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Abstract Let C be a Cartan-factor having arbitrary dimension dimC . It is shown that
the group Inn(C) of inner automorphisms of C acts transitively on the manifold Ur (C) of
tripotents with finite rank r in C . This extends results by Loos (Bounded Symmetric Domains
and Jordan Pairs. Mathematical Lectures. University of California, Irvine, 1977) valid in finite
dimensions, and similar findings by Isidro et al. (Math Z 233(4):741–754, 2000; Acta Sci
Math (Szeged) 66(3–4), 2000; Expo Math 20(2):97–116, 2002; Q J Math 57(4):505–525,
2006). Hence, the results presented here close a significant gap concerning the transitivity
property of the general infinite-dimensional case. The proofs given here are based on new
methods, independent of those used for the finite-dimensional cases.

1 Introduction

The set Ur (B(H, K )) of partial isometries of a fixed rank r in B(H, K ) provides a well
known example of a Riemannian symmetric space. That Ur (B(H, K )) is connected was
shown by Halmos and McLaughlin [6]. A more general approach to Riemannian symmetric
spaces is provided by Jordan structures, such as JB∗-algebras, JB∗-triples and their weak∗-
closed versions, JBW∗-triples, of which B(H, K ) is but one of six fundamental types, the
Cartan factors. The partial isometries of B(H, K ) are precisely the tripotent elements. In
[15] Loos showed that when C is a finite-dimensional Cartan factor, then the group Inn(C)
acts transitively on the set Ur (C) of tripotents of rank r in C . An analogous statement for
Hilbert spaces of arbitrary dimension was proved in [10]. The goal of the present article is to
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126 R. V. Hügli, M. Mackey

generalize that result to all Cartan-factors. The methods of our proofs are independent of those
of Loos, and may be applied to the finite dimensional Cartan-factors, in particular to those
of type V and VI, which have dimensions 16 and 27, respectively, though these require more
extensive calculations than the other types. In this paper we focus on the infinite dimensional
cases.

The categories of JB∗-triples and JBW∗-triples have gained significance for their profound
connections with several fields in mathematics and mathematical physics. The recent book
[5] by Friedman and Scarr presents applications, mainly of rectangular factors and spin
factors, in relativity theory and quantum mechanics. The Riemannian structure of manifolds
of tripotents and of their generalizations in Jordan-algebras was further investigated in recent
works by Isidro et al. [12–14] and Nomura [17]. Precursors of their results were obtained
by Hirzebruch [8]. The above-cited works show that the geodesics in those manifolds are
given by paths of inner automorphisms of the corresponding JBW∗-triple. The arguments
presented in [10,11] show that the transitivity of Inn(C) on U1(C) is closely connected
to the problem of the existence of contractive projections onto subtriples of JB∗-triples or
JBW∗-triples.

This article is organized as follows. In Sect. 2 we present some general facts and defi-
nitions of the theory of JB∗-triples and JBW∗-triples. Section 3 is devoted to some details
concerning Cartan-factors, which represent an important class of JBW∗-triples. They arise as
the irreducible components of atomic JBW∗-triples. In this section we also study two exam-
ples which illustrate the transitivity property, and which serve as key tools to proving the
general cases. Section 4 contains the main results. Theorem 4.1 shows that any two minimal
tripotents in an (infinite-dimensional) Cartan-factor C are connected by an element ϕ of the
group Inn(C), that is Inn(C) acts transitively on the set U1(C) of minimial tripotents in C .
As a corollary, the result holds for any two tripotents of equal finite rank (Theorem 4.3). In
the last section, we also investigate some consequences of the main result to weak∗-operator
limits of inner automorphisms and to the σ -finite elements of C . However, those results
do not provide a straightforward generalization of the main result, and are therefore to be
regarded as tentative.

The techniques depend to a great extent on the coordinatization of the Cartan-factors by
grids, a method introduced by Neher [16]. The strategy of our proof is to use appropriate
transformations, reducing the general case to two special cases, namely that of the Jordan
algebra S = M

s
2(C) of symmetric complex 2 × 2-matrices, and that of complex Hilbert

spaces.

2 Preliminaries

Recall that a JB∗-triple is a complex Banach space A, equipped with a triple product
(a, b, c) �→ {a b c} from A × A × A to A having the properties that the expression {a, b, c}
is symmetric and linear in a and c and conjugate linear in b, the Jordan triple identity holds,
that is

[D(a, b), D(c, d)] = D({a b c}, d)− D(c, {d a b}), (2.1)

where [ , ] denotes the commutator, and D(a, b) is the linear mapping on A defined by
D(a, b)c = {a b c}. Moreover, the mapping (a, a) �→ D(a, a) is continuous from A × A to
the Banach space B(A) of bounded linear operators on A, for each element a in A, D(a, a)
is hermitian in the sense of [1, Definition 5.1], with non-negative spectrum and has norm
‖D(a, a)‖ = ‖a‖2. If A is also the dual of some Banach space A∗, then A is said to be a
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Transitivity of inner automorphisms in infinite dimensional Cartan factors 127

JBW∗-triple, and A∗ is referred to as the predual of A. A subspace B of A is said to be a
subtriple if {B B B} is contained in B.

An element u of A is said to be a tripotent if {u, u, u} = u. The set of tripotents of A is
denoted by U(A). Let j , k and l be equal to 0, 1 or 2. For each tripotent u of A, the norm-
and weak∗-continuous projections

P2(u) = Q(u)2,

P1(u) = 2(D(u, u)− Q(u)2),

P0(u) = idA − 2D(u, u)+ Q(u)2

are referred to as the Peirce projections corresponding to u. It can be seen that P0(u) +
P1(u)+ P2(u) equals the identity idA on A and that if j �= k, then Pj (u)Pk(u) equals zero.
The ranges, Ak(u) of Pk(u) are weak∗-closed subtriples of A, referred to as the Peirce spaces
of u. Moreover, for all elements a of A,

a ∈ Ak(u) if and only if D(u, u)a = k

2
a. (2.2)

Hence, the Peirce spaces are the eigenspaces of D(u, u), with eigenvalues 0, 1/2 and 1,
respectively. Using these properties, the algebraic relations u⊥v (u and v are orthogonal),
u�v (u and v are collinear) and u 	 v (u governs v) are defined for elements u and v of
U(A) as follows:

u⊥v :⇔ u ∈ A0(v) and v ∈ A0(u), (2.3)

u�v :⇔ u ∈ A1(v) and v ∈ A1(u), (2.4)

u 	 v :⇔ u ∈ A1(v) and v ∈ A2(u). (2.5)

If the tripotents u and v are orthogonal then u + v is a tripotent. Moreover, the conditions
u ∈ A0(v) and v ∈ A0(u) (used in 2.3) are equivalent. A non-zero tripotent u is said to be
minimal if it is not the sum of non-zero orthogonal tripotents. If A is a JBW∗-triple, then u
is minimal if and only if Q(u)A = Cu [16]. A JBW∗-triple is said to be atomic if it is the
weak∗-closed span of its minimal tripotents. In this case, each element a of A can be written
as a (possibly infinite) weak∗-convergent linear combination a = ∑

i∈I αi ui of pairwise
orthogonal minimal tripotents ui . If a itself is a tripotent, then the (non-zero) coefficients αi

are of unit modulus. The cardinality |I | of the index set I depends only on the element a,
and is referred to as the rank of a. Hence, the minimal tripotents are precisely those of rank
one. The rank of the JBW∗-triple A is the maximal rank of any of its elements. Let Ur (A)
denote the set of tripotents having rank r .

