /= 1. These projections are now known as generalized bicircular projections. They have

been recently studied in a series of papers by Botelho and Jamison (e.g. [4–10]).

Let us emphasize that, for a linear projection P and amodulus one complex number λ, themapping

P + λP is linear and surjective. Thus the study of generalized bicircular projections on a given complex

Banach space depends on the knowledge of the structure of surjective linear isometries on that space.

Obviously, if P is a bicircular projection (respectively, generalized bicircular projection), then P is

also a bicircular projection (respectively, generalized bicircular projection).

Every generalized bicircular projection is contractive [22, Corollary 2], that is ‖P‖ � 1. In fact, since

P is generalized bicircular implies that P is generalized bicircular as well, every generalized bicircular

projection is bicontractive, that is ‖P‖ � 1 and ‖P‖ � 1. Considering that bicontractive projections

have been studied in various complex Banach spaces, this result becomes another useful tool in

investigations of generalized bicircular projections.

A linear isometry T : X → X satisfying T2 = Id is called an isometric reflection. It is easy to verify

that the average of the identitywith an isometric reflection is a generalized bicircular projection. These

mappings are the only generalized bicircular projections in various settings (see e.g. [16,5,9,14,19]).

More precisely, inmany cases it turns out that, if P is a linear projection such that P + λP is an isometry

for some modulus one complex number λ /= 1, then either λ = −1, or P is hermitian (in particular,

2P − Id is an isometry). The aim of this paper is to prove that this is true for a large class of complex

Banach spaces, known as JB*-triples, as well as to prove that the additional assumption that P is rank

one yields the conclusion that P must be hermitian.

A JB*-triple is a complex Banach space A together with a continuous triple product {· · ·} : A × A ×
A → A such that

(i) {xyz} is linear in x and z and conjugate linear in y;
(ii) {xyz} is symmetric in the outer variables, i.e., {xyz} = {zyx};
(iii) for any x ∈ A, the operator δ(x) : A → A defined by δ(x)y = {xxy} is hermitian with nonneg-

ative spectrum;

(iv) the following “main identity” holds:

δ(x){abc} = {δ(x)a, b, c} − {a, δ(x)b, c} + {a, b, δ(x)c};
(v) for every x ∈ A, ‖{xxx}‖ = ‖x‖3.

Thenotionof a JB*-triple canbe regardedasa simultaneousgeneralizationof complexHilbert spaces

and C*-algebras: a complex Hilbert space is a JB*-triple with respect to the triple product defined by

{xyz} = 1

2
(〈x, y〉z + 〈z, y〉x)

and a C*-algebra is a JB*-triple with respect to the triple product defined by

{xyz} = 1

2
(xy∗z + zy∗x).

Other examples of JB*-triples are JB*-algebras as well as some Lie algebras.

An element a in a JB*-triple A is called a tripotent if {aaa} = a, and it is called a minimal tripotent,

or an atom, if it is a nonzero tripotent with the property {aAa} = Ca. Every nonzero tripotent is norm

one.
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A linear subspace J of a JB*-triple A is called an ideal of A if {AAJ} + {AJA} ⊆ J. A JB*-triple is said to

be a prime JB*-triple if the intersection of two nonzero norm closed ideals of A is always nonzero. If J

and K are norm closed ideals of A, then

J ∩ K = {JKA} = {JAK} = {AKJ} = {KAJ} = {KJA} = {AJK}. (1)

2. Main results

Theorem 2.1 is a general result characterizing generalized bicircular projections acting on a JB*-

triple. Its proof relies on deep results concerning the structure of surjective linear isometries and the

structure of bicontractive linear projections on JB*-triples (for the historical survey of these results see

e.g. [23], where a comprehensive list of references on JB*-triples can be found).

The class of all bicontractive projections on a JB*-triple A coincides with the class of all generalized

bicircular projections on A, and it contains the class of all hermitian projections on A.

