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Abstract. We introduce support (curvature) measures of an arbitrary closed set A
in R

d and establish a local Steiner–type formula for the localized parallel volume
ofA. We derive some of the basic properties of these support measures and explore
how they are related to the curvature measures available in the literature. Then we
use the support measures in analysing contact distributions of stationary random
closed sets, with a particular emphasis on the Boolean model with general compact
particles.
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1 Introduction

Let A denote a non-empty and closed subset of R
d , d ≥ 2, and let A⊕r be the

parallel set of A at distance r ≥ 0, i.e. the set of all points x ∈ R
d the distance of

which from A is at most r . If A is convex and compact, then the famous Steiner
formula expresses the volume Vd(A⊕r ) of A⊕r as a polynomial in r ,

Vd(A⊕r ) =
d∑

j=0

rd−j κd−jVj (A). (1.1)

Here, κj is the (j -dimensional) volume of the Euclidean unit ball in R
j and the

coefficients V0(A), . . . , Vd(A) are the intrinsic volumes of the convex bodyA (see
e.g. [27, (4.2.27)]). Clearly, Vd(A) is the volume of A, Vd−1(A) is half the surface
area and V0(A) = 1. Formula (1.1) has been extended and refined in several ways.
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The parallel set A⊕r is equal to the Minkowski sum of A and a Euclidean ball of
radius r . Expanding the volume of the Minkowski sum of several compact convex
sets, one arrives at the theory of mixed volumes and mixed area measures (see [1],
[6]). The area measures of just one compact convex setA can then be defined as the
mixed area measures of A and a Euclidean ball. Alternatively, Fenchel and Jessen
found a simpler approach to the area measures ofA, which is based on the notion of
a local parallel set and a corresponding local version of the Steiner formula (1.1).
Federer [4] has introduced curvature measures for sets A with positive reach via a
different localization of the parallel volume and again by means of a local Steiner
formula. An important predecessor of Federer’s work is Weyl’s [34] tube formula
for the volume of a tube around a submanifold of R

d (cf. [12]). Schneider [25] has
defined support measures (or generalized curvature measures) of a convex set A
by combining both the curvature measures and the area measures of A into one
measure. Support measures can be extended to (locally finite) unions of convex
sets (see [26]) and sets with positive reach ([24]), respectively.

Curvatures and curvature measures are fundamental geometric concepts and
it is remarkable that they can be defined for very general sets. In fact, it is our
main aim in this paper to use a local Steiner–type formula for introducing support
measures of an arbitrary closed set A ⊂ R

d . To reach this goal we will first refine
(and clarify) the main results in [30]. In this important paper, Stachó shows that
the (generalized) normal bundle N(A) of A is countably (d − 1)-rectifiable (see
[5]) and expresses the local parallel volume of A in terms of signed measures on
N(A) × (0,∞). We will refine and extend this result by proving the existence of
uniquely determined signed measures onN(A), the support measures of the closed
set A, which arise as coefficient measures of a local Steiner formula. As a conse-
quence of our measure geometric approach to such a Steiner formula, we can give
an explicit description of the support measures of a general closed set A ⊂ R

d

in terms of generalized principal curvatures defined on N(A) and the (d − 1)-
dimensional Hausdorff measure onN(A). IfA is a general closed set (a fractal, for
instance), then these support measures need not have a locally finite total variation.
Instead we will derive a crucial integrability property of the principal curvatures
and the reach function of A which in turn leads to the appropriate property of local
finiteness that the support measures need to satisfy. Having proved the existence
of the support measures, we will then proceed with discussing some of their basic
properties and with relating them to several other notions of curvature measures
available in the literature.

Our second aim in this paper is the application of the general support measures
in stochastic geometry, where curvature measures have proved to be very useful. On
the one hand, curvature measures are used to define basic geometric mean values
associated with random closed sets. On the other hand, they can be exploited to
analyse some deeper geometric properties of random closed sets. Here we consider
the contact distributions of a stationary random closed set Z in R

d , i.e. the joint
distributions of the distance between a point x ∈ R

d and Z and the associated nor-
malized contact vector (see [31], [19]). Applying our general support measures, we
are able to considerably generalize some of the recent results in [22] and [17] which
have been proved under the assumption that Z is a countable union of (random)
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convex sets. We finally discuss the important special case of a stationary Boolean
model Z with general compact particles. In this case, we will not only derive the
form of the direction dependent contact distributions, but we will also obtain more
detailed results on the relationship between intensities related to the support mea-
sures of Z and the corresponding mean values associated with a typical grain of the
Boolean model. These formulae are significant extensions of some results in [23]
and [17].