Let Aut(A) be the group of all triple automorphisms of A. The subgroup of Aut(A)
generated by the exponentials of i t D(a, a) is called the inner automorphism group denoted
Inn(A). It is known that if dim(A) < ∞ then idA ∈ sp

R
{D(a a) : a ∈ A}, hence the torus

T = {λ ∈ C : |λ| = 1} is a subgroup of Inn(A) [18]. This may not be the case in infinite
dimensions. However, the orbit of a tripotent u is the same under TInn(A) as it is under
Inn(A), i.e.,

TInn(A)(u) = Inn(A)(u). (2.6)

Indeed, from (2.2) we see that Cu ⊆ A2(u) and that D(u, u)|A2(u) = idA2(u). Therefore
exp i t D(uu)(u) = eit u, which implies (2.6). Hence, for our purpose, using Inn(A) will not
restrict the generality of the arguments. Observe that if B is a subtriple of A, then Inn(B)
is a subgroup of Inn(A). Clearly ϕ ∈ Aut(A) preserves the set U(A) of tripotents and any
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relation between them which is defined in terms of the triple product. It also preserves the
rank of tripotents.

For tripotents u, v ∈ U(A)we define the equivalence relation u ∼ v to hold if there exists
ϕ ∈ Inn(A) such that ϕ(u) = v.

The following example illustrates the transitivity property of inner automorphisms. It will
also be important in proving the main result.

Example 2.1 The Cartan factor S := M
s
2(C) of symmetric 2 × 2-matrices is a unital Jordan-

algebra of dimension 3, spanned by the minimal tripotents a, b = I − a, and the tripotent u
given by

a =
[

1 0

0 0

]

, b =
[

0 0

0 1

]

, u =
[

0 1

1 0

]

.

It is known that, since S is a finite dimensional triple factor, the inner automorphisms of
S act transitively on the minimal tripotents [15]. Let’s look at the details. Consider the inner
derivation G(a, u) := 2(D(u, a)− D(a, u)) on S, given by

G(a, u)

([
x y

y z

])

=
[

−2y x − z

x − z 2y

]

.

To find its exponential, identify G with the linear map on C
3 by

G

⎡

⎢
⎣

x

y

z

⎤

⎥
⎦ =

⎡

⎢
⎣

−2y

x − y

2y

⎤

⎥
⎦ =

⎡

⎢
⎣

0 −2 0

1 0 −1

0 2 0

⎤

⎥
⎦

⎡

⎢
⎣

x

y

z

⎤

⎥
⎦ .

Then, we obtain

exp(tG) = 1

2

⎡

⎢
⎣

1 + cos(2t) −2 sin(2t) 1 − cos(2t)

sin(2t) 2 cos(2t) − sin(2t)

1 − cos(2t) sin(2t) 1 + cos(2t)

⎤

⎥
⎦ .

Thus

exp(tG)

[
1 0

0 0

]

= 1

2

[
cos2(t) sin(t) cos(t)

sin(t) cos(t) sin2(t)

]

. (2.7)

This is a well known one-parameter family of inner automorphisms, with exp((π/2)G)a = b.
This shows that a ∼ b. Since S is finite dimensional, Corollary 5.9 in [15] implies that any
two tripotents of rank one are equivalent. We provide an explicit proof for this case. For
elements x , y and z of C

2, regarded as a Hilbert space with the usual inner product, the
elementary operator x ⊗ y is defined by x ⊗ y(z) = 〈z, y〉x (see also the next section). It is
enough to show that a ∼ x ⊗ x̄ , for any unit vector x = λe1 +µe2 ∈ H . Hence, we need to
show that

a =
[

1 0

0 0

]

∼
[
λ2 λµ

λµ µ2

]

= x ⊗ x̄ .

When λ and µ are real then this is achieved by taking λ = cos t and µ = sin t . For complex
λ, µ, notice that

D(a, a)

[
x y

y z

]

=
[

x y/2

y/2 0

]

.
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Transitivity of inner automorphisms in infinite dimensional Cartan factors 129

It follows that

exp(i t D(a, a))

[
x y

y z

]

=
[

eit x eit/2 y

eit/2 y z

]

.

Choosing t such that exp(i t/2) = λ̄
λ

, we see that

x ⊗ x̄ =
[
λ2 λµ

λµ µ2

]

∼
[

|λ2| |λ|µ
|λ|µ µ2

]

.

A similar argument shows that
[

|λ2| |λ|µ
|λ|µ |µ2|

]

∼
[

|λ2| |λµ|
|λµ| |µ2|

]

,

and so we can conclude that

x ⊗ x̄ ∼
[

|λ2| |λµ|
|λµ| |µ2|

]

=
[

cos2(t) sin(t) cos(t)

sin(t) cos(t) sin2(t)

]

∼
[

1 0

0 0

]

.

A first step into the case of infinite dimensional factors is to deal with Hilbert spaces.

Example 2.2 A complex Hilbert space H with inner product 〈., .〉 is a Cartan-factor of type
I. The triple product is defined for a, b, c ∈ H by

{a, b, c} = 1

2
(〈a, b〉c + 〈c, b〉a) . (2.8)

It is easily seen that the non-zero tripotents are precisely the elements of norm one, and these
are also minimal tripotents, i.e., of rank 1 in H . The relation of Hilbert-orthogonality is that
of collinearity in terms of triple structure.