Theorem 2.1. Let A be a JB*-triple and let P : A → A be a linear projection. Then P + λP is an isometry

for some modulus one complex number λ /= 1 if and only if one of the following holds:
(i) λ = −1 and P = 1

2
(Id + T) for some isometric reflection T : A → A,

(ii) P is hermitian (≡ bicircular).

Proof. Let P : A → A be a linear projection such that P + λP is an isometry for some modulus one

complex number λ /= 1. For every modulus one complex number μ, let us define the mapping Tμ :
A → A by Tμ = P + μP. Recall that all Tμ are linear and surjective. Since Tλ is an isometry, as stated

in Section 1, P is a bicontractive projection. According to [17, Theorem 4], this implies that T−1 is an

isometry such that P = 1
2
(Id + T−1) and T−1

2 = Id.

Assume that λ /= −1.

According to [21] (see also [12, Theorem D]), every surjective linear isometry Tμ : A → A satisfies

Tμ({xyz}) = {Tμ(x)Tμ(y)Tμ(z)} (x, y, z ∈ A). (2)

If we define (cf. the proof of [25, Proposition 3.4]), for fixed x, y, z ∈ A,

a = {P(x)P(y)P(z)},
b = {P(x)P(y)P(z)} + {P(x)P(y)P(z)} + {P(x)P(y)P(z)} − P{xyz},
c = {P(x)P(y)P(z)} + {P(x)P(y)P(z)} + {P(x)P(y)P(z)} − P{xyz},
d = {P(x)P(y)P(z)},

then (2) is equivalent to

a + μb + μ2c + μ3d = 0. (3)

Since T1, T−1, Tλ and T−λ = T−1Tλ are isometries, solving the system obtained insertingμ = ±1,±λ
in (3), we conclude a = b = c = d = 0. Hence, (3) holds for every modulus one complex number μ.

Then (2) also holds for every modulus one complex number μ. In particular,

Tμ({xxx}) = {Tμ(x)Tμ(x)Tμ(x)} (x ∈ A).

This yields

‖Tμ(x)‖3 = ‖{Tμ(x)Tμ(x)Tμ(x)}‖ = ‖Tμ({xxx})‖
� ‖Tμ‖ · ‖{xxx}‖ = ‖Tμ‖ · ‖x‖3 (x ∈ A),

so‖Tμ‖3 � ‖Tμ‖ andfinally‖Tμ‖ � 1 for everymodulus one complex numberμ. Thus, for every x ∈ A,

‖x‖ = ‖TμTμ(x)‖ � ‖Tμ(x)‖ � ‖x‖



1270 D. Ilišević / Linear Algebra and its Applications 432 (2010) 1267–1276

which implies ‖Tμ(x)‖ = ‖x‖. Hence, Tμ is an isometry for every modulus one complex number μ,

so P is bicircular (≡ hermitian).

Conversely, if (i) or (ii) holds, then P − P is an isometry. �

In the setting of general complex Banach spaces, if P is not hermitian, then λn = 1 for some n ∈
N \ {1} [22, Theorem 1]. According to Theorem 2.1, in the particular case of JB*-triples, n = 2. Let us

also mention that, for every complex number λ such that λn = 1 for some n ∈ N \ {1}, there exist a

complex Banach space X and a nonhermitian projection P on X such that P + λP is an isometry [22,

Theorem 3].

Let us notice that, regardless ofwhich one of the conclusions (i) and (ii) from Theorem2.1 holds, the

mapping P − P is an isometry, thus P = 1
2
(Id + T) for some isometric reflection T : A → A. Theorem

2.1 points out the fact that the assumption of the existence of a modulus one complex number λ /∈
{−1, 1} such that P + λP is an isometry, yields the conclusion that P must be hermitian.

Remark 2.1. Let H be a complex Hilbert space and let P : H → H be a bicontractive projection. Since

P is bounded, P(H) is a closed subspace of H. Thus P∗ = P. Let T : H → H be defined by T = 2P − Id.