2 Steiner formula and support measures

2.1 Preliminaries

We are working in the d-dimensional space R
d with Euclidean norm | · |. For a

set A ⊂ R
d , we denote by intA the interior, by clA the closure, and by ∂A the

boundary of A. The i-dimensional Hausdorff measure on R
d is denoted by Hi .

For z ∈ R
d and r ≥ 0, Bd(z, r) := {y ∈ R

d : |y − z| ≤ r} is the ball with
centre z and radius r . The unit ball Bd := Bd(0, 1) has volume κd and its bound-
ary Sd−1 (the unit sphere) has surface content ωd = dκd . The distance d(A, z)
between a set A ⊂ R

d and a point z ∈ R
d is defined as inf{|y − z| : y ∈ A},

where inf ∅ := ∞. We write p(A, z) := y whenever y is a uniquely determined
point in A with d(A, z) = |y − z|. This is the metric projection of z on to A. If
0 < d(A, z) < ∞ and p(A, z) exists, then p(A, z) lies on the boundary ∂A of A
and we define u(A, z) := (z−p(A, z))/d(A, z). Finally, for real numbers a, b we
put a ∧ b := min{a, b}.

In the following, we fix a non-empty closed set A ⊂ R
d . The closed comple-

ment cl (Rd \A) of A is abbreviated by A∗. The exoskeleton exo(A) of A consists
of all points of R

d \ A which do not admit a metric projection on to A. This is a
measurable set (see Lemma 6.1) and it is well known that

Hd(exo(A)) = 0; (2.1)

cf. [30], or [8], [16, Corollary 2.3] for more general results. It is convenient to
extend the definition of p(A, z) and u(A, z) in a suitable and measurable way to
all z ∈ R

d . The normal bundle of A is defined by

N(A) := {(p(A, z), u(A, z)) : z /∈ A ∪ exo(A)}.
It is a measurable subset of ∂A × Sd−1 (see Lemma 6.2). Simple examples show
that Hd−1(N(A) ∩ (B × Sd−1)) can be infinite for compact sets B ⊂ R

d . How-
ever, it will follow from Lemma 2.3 that N(A) has σ -finite (d − 1)-dimensional
Hausdorff measure. In fact, N(A) is countably (d − 1)-rectifiable (in the sense of
[5]). The reach function δ(A, ·) : R

d × Sd−1 → [0,∞] of A is defined by

δ(A, x, u) := inf{t ≥ 0 : x + tu ∈ exo(A)}, (x, u) ∈ N(A),
and δ(A, x, u) := 0 for (x, u) /∈ N(A). Note that δ(A, ·) > 0 on N(A); moreover
δ(A, ·) ≡ ∞ on N(A) if A is convex. By Lemma 6.2, δ(A, ·) is a measurable
function. The number

reach(A) := inf{δ(A, x, u) : (x, u) ∈ N(A)}
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is called the reach ofA. If reach(A) > 0, thenA is said to have positive reach. This
definition is consistent with the one given in [4].

Let (X,X ) denote a measurable space and consider a measurable function
h : X → [0,∞). We call a subset of X h-bounded if it is contained in the sublevel
set {x ∈ X : h(x) ≤ c}, for some c ∈ R. A [−∞,∞]-valued function µ which is
defined on the system of h-bounded sets in X is called a signed h-measure if its
restriction to each sublevel set ofh is a signed measure of finite variation. In this case
we obtain from the Hahn–decomposition a unique representation µ = µ+ − µ−
with mutually singular σ -finite measures µ+ and µ− which are finite on each sub-
level set. Although µ+ and µ− are defined on all measurable sets, it is in general
not possible to extend µ to all measurable sets by µ = µ+ − µ−. The measure
|µ| := µ+ + µ− is the total variation measure of µ. For any measurable function
f : X → [−∞,∞], we define the integral

∫
f dµ as

∫
f dµ+−∫ f dµ− whenever

this difference is well defined, i.e. whenever the integrals
∫
f dµ+ and

∫
f dµ−

are both defined and the above difference is not of the form −∞ + ∞ or ∞ − ∞.
For a closed set A ⊂ R

d and (x, u) ∈ R
d × Sd−1, let

hA(x, u) := 1{(x, u) ∈ N(A)} max{|x|, δ(A, x, u)−1}.
A reach measureµ ofA is then a signed hA-measure, where we require, in addition,
thatµ vanishes outsideN(A), hence |µ|({(x, u) ∈ R

d×Sd−1 : (x, u) /∈ N(A)}) =
0.

2.2 A general Steiner formula

Now we can state our general Steiner–type formula for arbitrary closed sets in
Theorem 2.1. Apart from its generality concerning the class of sets considered, a
crucial feature of this theorem is a new integrability condition, which is stated in
terms of the total variation measures of the support measures and the reach function.
As a consequence of our measure geometric approach, we can describe the support
measures of a closed set A as integrals over the generalized normal bundle of A
(see Corollary 2.5). We also take the opportunity to simplify and clarify some of
the arguments in [30].