To make the arguments of this presentation more self-contained we give a proof of the
transitivity property of Hilbert spaces. Let S1(H) denote the the unit-sphere of H . We may
first assume that dim H =2. We may again refer to Loos’ result in [15] to obtain the transitivity
property for the finite dimensional case. The following calculations, like those in Example
2.1, are more elementary. Consider the basis vector b1, b2 and an arbitrary vector c of norm
one, given by

b1 =
[

1

0

]

, b2 =
[

0

1

]

, c =
[
γ1

γ2

]

Let Bs = {b1, b2} be the standard basis of H . For any complex number λ of modulus one,
let a = a(λ) be the element of H , defined by

a = 1√
2

[
1

λ

]

.

Denote the operator D(a, a) by Dλ, to indicate its dependence on λ. It follows from (2.8)
that a is an eigenvector of Dλ. Any vector orthogonal to a is also an eigenvector of Dλ. It
is easy to calculate the matrix of Dλ and its exponential from the corresponding diagonal
forms. The operator exp i t Dλ, is explicitly given by

exp i t Dλ = 1

2

[
eit + eit/2 λ̄(eit − eit/2)

λ(eit − eit/2) eit + eit/2

]

.
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In particular, the unit vector b1 is mapped to

(exp i t Dλ)(b1) = (exp i t Dλ)

[
1

0

]

= 1

2

[
eit + eit/2

λ(eit − eit/2)

]

. (2.9)

This vector is of norm one, for all reals t . The modulus of its first component is |eit + e
i
2 t |/2

and attains all values between 0 and 1 when t runs through R. If c is any vector with
components γ1 and γ2, and if c has norm one in H , then |γ2| equals

√
1 − |γ1|2 and t

can be chosen such that

1

2

∣
∣
∣eit + eit/2

∣
∣
∣ = |γ1| , and

1

2

∣
∣
∣eit − eit/2

∣
∣
∣ = |γ2| . (2.10)

Ifγ1 = 0, thenσ(exp 2π i Dλ)b1 equals c, for someσ ∈ T. Otherwise setλ = γ2(e
it + eit/2)/

γ1(e
it − eit/2). The equations (2.10) and (2.9) imply that

|λ| = 1 =
∣
∣
∣
∣

2γ1

eit + eit/2

∣
∣
∣
∣ , and

2γ1

eit + eit/2 (exp i t Dλ)

[
1

0

]

= c.

Since a two-dimensional subspace of H is a subtriple, the above result shows the desired
equivalence b1 ∼ c in H .

The following theorem summarizes some results obtained in [10].

Theorem 2.3 Let C be a collinear system in a JB∗-triple A, and let H be the subspace
H = spC of A. Then, H is a subtriple of A if and only if, either |C| ≤ 2 or for any three
distinct elements u, v, w of C, the product {u v w} vanishes. If this is the case, then the
following results hold.

(1.) The subtriple H is a Hilbert space with orthonormal basis C, and the triple product
on H given by (2.8) coincides with the restriction of the triple product of A to H.

(2.) The set {σ exp i t D(a, a) : σ ∈ T, a ∈ H} consists of linear isometric triple
isomorphisms on the whole space A and acts transitively on the unit sphere S1(H)
of H.

(3.) If A is a JBW∗-triple, then H is also weak∗-closed in A, and therefore, is a JBW∗-
subtriple of A.

Since the set {σ exp i t D(a, a) : σ ∈ T, a ∈ H} generates TInn(H), Theorems 2.3(2.)
and (2.6) show that Inn(H) acts transitively on S1(H).

3 Cartan-factors

There are six types of simple, or irreducible atomic JBW∗-triples, known as the Cartan-
factors. They are refered to, respectively, as the rectangular factors which are of the form
B(G, H) for Hilbert spaces G and H , the hermitean factors consisting of the elements of
B(H) that are symmetric with respect to transposition, the symplectic factors, i.e., the space
of the anti-symmetric elements of B(H), the spin factors, constructed from H , the bi-Cayley
triple which is the space of 2 × 2-matrices with entries in the split Octonions Os , as well as
the Albert triple consisting of the symmetric 3 × 3-matrices with entries in Os . Since the bi-
Cayley triple and the Albert triple have (complex) dimension 16 and 27, respectively we will
not include them in our current considerations. Instead we focus on the remaining four types,
all of which include infinite-dimensional examples. In [16] the methods of coordinatization
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Transitivity of inner automorphisms in infinite dimensional Cartan factors 131

of JBW∗-triples by grids was developed, and a classification of atomic JBW∗-triples was
given.

We briefly discuss some important, well known details concerning the infinite-dimensional
cases. For general information on the subject we refer to the books [5,15,16]. Given complex
Hilbert spaces H and K , the space B(H, K ) of bounded operators from H to K is a JBW∗-
triple when equipped with the triple product

{a, b, c} = 1

2
(ab∗c + cb∗a). (3.1)

Here, a∗ denotes the usual adjoint of the element a ∈ B(H, K ) [5,7]. A JBW∗-triple of this
form is a Cartan factor of type I, also referred to as rectangular type. Recall that for x ∈ H and
y ∈ K , the elementary operator y ⊗ x , seen as an element of B(H, K ) acts by contraction
with the inner product of H by (y ⊗ x)(z) = 〈z, x〉y. In particular if a := y1 ⊗ x1 and
b := y2 ⊗ x2, for x1, x2 ∈ H and y1, y2 ∈ K , then

ab∗ = 〈x2, x1〉y1 ⊗ y2, b∗a = 〈y1, y2〉x1 ⊗ x2. (3.2)

Let (hi )i∈I be an orthonormal basis of H and (k j ) j∈J an orthonormal basis of K . Then, for
all (i, j) ∈ I × J , the element ei, j := k j ⊗ hi is a minimal tripotent of C , and (ei, j )i, j∈I×J

is a rectangular grid that spans C up to weak∗-closure. The Cartan-factors of type II and III
are subtriples of the type I factors B(H), and are described by a fixed conjugation x �→ x̄
on H . For a ∈ B(H) we set at = a∗ x̄ . Type II and III factors are the subspaces of B(H)
consisting of elements with the properties that a = at and a = −at , respectively. An element
a of A is said to be minimal if {a A a} = Ca. In [7] the minimal elements of Cartan-factors
were described in terms of the elementary operators. In our notation, the minimal elements
of type I, II, and III factors are the sets {x ⊗ y : x, y ∈ H, y ∈ K }, {x ⊗ x̄ : x ∈ H} and
{x ⊗ ȳ − y ⊗ x̄ : x, y ∈ H}, respectively. For more details see [7].