Then T∗ = T and T2 = Id, so T is an isometry. For every modulus one complex number λ and every

x ∈ H,

‖(P + λP)(x)‖2 = 1
4
‖(1 − λ)T(x) + (1 + λ)x‖2

= 1
4

(
|1 − λ|2‖T(x)‖2 + |1 + λ|2‖x‖2

+ (λ − λ) (〈T(x), x〉 − 〈x, T(x)〉)
)

= ‖x‖2.

Hence, every bicontractive (≡ generalized bicircular) projection acting on a complex Hilbert space is

a hermitian (≡ bicircular) projection.

In general, the class of all bicontractive (≡generalizedbicircular) projectionsdoesnot coincidewith

the class of all hermitian (≡ bicircular) projections, see [26, Example 2]. However, it will be proved

in Theorem 2.2 that every bicontractive projection of rank one, acting on a JB*-triple, is hermitian.

Theorem 2.2 is an extension of [26, Theorem 1].

Theorem 2.2. Let A be a JB*-triple and let P : A → A be a rank one linear projection. Then the following

conditions are mutually equivalent:
(i) P is bicontractive,

(ii) P is hermitian,

(iii) there exist an atom a ∈ A such that P(A) = Ca and {aP(A)a} = 0, and two norm closed ideals

H ⊇ P(A) and J ⊆ Ker(P) of A such that A = H ⊕ J,where H is isometrically isomorphic to aHilbert

space.

Proof. (ii) 
⇒ (i): Trivial since 2P − Id is an isometry.

(i) 
⇒ (iii): Since P is a bicontractive projection, [17, Theorem 4] implies that T = 2P − Id is a

surjective linear isometry; T2 = Id. According to [21],

T({xyz}) = {T(x)T(y)T(z)} (x, y, z ∈ A).

Let a ∈ A be norm one such that P(x) = f (x)a for some bounded linear functional f on A.

From P2 = P we get f (a) = 1. Then P(a) = a, so T(a) = a. Then

T({aaa}) = {T(a)T(a)T(a)} = {aaa},
which implies

P({aaa}) = {aaa}.
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Then

|f ({aaa})| = ‖f ({aaa})a‖ = ‖P({aaa})‖ = ‖{aaa}‖ = ‖a‖3 = 1.

Thus {aaa} = μa for some modulus one μ ∈ C. Let δ(a) : A → A be defined by δ(a)x = {aax}. Then
δ(a)a = μa, so μ is an element in the spectrum of δ(a). By the definition of a JB*-triple, the spectrum

of δ(a) is nonnegative. This yields μ = 1 and {aaa} = a. Hence, a is a tripotent.

To every tripotent a ∈ A, there corresponds a Peirce decomposition (see [18, Section 1], and also

[23, Section 2.2])

A = A1 ⊕ A1/2 ⊕ A0,

with {A1A0A} = {A0A1A} = {AA0A1} = {AA1A0} = 0, where Aα = {x ∈ A : {aax} = αx} foreveryα ∈
{1, 1/2, 0}. Let Pα : A → Aα be the corresponding Peirce projections.

Let α ∈ {1/2, 0} and let x ∈ Aα . Then

(1 − α)P(x) = f (x)a − αP(x) = {aaP(x)} − αP(x)

= 1

2
({aaT(x)} + {aax}) − 1

2
α(T(x) + x)

= 1

2
({aaT(x)} − T(αx)) = 1

2
(T({aax}) − T({aax})) = 0,

which implies P(x) = 0. Hence, A1/2 ⊕ A0 ⊆ Ker(P), so P = P1. Then for every x ∈ A1 we have x =
P1(x) = P(x) = f (x)a ∈ Ca. Thus A1 ⊆ Ca. Since the converse also holds, A1 = Ca.