Theorem 2.1. For any non-empty closed set A ⊂ R
d , there exist uniquely deter-

mined reach measures µ0(A; ·), . . . , µd−1(A; ·) of A satisfying
∫

N(A)

1{x ∈ B}(δ(A, x, u) ∧ r)d−j |µj |(A; d(x, u)) < ∞, (2.2)

j = 0, . . . , d − 1, for all compact sets B ⊂ R
d and all r > 0, such that, for any

measurable bounded function f : R
d → R with compact support,

∫

Rd\A
f (x)Hd(dx) =

d−1∑

i=0

ωd−i
∫ ∞

0

∫

N(A)

td−1−i1{t < δ(A, x, u)}
×f (x + tu)µi(A; d(x, u))dt. (2.3)
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A more explicit description of the reach measures and of the normal bundle of
a closed set is developed in the proof which we will give below.

The proof of Theorem 2.1 will be preceded by two lemmas. Lemma 2.2
provides a more direct approach to an auxiliary result in [30], which is also needed
here. Lemma 2.3 describes the structure of the normal bundle of a general closed set
and is based on the first lemma. We slightly modify and clarify the corresponding
argument in [30]. Moreover, we will have to refer again to the proof of Lemma 2.3
in the proof of Proposition 4.1.

Following [4], we call a vector u ∈ R
d a tangent vector of a closed set A at

a ∈ A if u = 0 or if u �= 0 and, for every ε > 0, there is some b ∈ A such that

0 < |b − a| < ε and

∣∣∣∣
b − a

|b − a| − u

|u|
∣∣∣∣ < ε.

We write Tan(A, a) for the closed (but not necessarily convex) cone of all such
tangent vectors. Moreover, for any z ∈ R

d we set

�(A, z) := {a ∈ A : d(A, z) = |a − z|}.
The estimate of Lemma 2.2 below is sharp. This can be seen by choosing A :=
{a1, a2} with |a1 − a2| = 2r .

Lemma 2.2. If t > 0 and A ⊂ R
d is a non-empty compact set with circumradius

r(A) < t , then reach(A⊕t )∗ ≥
√
t2 − r(A)2.

Proof. Put r := r(A), hence A ⊂ Bd(z, r) for some z ∈ R
d . By Theorem 4.18 in

[4], it is sufficient to show that

d(Tan((A⊕t )∗, x), y − x) ≤ |y − x|2
2
√
t2 − r2

whenever x, y ∈ (A⊕t )∗. In the following, we fix x, y ∈ (A⊕t )∗ and may clearly
assume that x ∈ ∂(A⊕t )∗. Further, by translation invariance we may assume that
x = 0. We claim that

dual(�(A, 0)) ⊂ Tan((A⊕t )∗, 0), (2.4)

where dual(S), the dual convex cone of a set S ⊂ R
d , is the set of all v ∈ R

d such
that 〈v, s〉 ≤ 0 for all s ∈ S.

Let us postpone the verification of (2.4) to the end of the proof. Then we can
proceed as follows. Define z0 := √

t2 − r2|z|−1z and note that �(A, 0) ⊂ A ∩
∂Bd(0, t)∩Bd(z0, r). Hence, if u ∈ �(A, 0) and thus u ∈ ∂Bd(0, t)∩Bd(z0, r),
then

〈u, z0〉 = 〈u, z0/|z0|〉 |z0| ≥ |z0|2 = t2 − r2. (2.5)

Furthermore, if u ∈ �(A, 0) and hence u ∈ ∂Bd(0, t) ∩ A, then

〈u, y〉 ≤ |y|2/2. (2.6)
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To check this, we can assume that y �= 0. Suppose that 〈u, y/|y|〉 > |y|/2. But
then u ∈ ∂Bd(0, t) implies that u ∈ A ∩ intBd(y, t), which contradicts A ∩
intBd(y, t) = ∅.

We define

α := |y|2
2(t2 − r2)

and v := y − αz0.

Then, for u ∈ �(A, 0), the estimates (2.5) and (2.6) yield that

〈u, v〉 = 〈u, y〉 − α〈u, z0〉 ≤ |y|2
2

− |y|2
2(t2 − r2)

(t2 − r2) = 0.

Therefore, (2.4) shows that v ∈ Tan((A⊕t )∗, 0). Hence,

d(Tan((A⊕t )∗, 0), y) ≤ |y − v| = α|z0| = |y|2
2
√
t2 − r2

,

as required.
It remains to verify the inclusion (2.4). Assume that v ∈ int dual(�(A, 0)).