For any non-zero cardinal number c a spin factor S(c) is obtained from a Hilbert space
H with dimension c, by setting S = H ⊕ H ′ or S = C ⊕ H ⊕ H ′. The former are the even
spin factors, the later are the odd spin factors. The spaces H and H ′ are of equal dimension
and are related by conjugations described below. The inner product 〈., .〉 of H extends to S
by setting

〈(α, x1, y1), (β, x2, y1)〉 = αβ + 〈x1, x2〉 + 〈y1, y2〉.
For the purpose of coordinatization, we use an orthonormal basis B = {ek}k∈K of H . The
mapping e j �→ e′

i is a symmetry between H and H ′, and we define e′
0 = e0. The involution

∗ : S → S is the conjugate-linear involutive map determined by

e∗
j = e′

j , e∗
0 = e0 (i ∈ I ). (3.3)

The triple product of S is given by

2{a b c} = 〈a, b〉Sc + 〈c, b〉Sa − 〈a, c∗〉Sb∗ (3.4)

It will be convenient to write an element a of S as a complex number γ , combined with a
column of elements x and y of H , which will be written as rows, i.e., x = (α1, α2, . . .) and
y = (β1, β2, . . .), for αk, βk ∈ C, k ∈ K . Then, a ∈ S is given by

a = γ ⊕
[

x

y

]

= γ ⊕
[
α1 α2 α3 . . .

β1 β2 β3 . . .

]

.
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This representation has the advantage that the orthogonal matrix units appear in the same
column. Any other pairing of matrix units provides a collinear pair, that is ek�{e j , e′

k},
for j �= k. We define e0 to be zero if S is an even spin factor, otherwise e0 is the unit
e0 = (1, 0, 0) ∈ S. Note that the index 0 is not an element of K .

The Cartan-factor S presented in Example 2.1 is both a hermitean Cartan-factor and a
spin factor. As a spin factor, it is obtained by setting H = C, and S = Ce0 ⊕ H ⊕ H . Then
e0 = (1, 0, 0), e1 = (0, 1, 0) and e′

1 = (0, 0, 1). It is easily seen that S(3) is isomorphic to
S presented in Example 2.1. An application of Theorem 2.3 gives the following result.

Lemma 3.1 Let a be an element of the spin factor S(3) as defined above. Then there exists
an inner automorphism ϕ ∈ Inn(S(3)) such that ϕ(a) = 0e0 +αe1 +βe′

1, i.e., the component
in e0 vanishes. Moreover, ϕ can be chosen such that α = 1, or such that β = 1.

Proof Since a non-trivial spin factor has rank two, the element a ∈ S(3) can be written as a
linear combination of two orthogonal minimal tripotents, i.e., a = αu1 + βu2, for elements
u1, u2 ∈ U1(S(3))which are such that u1⊥u2, andα, β ∈ C. Since S(3) is a finite dimensional
triple factor, Example 2.1 shows that Inn(S(3)) acts transitively on U1(S(3)). In particular,
there exists ϕ ∈ Inn(S(3)), such that ϕ(u1) = e1. Since the set of all tripotents w satisfying
e1⊥w is Te′

1, and ϕ preserves orthogonality, it follows that ϕ(u2) = λe′
1, for some λ ∈ T.

The inner automorphismψ = exp i t D(e′
1, e′

1) is such thatψ(e0) = eit/2e0,ψ(e1) = e1, and
ψe′

1 = eit e′
1. Hence, for an appropriate choice of t ∈ R, the inner automorphism θ = ψ ◦ ϕ

has all the required properties. ��

4 Main results

With the preparations given in the previous sections, we can now proceed to establish the
announced main results of this article. We treat each case of infinite dimensional Cartan-
factor separately. The general strategy of the proof is the same in each case. The result in the
special cases S and Hilbert-spaces is used repeatedly.

Theorem 4.1 Let C be an infinite dimensional Cartan factor. Then the group Inn(C) acts
transitively on the set U1(C) of minimal tripotents of C.

Proof Type I: Let the Cartan-factor C be represented on Hilbert spaces H and K . We assume
that the dimensions of H and K are at least 3. The proof for the cases in which dimH ≤ 2
or dimK ≤ 2 is a simplifed version of this proof. Choose orthonormal bases {hi }i∈I and
{k j } j∈J of H and K , respectively. It is sufficient to fix an index (i0, j0) ∈ I × J and to provide
an inner automorphism ϕ which sends the element v := ei0, j0 = k j0 ⊗hi0 to an arbitrary rank
one tripotent u. It is known that the tripotents of B(H, K ) are precisely the partial isometries
from H to K . Hence p = u∗u and q = uu∗ are orthoprojections on H and K respectively.
By Harris [7], there are elements x in H and y in K with ‖x‖ = ‖y‖ = 1, such that

u = y ⊗ x =
∑

i∈I

〈hi , x〉 y ⊗ hi .

Consider distinct indices r and s in I . The triple products of these elements are determined
by the relations (3.1) and (3.2). From these we obtain,

{y ⊗ hr ,y ⊗ hr ,y ⊗ hs} = 1

2
(y ⊗ hr · hr ⊗ y · y ⊗ hs + y ⊗ hs · hr ⊗ y · y ⊗ hr )

= 1

2
y ⊗ hs .
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Transitivity of inner automorphisms in infinite dimensional Cartan factors 133

A similar calculation shows that, for distinct r and s in J and i in I we have,

{kr ⊗ hi , kr ⊗ hi , ks ⊗ hi } = 1

2
ks ⊗ hi .

It can be seen that for three distinct indices, we have

{y ⊗ hr , y ⊗ hr , y ⊗ hs} = 0,

{kr ⊗ hi , kr ⊗ hi , ks ⊗ hi } = 0.

Hence, the collections (y ⊗ hi )i∈I and (k j ⊗ hi ) j∈J are collinear systems in C and, by
Theorem 2.3, their respective closed spans are Hilbert spaces and subtriples of A. In partic-
ular u = y ⊗ x is a norm one element in the span of (y ⊗ hi )i∈I , and y ⊗ hi0 is a norm
one element in the span of (k j ⊗ hi0) j∈J . Hence by Theorem 2.3 (2.), there are mappings ϕ1

and ϕ2 in Inn(C) such that ϕ1(ei0, j0) = y ⊗ hi0 , and ϕ2(y ⊗ hi0) = u. This proves that the
relation v ∼ u holds.