Note that x ∈ Aα if and only if δ(a)x = αx. For every y ∈ A1/2, z ∈ A0, the main identity

δ(a){ayz} = {δ(a)a, y, z} − {a, δ(a)y, z} + {a, y, δ(a)z}
yields

δ(a){ayz} = 1

2
{ayz}.

Hence, {ayz} ∈ A1/2. On the other hand, P(y) = P(z) = 0, thus T(y) = −y, T(z) = −z. Then we have

T({ayz}) = {T(a)T(y)T(z)} = {ayz},
which implies P({ayz}) = {ayz}. This yields {ayz} = P1({ayz}) ∈ A1. Finally, {ayz} ∈ A1/2 ∩ A1 = 0,

that is {aA1/2A0} = 0. Since {aA0A0} ⊆ {A1A0A} = 0 and {aA1A0} ⊆ {A0A1A} = 0, we conclude

{aAA0} = 0.

By [11, Proposition 2.1], applied for X = A0, Y = Ca, there exist norm closed ideals J and H of A

such that

J = {x ∈ A : {aAx} = 0} ⊇ A0,

H = {x ∈ A : {xAJ} = 0} ⊇ Ca,

J ∩ H = 0.

Since a ∈ H, we have

A1/2 ⊆ {aaA} ⊆ {HAA} ⊆ H.

Hence,

Ca ⊕ A1/2 ⊆ H, A0 ⊆ J.

Since A = Ca ⊕ A1/2 ⊕ A0 and J ∩ H = 0, we conclude

H = Ca ⊕ A1/2, J = A0.

Let x ∈ Aα , α ∈ {1/2, 0}. From
δ(a){axa} = {δ(a)a, x, a} − {a, δ(a)x, a} + {a, x, δ(a)a}
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we get

δ(a){axa} = (2 − α){axa}. (4)

Since

{axa} ⊆ {aAA} ⊆ {HAA} ⊆ H = A1 ⊕ A1/2,

there exist y ∈ A1, z ∈ A1/2 such that {axa} = y + z. Then (4) can be written as

δ(a)y + δ(a)z = (2 − α)y + (2 − α)z.

Since δ(a)y = y and δ(a)z = 1
2
z, this implies

(α − 1)y +
(
α − 3

2

)
z = 0.

Hence, y = z = 0. Thus we have proved {a(A1/2 ⊕ A0)a} = 0. Since P = P1, we have P : A → A1/2 ⊕
A0, so {aP(A)a} = 0. This yields

{axa} = {aP(x)a} = f (x){aaa} = f (x)a (x ∈ A).

Hence, {aAa} = Ca, thus a is an atom.

In the same way as in [26, Theorem 1 (Step 5)] one can prove that H is isometrically isomorphic to

a Hilbert space.

(iii) 
⇒ (ii): Let f be a linear functional on A such that P(x) = f (x)a. Since

{axa} = {aP(x)a} = f (x){aaa} = f (x)a,

we have

‖P(x)‖ = ‖f (x)a‖ = |f (x)| = ‖{axa}‖ � ‖x‖,
so P is bounded. Hence, the restriction of P to H is a bounded idempotent from H to H, thus selfadjoint

as well. This implies, for every x ∈ H,

‖P(x)‖2 = 〈x − P(x), x − P(x)〉 = ‖x‖2 − ‖P(x)‖2 � ‖x‖2,

hence the restriction of P to H is a bicontractive projection.

By (1), for every y ∈ H and every z ∈ J we have

{y + z, y + z, y + z} = {yyy} + {zzz}.
This implies

‖y + z‖3 = ‖{y + z, y + z, y + z}‖ = ‖{yyy} + {zzz}‖
� ‖{yyy}‖ + ‖{zzz}‖ = ‖y‖3 + ‖z‖3.