Type II: Suppose that C is a Cartan-factor of type II with minimal tripotents a = x ⊗ x̄
and b = y ⊗ ȳ, where x, y ∈ H have unit norm. Let ⊥H denote the usual orthogonality
in a Hilbert-space. Assume first that x⊥H y, which is equivalent to saying that a and b are
orthogonal tripotents. It is easily checked that v = x ⊗ ȳ + y ⊗ x̄ is a tripotent that lies in
the Peirce- 1

2 space of both a and b. Moreover, the space sp{a, b, v} is closed under triple
products, as is verified by the identities

{a, a, a} = a,

{a, a, v} = 1

2
v,

{a, a, b} = 1

2
b,

{a, v, a} = 0,

{a, v, v} = 1

2
v,

{a, v, b} = 1

2
b,

(4.1)

From the relations (4.1) it is seen that the linear map J : C → S determined by

J (a) =
[

1 0

0 0

]

, J (b) =
[

0 0

0 1

]

, J (v) =
[

0 1

1 0

]

(4.2)

is a triple-isomorphism. This together with the transitivity property of S guarantees that
a ∼ b. What if x and y are not orthogonal? If dimH ≥ 3, then there exists z ∈ x⊥H ∩ y⊥H ,
and, by the aforesaid it follows that a ∼ z ⊗ z̄ ∼ b. We are left with the case when dimH = 2
and C = S, which has been dealt with in Example 2.1.

Type III: Unlike in Type II factors, minimal tripotents in Type III factors may be collinear.
This allows us to employ arguments similar to those used for Type I. We assume the Cartan fac-
tor C to be modeled on the Hilbert space H which has orthonormal basis {ei }i∈I , and that for
each i ∈ I , ēi = ei . Although we may denominate elements as e1 and e2, there is no assertion
that H is separable. It is easily checked that for any fixed i ∈ I , the set Ci := {ei ⊗e j −e j ⊗ei :
j ∈ I\{i}} of minimal tripotents is a collinear system that satisfies the assumption of Theorem
2.3. Remark that, by Harris [7], the minimal elements in a type III factor are of the form x ⊗
y− ȳ⊗ x̄ . Furthermore, an easy calculation shows that x ⊗y− ȳ⊗ x̄ is a tripotent if and only if

‖x‖2‖y‖2 − |〈x̄, y〉|2 = 1. (4.3)
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If x̄⊥H y then we can and will assume that ‖x‖ = ‖y‖ = 1. Note also that if c = x ⊗ y− ȳ⊗ x̄
is a minimal tripotent then by writing y = αx̄ + z, with z⊥H x̄ , we see that

c = x ⊗ y − ȳ ⊗ x = x ⊗ (αx̄ + z)− (ᾱx + z̄)⊗ x̄

= x ⊗ z − z̄ ⊗ x̄ . (4.4)

Therefore, c can be represented by orthogonal vectors, i.e.,

x̄ ⊥H z. (4.5)

Using (4.3) and (4.5) we assume that the elements x, y ∈ H , which represent the minimal
tripotent c = x ⊗ y − ȳ ⊗ x̄ have unit norm and are such that x̄ ⊥H y.

It needs to be shown that

c = x ⊗ y − ȳ ⊗ x̄ ∼ e1 ⊗ e2 − e2 ⊗ e1.

First, we know that C1 = {e1 ⊗ e j − e j ⊗ e1 : j ∈ I\{1}} is a collinear system which satisfies
the assumptions of Theorem 2.3. Write y = αe1 + z, with z ⊥H e1. Suppose that z �= 0.
Then the element (e1 ⊗ z − z̄ ⊗e1)/‖z‖ is a minimal tripotent contained in spC1. Theorem 2.3
and (4.4) imply that

e1 ⊗ y

‖z‖ − ȳ

‖z‖ ⊗ e1 = e1 ⊗ z

‖z‖ − z̄

‖z‖ ⊗ e1 ∼ e1 ⊗ e2 − e2 ⊗ e1. (4.6)

If z = 0, then |α| = 1. Notice that c ∼ −c, and use the same argument to conclude that

c ∼ −c = ᾱe1 ⊗ x̄ − x ⊗ αe1 = e1 ⊗ αx̄ − ᾱx ⊗ e1 ∼ e1 ⊗ e2 − e2 ⊗ e1.

This finishes the proof in case z = 0.
Since x̄ ⊥H y we can set h1 = x , h2 = ȳ and extend the set {h1, h2} to an orthonormal

basis {hi }i∈I of H . We write e1 as e1 = αh2 + a, with a ⊥H h2. Suppose that a �= 0. Notice
that D2 = {hi ⊗ h2 − h̄2 ⊗ h̄i : i ∈ I\{2}} is a collinear system that satisfies the assumption
of (2.) in Theorem 2.3, and (a ⊗ h2 − h̄2 ⊗ a)/‖a‖ is a tripotent in spD2. These facts and
(4.6) imply that

e1 ⊗ y

‖a‖ − ȳ

‖a|| ⊗ e1 = e1 ⊗ a

‖a‖ − ā

‖a‖ ⊗ e1 ∼ x ⊗ y − ȳ ⊗ x̄ . (4.7)

The case in which a = 0 is easily dealt with in a similar manner as the case z = 0 above.
The relations (4.7) and (4.6) provide the desired equivalence.

Type IV: With the notation of Sect. 3 the minimal tripotents ek and e′
k form an ortho-collinear

standard grid {ek}k∈K ∪{e′
k}k∈K in S. By a standard summability argument, elements x and y

of S can have at most countably many nonzero coordinates with respect to B of H . Therefore,
the coordinates of x and y can be labeled by N. The identities that define a spin triple imply
that, for distinct indices j and k in K ,

ek⊥e′
k, ek�e j , ek�e′

j . (4.8)

Moreover, in the case when e0 �= 0, we have

e0 	 ek, 	 e′
k (4.9)

Let u be an arbitrary element of U1(S). It is enough to show that there is an inner automorphism
ϕ such that ϕ(u) = e1. In our matrix representation, the elements u and e1 are given by

u = δe0 ⊕
[
λ1 λ2 λ3 . . .

µ1 µ2 µ3 . . .

]

, e1 = 0 ⊕
[

1 0 0 . . .

0 0 0 . . .

]

, e′
1 = 0 ⊕

[
0 0 0 . . .

1 0 0 . . .

]

.
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As before, it is shown that the component δe0 vanishes by applying an appropriate inner auto-
morphism. Denote by P0, P1 and P1′ the coordinate projections on S onto the one-dimensional
subspaces Ce0, Ce1 and Ce′

1, respectively. It is straightforward from the definition of the triple
product (3.4) that the subspace T = Ce0 ⊕ Ce1 ⊕ Ce′

1 of S is a subtriple of S, isomorphic
to the triple factor S(3) described in Lemma 3.1. Moreover, T is the range of the projection
PT := P0 + P1 + P1′ on S. Let ek be an element of B\{e0, e1, e′

1}. For a, b ∈ {e0, e1, e′
1},

expressions for D(a, b)ek are obtained from (3.4). If a �= b, then

D(a, b)ek = 0. (4.10)

If a = b, it can be seen from (3.4), or from (4.8) and (4.9) that,

D(e0, e0)ek = ek, (4.11)

D(e1, e1)ek = D(e′
1, e′

1)ek = 1

2
ek . (4.12)

These show that PT D(a, b)ek = D(a, b)PT ek = 0. For ek ∈ {e0, e1, e′
1}, we have D(a, b)

ek ∈ T . It follows that PT commutes with all elements of Inn(T ) which is a subgroup of
Inn(S). By Lemma 3.1, there exists an element θ in Inn(T )which annihilates the component
P0(u) = δe0 of PT u in T . We conclude that

0 = P0 θ PT (u) = P0 PT θ(u) = P0 θ(u). (4.13)

In what follows, the spaces H and H ′ are identified with the subtriples 0 ⊕ H ⊕ 0 and
0 ⊕ 0 ⊕ H of S, respectively. We will show that, for a, b ∈ H , the operator D(a, b)
commutes with the coordinate projection P0 and PH ′ onto the spaces Ce0 and H ′. In the case of
H ′, we can set e0 = 0 and omit this component altogether. It will be assumed that |K | ≥ 3. The
calculations for |K | ≤ 2 can be simplified in an obvious way. Consider distinct indices j, k, l
in K . The definition of the triple product (3.4) and the relations (4.8) show that, for s ∈ S,

D(s, e1)e
′
1 = 0, (4.14)

D(ek, ek)e
′
j = 1

2
e′

j , (4.15)

D(ek, el)e
′
j = 0. (4.16)

For an arbitrary element a of H , the operator D(a, a) is a linear combination of D(em, en)

(m, n ∈ K ). The above equations show that D(a, a)b ∈ H ′, for all b ∈ H ′. Since H ′ is a
closed subspace, this implies that

exp i t D(a, a)H ′ ⊆ H ′, (4.17)

hence, that H ′ is invariant under Inn(H). Now, suppose that e0 is not zero. Then, for each
index k ∈ K , the elements e0 and ek are in the relation e0 	 ek for all k ∈ K . This implies that

D(ek, ek)e0 = 1

2
e0,

D(ek, e j )e0 = 0 (for k �= j).

It follows that, for all a ∈ H ,

exp i t D(a, a)e0 ∈ Ce0, (4.18)

and, hence, that Ce0 is also invariant under Inn(H). From (4.13) and (4.18) we see that

P0ϕθ(u) = 0. (4.19)
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Hence from now on, the component in e0 is assumed to be zero, and is omited. Denote by
PH the canonical projection from S onto H . From the above arguments it can be seen that,
for all elements a and b of H ⊆ S, and all ϕ ∈ Inn(H),

PH D(a, b) = D(a, b) PH , (4.20)

PH ϕ = ϕ PH . (4.21)

Theorem 2.3 and (4.21) imply that there exists ϕ0 ∈ Inn(H) ⊆ Inn(S) such that

ϕ0(PH θ(u)) = PHϕ0(θ(u)) ∈ Ce1.

From this, (4.19) and (4.21) it follows that

a := ϕ0(θu) =
[
α 0 0 . . .

β1 β2 β3 . . .

]

∈ U1(S).

To proceed, suppose that α �= 0. By (3.4) it can be seen that

a3 = {a a a} =
(

αα +
∑

k∈K

βkβk

) [
α 0 0 . . .

β1 β2 β3 . . .

]

− αβ1

[
β1 β2 . . .

α 0 . . .

]

= a.

This equation shows that, if β1 �= 0 then, to match the zero-components in the top row of a
it is necessary that βk = 0, for k �= 1. Matching all the remaining components of a entails
that αα = β1β1 = 1. But then, a = αe1 ⊕ β1e′

1, and, since e1⊥e′
1, the tripotent a has rank

two, in contradiction to the assumption. Insisting on α �= 0, we conclude that β1 = 0. Using
again (3.4) it is easy to verify that C = {e1} ∪ {e′

k}k∈K\{1} is a collinear system such that, for
any three distinct elements u, v, w ∈ C, the product {u v w} vanishes. By Theorem 2.3 there
exists ϕ1 ∈ Inn(S) such that ϕ(u) = ϕ1(a) = ϕ1 ◦ ϕ0 ◦ θ(u) = e1, as required.

The case when α = 0 is easily dealt with in a similar way, by applying Theorem 2.3 to
the Hilbert space and subtriple H ′ of S. We can find ϕ1 ∈ Inn(S) such that ϕ1(a) = e′

2.
Since e1�e′

2, the subspace Ce1 ⊕ Ce′
2 is a Hilbert space and a subtriple of S. The previous

argument finishes the proof. ��
In the remainder of this section we present some corollaries and generalizations of Theo-

rem 4.1.
Recall that the rank of a JBW∗-triple A is the maximal cardinality of an orthogonal family

in U(A), and is denoted by rank(A). Notice that any (non-trivial) spin factor has rank 2. If A
is a subtriple of B(H, K ) then

rank(A) ≤ min{dim(H), dim(K )}.
A further observation concerning the Peirce-0-space C0(u) (or equivalently the orthogonal
complement) of a minimal tripotent u of A is given next.

Proposition 4.2 Let C be an Cartan-factor. Let u ∈ U(C) be a minimal tripotent. Then the
Peirce-0-space C0(u) = u⊥ of u has the following properties: If C is of type I, II, or III, then
C0(u) is of the same type. If C is of type IV, then C0(u) is one-dimensional.

Proof Let u be an arbitrary minimal tripotent. Using the representations of C as subtriples
of A = B(G, H), we may fix a particular minimal tripotent, e.g., v = h1 ⊗ k1, and note that
C0(v) = B(H1, K1), where H1 and K1 are the ortho-complements of the basis vectors h1

and k1 in H and K , respectively. Since there is an automorphism ϕ of C with ϕ(u) = v,
it follows that C0(u) = A0(u) is isomorphic to C0(v). This proves the statement for the
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case of type I factors. The argument works for the remaining cases. For type II and type III
factors (where H = K ), we set v = h1 ⊗ h1, or v = h1 ⊗ h2 − h2 ⊗ h1, and we observe
that C0(v) = A0(v) ∩ C . For a type IV factor C = e0 ⊕ H ⊕ H ′ we can set v = e1. Then
C0(v) = e′

1 � C0(u). ��
Theorem 4.1 holds for all finite rank-classes in U(C), as shown next. This result, in

particular (1.), is therefore a more elaborate version of Theorem 4.1. It further generalizes
the classical results in [15], as well as those in [6].

Theorem 4.3 Let C be a Cartan-factor (of arbitrary dimension). Then the following results
hold.