Then

‖y + z‖3 � 2(max{‖y‖, ‖z‖})3.
Assume that for some n ∈ N and all y ∈ H, z ∈ J we have

‖y + z‖3n � 2(max{‖y‖, ‖z‖})3n .
Then

‖y + z‖3n+1 = ‖{y + z, y + z, y + z}‖3n = ‖{yyy} + {zzz}‖3n

� 2(max{‖{yyy}‖, ‖{zzz}‖})3n = 2(max{‖y‖3, ‖z‖3})3n

= 2(max{‖y‖, ‖z‖})3n+1

.
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By induction we conclude

‖y + z‖ � 3n
√

2 · max{‖y‖, ‖z‖} (n ∈ N, y ∈ H, z ∈ J).

Hence,

‖y + z‖ �max{‖y‖, ‖z‖} (y ∈ H, z ∈ J).

On the other hand,

max{‖y‖, ‖z‖} �
1

2
(‖y + z‖ + ‖y − z‖)

�
1

2
(‖y + z‖ + max{‖y‖, ‖z‖}),

which implies

max{‖y‖, ‖z‖} � ‖y + z‖ (y ∈ H, z ∈ J).

Hence, for every x ∈ A,

‖x‖ = max{‖y‖, ‖z‖},
where y ∈ H and z ∈ J are such that x = y + z.

Let λ be an arbitrary modulus one complex number and let Tλ = P + λP. Let us note that the

restriction of Tλ toH is an isometry fromH toH by Remark 2.1, and let us also note that Tλ(z) = λz for
every z ∈ J. Let x ∈ A and let y ∈ H and z ∈ J be such that x = y + z. Then Tλ(y) ∈ H and Tλ(z) ∈ J,

so

‖Tλ(x)‖ = ‖Tλ(y) + Tλ(z)‖ = max{‖Tλ(y)‖, ‖Tλ(z)‖} = max{‖y‖, ‖z‖} = ‖x‖.
Hence, Tλ is an isometry for everymodulus one complex numberλ, thus P is a bicircular (≡ hermitian)

projection. �

From Theorem 2.2 we immediately get (cf. [26, Corollary 1]):

Corollary 2.3. The only prime JB*-triples admitting rank one bicontractive projections are Hilbert spaces.

Regarding Remark 2.1 and Theorem 2.2, it would be interesting to establish the structure of a

JB*-triple Awith the property that every bicontractive projection on A is hermitian.

3. Remarks on applications to C*-algebras

Recall that the structure of hermitian (≡ bicircular) projections on a C*-algebra is determined in

[15, Theorem 3.3].

Remark 3.1. If A is K(H) or B(H) (the algebra of all compact linear operators on a complex separable

infinite dimensionalHilbert spaceH and the algebra of all bounded linear operators onH, respectively),

then Theorem 2.1, [5, Lemma 2.1] and [15, Corollary 3.6] yield the structure of generalized bicircular

projections on A (cf. [5], as well as [19]).

Remark 3.2. Let Ω be a locally compact Hausdorff space and let C0(Ω) be the algebra (with usual

pointwise operations) of all continuous complex-valued functions on Ω vanishing at infinity. Define

an involution by f ∗(w) = f (w) for every w ∈ Ω . Then C0(Ω), equipped with the supremum norm,

is a commutative C*-algebra. (According to Gelfand–Naimark theorem, e.g. [1, Theorem 1.2.1] or [13,

Theorem 1.3.1], every commutative C*-algebra is isometrically ∗-isomorphic to C0(Ω) for some, up to

homeomorphism unique, locally compact Hausdorff spaceΩ .) By [15, Corollary 3.4], the only nonzero

hermitian projection on C0(Ω) is the identity operator, since the multiplier algebra of C0(Ω) is the
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algebra of all bounded continuous complex-valued functions on Ω (e.g. [1, Example 1.1.8]). According

to Theorem 2.1, for the complete description of generalized bicircular projections on C0(Ω), it remains

to determine the structure of isometric reflections on C0(Ω).
If T : C0(Ω) → C0(Ω) is a surjective linear isometry, the Banach-Stone theorem (e.g. [2, Theorem