(1.) Let U = {u1, . . . un} and V = {v1, . . . , vn} be orthogonal subsets of minimal tripotents
in a Cartan-factor C (of arbitrary dimension). Then there exists a mapping ϕ ∈ Inn(C)
such that, ϕ(uk) = vk .

(2.) Let u and v be tripotents of finite rank in C. Then the relation u ∼ v holds if and only
if rank(u) = rank(v).

Proof (1.): In the case when C is finite-dimensional, the statement follows from [15], The-
orem 5.9. Hence, we assume that C is infinite-dimensional. From Theorem 4.1 it can be
seen that there exists ϕ1 ∈ Inn(C) with the property that ϕ1(u1) = v1. Since ϕ1 is a
triple-automorphism, it follows that ϕ1(u2)⊥v1. Hence the elements ϕ1(u2) and v2 are both
contained in the Peirce-0-space A0(v1) of v1. Since, by Proposition 4.2, A0(v1) is itself a
Cartan-factor, the argument can be repeated for the sets ϕ1(U\{u1}) and V\{v1}. The desired
automorphism is given by ϕ = ϕnϕn−1 . . . ϕ1.

(2.): This result extends [15], Corollary 5.12 to the infinite-dimensional cases. It is clear
that the condition rank(u) = rank(v) is necessary for u ∼ v to hold. On the other hand,
if rank(u) = rank(v) =: r < ∞ then there exists orthogonal subsets {u1, . . . ur } and
{v1, . . . , vr } of U1(C), such that u = ∑r

n=1 un and v = ∑r
n=1 vn . Applying the result (1.)

shows that u ∼ v, as required. ��

5 Remarks on weak∗-operator limits

Dealing with infinite JBW∗-triples C , it is natural to ask how the actions of Inn(C) behaves
in relation to the weak∗-topology. We therefore conclude this paper with some observations
concerning limits of sequences in Inn(C). It is clear that taking such limits will pose some
problems regarding the regular properties of Inn(C). It is beyond the scope of this paper to
address these problems in great depth. Instead we provide some further rather straightforward
consequences of the main results. These may also indicate possible directions of further
research into the connections between limits of products in Inn(C) and more appropriate
topologies. For example, the last theorem of this article provides a ‘positive’ and a ‘negative’
result concerning the SOT-closure and the weak∗-closure of Inn(C). It is therefore regarded
as tentative, and it leads to the open problem of establishing more appropriate generalizations
of the main result Theorem 4.1. The result (2.) therein is a consequence of the well known
fact that the unit-ball is the weak∗-closure of the unit-sphere.

Recall that any (linear) topology τ on C gives rise to the correspoding τ -operator topology
which is defined as follows. A net {Pi }i∈I in B(C) is said to converge in the τ -operator
topology if, for each a ∈ C , the net {Pi a}i∈I is τ -convergent. For any set I , let I f in denote
the set of all finite subsets of I , partially ordered by set-inclusion. Then, {Pi }i∈I is said to
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be τ -operator summable if the net {∑i∈F Pi }F∈I f in is τ -operator convergent. We will use
the weak∗-topology τ = σ(C,C∗) on C or the norm topology on C∗. The norm-operator
topology is the well known strong operator topology (SOT). For any set F , l2(F) denotes
the Hilbert-space of l2-summable functions f : F → C. Given any two index sets F and
G, denote by CF×G the type I factor CF×G := B(l2(F), l2(G)). The next two results are of
technical nature. They are obtained from standard methods in operator theory.

Lemma 5.1 Let C := CI×J be the type I Cartan-factor B(H, K ), parametrized by the index
sets I and J and with corresponding standard grid G := {ei, j := hi ⊗ k j : (i, j) ∈ I × J }
(as in Sect. 3). For (i, j) ∈ I × J , let Pi, j be the canonical projection from C to Cei, j ,
with pre-adjoint Pi, j∗ on the predual C∗ of C. Then, for subsets F of I and G of J , the
family {Pi, j∗}(i, j)∈F×G is SOT-summable in B(C∗), and {Pi, j }(i, j)∈F×G isσ(C,C∗)-operator
summable in B(C).

Proof For all (finite) subsets F of I and G of J , the projection PF×G := ∑
k∈F×G Pk on C

is weak∗-continuous and contractive. Any partition F = F1 ∪ F2 (with F1 ∩ F2 = ∅) of F
provides a grading

CF×G = CF1×G ⊕ CF2×G .

Accordingly, b ∈ CF×G is written as b = b1 ⊕ b2, for b1 ∈ CF1×G and b2 ∈ CF1×G .
Choose a norm one element ξ = ξ1 + ξ2 in l2(F), with ξ1 ∈ l2(F1), ξ2 ∈ l2(F2). Then
1 = ‖ξ1‖2 + ‖ξ2‖2. Let α j and β j ( j = 1, . . . , |G|) be the standard coordinates of b1ξ and
b2ξ in l2(G). Then,

‖b‖2 ≤ ‖(b1 + b2)ξ‖2 = ‖b1ξ1 + b2ξ2‖2

=
|G|∑

j=1

|α j + β j |2 ≤
|G|∑

j=1

|α j |2 + |β j |2 = ‖b1ξ1‖2 + ‖b2ξ2‖2

≤ ‖b1‖2‖ξ1‖2 + ‖b2‖2‖ξ2‖2 ≤ ‖b1‖2 + ‖b2‖2. (5.1)

The Hahn-Banach theorem implies that for each x ∈ PF×GC∗, there exists b1 ∈ PF1×GC
and b2 ∈ PF2×GC with ‖b1‖ = ‖b2‖ = 1 and

(b1 · PF1×G x) = ‖PF1×G x‖, (b2 · PF2×G x) = ‖PF2×G x‖.
We can assume that not both of these expressions vanish simultaneously. Define the elements
b′

1 and b′
2 by

b′
1 = ‖PF1×G x‖b1

(‖PF1×G x‖2 + ‖PF2×G x‖2)
1
2

, b′
2 = ‖PF2×G x‖b2

(‖PF1×G x‖2 + ‖PF2×G x‖2)
1
2

.

Then, by (5.1),

‖b′
1 + b′

2‖2 ≤ ‖b′
1‖2 + ‖b′

2‖2 = 1.