7.1]) implies the existence of a homeomorphism φ : Ω → Ω and a continuous function u : Ω → C,

with |u(w)| = 1 for every w ∈ Ω , such that

T(f )(w) = u(w)f (φ(w)) (f ∈ C0(Ω),w ∈ Ω). (5)

Assume that T is an isometric reflection. Then (5) yields

f (w) = T(T(f ))(w) = u(w)T(f )(φ(w))

= u(w)u(φ(w))f (φ2(w)) (f ∈ C0(Ω),w ∈ Ω). (6)

If there existsw0 ∈ Ω such thatφ2(w0) /= w0, then there exists f0 ∈ C0(Ω) such that f0(w0) = 1 and

f0(φ
2(w0)) = 0 (the existence of such a function, the so-called Urysohn function, follows from the

fact that every locally compact Hausdorff space is a T3 1
2
space; see e.g. [27, p. 25]). However, this is in

contradiction with (6). Therefore, φ2 is the identity operator. Taking this into account in (5), we get

u(φ(w)) = u(w) for every w ∈ Ω .

Hence, if P : C0(Ω) → C0(Ω) is a projection (which is not zero nor the identity operator), then

P + λP is an isometry for some modulus one complex number λ /= 1 if and only if λ = −1 and

there exist a homeomorphism φ : Ω → Ω satisfying φ2(w) = w for everyw ∈ Ω , and a continuous

function u : Ω → C satisfying |u(w)| = 1 and u(φ(w)) = u(w) for every w ∈ Ω , such that

P(f )(w) = 1

2
(f (w) + u(w)f (φ(w))) (f ∈ C0(Ω), w ∈ Ω).

(Some of the related papers are [9,4,14]).

Remark 3.3. Let A be a C*-algebra. In the sequel we use terminology, notations and the results from

[15]. It turns out that the existence of nontrivial hermitian projections (that is, other than zero and the

identity) in the setting of C*-algebras is closely connected with the existence of nontrivial selfadjoint

projections in the multiplier algebra (more details on multiplier algebras can be found in e.g. [1]). It

also turns out that A admits rank one bicontractive projections if and only if it admits central minimal

selfadjoint projections.

(a) Assume that, for every ∗-ideal I of A, the only selfadjoint projections in M(I⊥ ⊕ I⊥⊥) are zero

and the identity. Let P : A → A be a hermitian projection. By [15, Theorem 3.3], the restriction of P

to I⊥ ⊕ I⊥⊥ is a trivial projection, that is either zero, or the identity. Every hermitian projection on A

satisfies (see e.g. [15, Lemma 3.2] which is based on [25, Proposition 3.4], that largely motivated the

proof of Theorem 2.1)

P(xyx) = P(x)yx − xP(y∗)∗x + xyP(x) (x, y ∈ A). (7)

If P is zero on I⊥ ⊕ I⊥⊥, then (7) implies

xP(y∗)∗x = 0 (x ∈ I⊥ ⊕ I⊥⊥, y ∈ A),

so P is zero on A. If P is the identity on I⊥ ⊕ I⊥⊥, then (7) implies

xP(y∗)∗x = xyx (x ∈ I⊥ ⊕ I⊥⊥, y ∈ A),

thus P is the identity on A.

Hence, on the assumption that, for every ∗-ideal I of A, the only selfadjoint projections in M(I⊥ ⊕
I⊥⊥) are zero and the identity, the preceding discussion togetherwith Theorem2.1 yields the following

conclusion: if P : A → A is a nontrivial linear projection, then P + λP is an isometry for somemodulus

one complex numberλ /= 1 if and only ifλ = −1 and P is the average of the identitywith an isometric

reflection. An example of a C*-algebra satisfying the assumed property is any simple unital C*-algebra

without selfadjointprojectionsexcept zeroand the identity (thefirstonewasconstructedbyBlackadar;

see [3] and also e.g. [13, IV.8]).
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(b) Let us emphasize that, if for every ideal I ofAwehave I⊥ ⊕ I⊥⊥ = A (this is the case, for example,

when A is a prime C*-algebra, a C*-subalgebra of K(H), or a von Neumann algebra [15, Corollaries 3.8

and 3.9]) and if there exists a selfadjoint projection in M(A) which is not zero nor the identity, then

there exists a nontrivial hermitian projection on A [15, Example 3.1].