Moreover,

|((b′
1 + b′

2) · (PF1×G x + PF2×G x))|2 = ‖PF1×G x‖2 + ‖PF2×G x‖2

This and the contractivity of PF×G implies that

‖x‖2 ≥ ‖PF×G x‖2 = ‖PF1×G x + PF2×G x‖2 ≥ ‖PF1 x‖2 + ‖PF2 x‖2. (5.2)
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To see that
{∑

k∈F Rk x
}

F∈I f in is a Cauchy-net in the norm of C , consider any ε > 0, and
let the mapping f : I f in → R+ be defined by f (F) := ‖PF×G x‖2. By (5.2), the constant
Mx , defined by Mx := sup{ f (F) : F ∈ I f in} is finite. There exists F0 ∈ K f in , such that
Mx − ε2 ≤ f (F0). The relations (5.2) show that, for any G ∈ K f in which is such that
F0 ∩ G = ∅, we have

Mx − ε2 ≤ f (F0) ≤ f (F0 ∪ G)− f̃ (G).

It follows that

f (G) =
∥
∥
∥
∥
∥

∑

k∈G

Pk x

∥
∥
∥
∥
∥

2

≤ ε2,

and hence that ‖ ∑
k∈G Pk x‖ ≤ ε. This shows the desired Cauchy property, and hence the

SOT-convergence of {PF×G}F∈I f in ,G∈J f in . We define the sum P to be the corresponding
SOT -limit. It follows that for all a ∈ C and all x ∈ C∗,

lim
F→∞

(
∑

k∈F

Pka · x

)

= lim
F→∞

(

a ·
∑

k∈F

Pk∗x

)

= (b · Px).

This means precisely that (Pka)k∈K is σ(C,C∗)-summable, for each a ∈ E∗, hence that
(Pk)k∈K is σ(C,C∗)-operator summable. ��
Corollary 5.2 Let {Fn}n∈N and {Gn}n∈N be sequences of subsets Fn ⊆ I and Gn ⊆ J ,
with the property that Fn+1 ⊆ Fn, Gn+1 ⊆ Gn,

⋂
n∈N

Fn = ∅, and
⋂

n∈N
Gn = ∅. For

each n ∈ N, let ϕn be an element of Inn(CFn×Gn ). Then the sequence {∏m
n=1 ϕn}m∈N is

σ(C,C∗)-operator convergent, with limit ϕ of norm at most one.

Proof Let x be an arbitrary element of C∗. Lemma 5.1 and its proof show that for each
ε > 0 there exists Fε ∈ I f in and Gε ∈ J f in such that, for all F ∈ I f in , G ∈ J f in , with
F ∩ Fε = ∅, G ∩ Gε = ∅, the values

‖x |CF×G ‖ = ‖PF×G∗x‖, ‖x |CFε×G ‖ = ‖PFε×G∗x‖, ‖x |CF×Gε
‖ = ‖PF×Gε∗x‖,

are less than or equal to ε. By assumption there exists also m ∈ N which is such that
Fn ∩ Fε = ∅ and Gn ∩ Fε = ∅, whenever n ≥ m. This implies that, for n ≥ m the relation
CFn×Gn ⊥CFε×Gε holds. It follows that ϕn |CFε×Gε

= idCFε×Gε
, hence, for all r ∈ N, that

(
idC − ∏m+r

n=m+1 ϕn
)

PFε×Gε = 0. We set, for r ∈ N,

�ϕ :=
m∏

n=1

ϕn −
m+r∏

n=1

ϕn =
(

idC −
m+r∏

n=1

ϕn

)
m∏

n=1

ϕn .

Since the mappings ϕn are isometries, we have that ‖(idC − ∏m+r
n=1 ϕn)‖ ≤ 2. Combining

these results we find that

‖�ϕ(x)‖ =
∥
∥
∥
∥
∥

((

idC −
m+r∏

n=1

ϕn

)

(PFε×G + PF×Gε + PF×G)

m∏

n=1

ϕn

)

(x)

∥
∥
∥
∥
∥

≤ 6ε.

This shows that the desired convergence holds. Let ϕ be the corresponding limit, a linear
operator on C . Since each ϕn , hence all finite products

∏m
n=1 ϕn are isometries, it follows

that | f
∏m

n=1 ϕn(a)| ≤ ‖ f ‖‖a‖, for all f ∈ C∗, a ∈ C , and, hence that ‖ϕ‖ ≤ 1. ��
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Recall that, by definition, a tripotent u of a JBW∗-triple A is σ -finite if any orthogonal
family of tripotents in A2(u) is at most countable. For characterizations of σ -finite trioptents
in terms of the geometry of A, see [3,4] or [9]. If A is a Cartan-factor this is equivalent to
the condition that there exists a countable orthogonal family (un)n∈N of minimal tripotents
such that u is the weak∗-convergent sum u = ∑

n∈N
un .

Theorem 5.3 Let C be a Cartan factor of infinite rank. Then, the following results hold.

(1.) Let u and v be σ -finite tripotents of C of proper infinite rank. Then there exists a
sequence {ϕn}n∈N in Inn(C) such that ϕ = ∏

n∈N
ϕn exists as a weak∗-operator limit,

and ϕ(u) = v.
(2.) For each tripotent u of finite rank r in C, there exists a sequence {ϕn}n∈N in Inn(C)

such that ϕ = ∏
n∈N

ϕn exists as a weak∗-operator limit, and ϕ(u) = 0 in the weak∗-
topology.

Proof (1.): Let G = {ei, j }(i, j)∈I×J be the standard grid of C , described in Sect. 3. The index
sets I and J are infinite. Hence, we can assume that N ⊆ I ∩ J . Then G contains a countable
orthogonal family of minimal tripotents F = {eii }i∈M . Since u is σ -finite, it can be written as
the sum u = ∑∞

n=1, for some orthogonal family (un)n∈N in U1(C). Similarly, we can assume
that v = ∑

i∈M eii . The procedure used in the proof of Corollary 4.3 is applied inductively to
obtain the formal productϕu = ∏

m∈M ϕm,which is such thatϕu(un) = en,n . Notice that type
II and III factors are weak∗-closed subtriples of type I factors. By construction, the sequence
{ϕm}m∈N satisfies the assumptions of Corollary 5.2. Hence, ϕu is well defined as an operator
on C and as a limit of the finite partial products. We conclude that ϕu(u) = ∑

n∈N
en,n = v.

This completes the proof of (1.).
(2.): From the classification of the Cartan-factors it can be seen that each of the cor-

responding grids contains a maximal orthogonal family F of cardinality |F | = rank(C).
Therefore, F contains a countable subset (en)n∈N. Theorem 4.3 implies the existence of a
sequence (ϕn) in Inn(C) such that ϕn(en) = en+1. The argument used in the prove of (1.)
shows that

∏
n∈N

ϕn exists. Hence (
∏n

k=1 ϕn(e1))n∈N is a weak∗-null sequence. ��
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