(c) Let us also note that, for every noncentral selfadjoint projection p ∈ M(A), themapping P : A →
A defined by

P(x) = 2pxp − xp − px + x (x ∈ A),

is a nonhermitian generalized bicircular projection on A, which can be verified via [15, Theorem 3.3].

Namely, if we assume that P is hermitian, then [15, Theorem 3.3] implies the existence of a ∗-ideal I
of A and a selfadjoint projection q ∈ M(I⊥ ⊕ I⊥⊥) such that P(x) = qx for every x ∈ I⊥ and P(x∗)∗ =
qx for every x ∈ I⊥⊥. Since P(px) = P((px)∗)∗ = pxp for every x ∈ A, we have pxp = qpx for every

x ∈ I⊥ ⊕ I⊥⊥. This implies

(px − xp)y(px − xp) = 0 (x, y ∈ I⊥ ⊕ I⊥⊥).

Since I⊥ ⊕ I⊥⊥ is the essential ideal of A, this yields px = xp for every x ∈ I⊥ ⊕ I⊥⊥, and p commutes

with all elements in A as well. Thus it also commutes with all elements in M(A); a contradiction.

(d) Let p ∈ A be a central minimal selfadjoint projection. Then the mapping P : A → A defined by

P(x) = px, for every x ∈ A, is a rank one bicontractive projection.

Conversely, let P : A → A be a rank one bicontractive projection. By Theorem 2.2, P is a hermitian

projection. Then, according to [15, Theorem 3.3], there exist a ∗-ideal I of A and a selfadjoint projection

p ∈ M(I⊥ ⊕ I⊥⊥) such that P(x) = px for every x ∈ I⊥ and P(x) = xp for every x ∈ I⊥⊥. By Theorem

2.2, there exists an atom a ∈ A such that P(A) = Ca and {aP(A)a} = 0. Let f be a bounded linear

functional on A satisfying P(x) = f (x)a. If f (I⊥) = f (I⊥⊥) = 0, then P(I⊥ ⊕ I⊥⊥) = 0, so P(A) = 0;
a contradiction. Hence, f (I⊥) /= 0 or f (I⊥⊥) /= 0.

Assume that f (I⊥) /= 0. Let x0 ∈ I⊥ be such that f (x0) /= 0. Then f (x0)a = P(x0) = px0 implies

a = 1
f (x0)

px0 ∈ I⊥. Hence, pa = a. Now we have

f (aa∗)a = P(aa∗) = p(aa∗) = aa∗.
Let e = aa∗ ∈ I⊥. Then e is a minimal selfadjoint projection in A such that pe = ep = e. Since

|f (aa∗)| = 1, we have

P(x) = f (x)a = f (x)f (aa∗)e.
From {aP(A)a} = 0 we get

ax∗a = aP(x)∗a = f (x)f (aa∗)aea,
which implies

ex∗e = f (x)f (aa∗)e = P(x)∗

and finally

P(x) = exe (x ∈ A).

In particular,

px = exe (x ∈ I⊥),

xp = 0 (x ∈ I⊥⊥).

This implies

(e − p)x(e − p) = 0 (x ∈ I⊥ ⊕ I⊥⊥),

hence e = p. Then p ∈ I⊥ and

P(x) = px = pxp (x ∈ I⊥).
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This yields px = xp for every x ∈ I⊥ ⊕ I⊥⊥. Thus p commutes with all elements in A. Hence, p is a

central minimal selfadjoint projection such that P(x) = px.

The case f (I⊥⊥) /= 0 can be discussed in an analogous way.
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