Then 〈v, a〉 < 0 for all a ∈ �(A, 0), i.e. 〈v,−a〉 > 0 whenever a ∈ �(A, 0).
With any c ∈ R

d we associate an arbitrary point ξ(c) ∈ �(A, c). Moreover, we
define f := d(A, ·) and, for λ > 0, ψλ := |ξ(λv)− ·|. The function ψλ is convex
and differentiable at 0. Then,

(f (λv)− f (0))/λ ≥ (|λv − ξ(λv)| − |ξ(λv)|)/λ = (ψλ(λv)− ψλ(0))/λ

≥ 〈v,∇ψλ(0)〉 = 〈v,−ξ(λv)/|ξ(λv)|〉.
Since {ξ(λv) : λ ∈ (0, 1]} is bounded, there is a sequence (λi)i∈N with λi > 0
such that λi → 0 and ξ(λiv) → a0 ∈ A as i → ∞. From

d(A, 0) = lim
i→∞

d(A, λiv) = lim
i→∞

|ξ(λiv)− λiv| = |a0|,

we deduce that a0 ∈ �(A, 0), and therefore

lim sup
i→∞

[(f (λiv)− f (0))/λi] ≥ 〈v,−a0/|a0|〉 > 0.

This shows that there are infinitely many i ∈ N, such that f (λiv) > f (0) = t , i.e.
λiv ∈ (A⊕t )∗, hence v ∈ Tan((A⊕t )∗, 0).

The convex cone dual(�(A, 0)) has non-empty interior, since �(A, 0) ⊂
∂Bd(0, t) ∩ Bd(z0, r) and r < t . Furthermore, Tan((A⊕t )∗, 0) is a closed set.
Hence an approximation argument concludes the proof of (2.4). ��
Lemma 2.3. For a non-empty closed set A ⊂ R

d , there exists a sequence An,
n ∈ N, of closed subsets of R

d with positive reach and compact boundary such that

N(A) ⊂
∞⋃

n=1

N(An) (2.7)

and, for (x, u) ∈ N(A),
δ(A, x, u) ≤ sup{reach(An) : (x, u) ∈ N(An), n ∈ N}. (2.8)
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Proof. Let T be a countable dense subset of (0,∞). For i ∈ N and t ∈ T , let
(K(t, i, j))j∈N be a sequence of closed balls of radius t/(2i) covering R

d . We put

G(t, i, j) := ∂A⊕t ∩K(t, i, j)
and

A(t, i, j) := (G(t, i, j)⊕t )∗.

If G(t, i, j) �= ∅, we get from Lemma 2.2 that

reach(A(t, i, j)) ≥
√

t2 −
(
t

2i

)2

= t

√
1 − 1

4i2
. (2.9)

If G(t, i, j) = ∅, this is trivially satisfied. Next, we show that

N(A) ⊂
⋃

t∈T

⋃

i,j∈N

N(A(t, i, j)).

For this purpose, let (x, u) ∈ N(A) and δ(A, x, u) > t , for some t ∈ T . Since
∂A⊕t = ∪j≥1G(t, i, j) (for all i ∈ N), we have x+ tu ∈ G(t, i, j ′), for some j ′ =
j (t, i) ∈ N. But then d(A(t, i, j ′), x + tu) ≥ t . Furthermore, G(t, i, j ′) ⊂ ∂A⊕t ,
and therefore d(∂A⊕t , x) ≥ t yields d(G(t, i, j ′), x) ≥ t , i.e. x ∈ A(t, i, j ′).
This shows that d(A(t, i, j ′), x + tu) ≤ t . Thus, d(A(t, i, j ′), x + tu) = t and
(x, u) ∈ N(A(t, i, j ′)).

The above proof and (2.9) together imply that

sup{reach(A(t, i, j)) : (x, u) ∈ N(A(t, i, j)) for some i, j ∈ N} ≥ t,

if δ(A, x, u) > t ; hence

sup{reach(A(t, i, j)) : (x, u) ∈ N(A(t, i, j)), t ∈ T , i, j ∈ N} ≥ δ(A, x, u).

Finally, since ∂A(t, i, j) = ∂(G(t, i, j)⊕t ) ⊂ K(t, i, j)⊕t is compact, the count-
able family of sets A(t, i, j), t ∈ T , i, j ∈ N, satisfies all requirements. ��

It is easy to see that one can also find a sequence of compact sets such that (2.7)
and (2.8) are satisfied. For this, let Rn > 0 be such that ∂An ⊂ Bd(0, Rn). Then
A′
n := An ∩Bd(0, Rn) is compact,N(An) ⊂ N(A′

n) and reach(A′
n) = reach(An).

The inclusion (2.7) in particular shows that N(A) is countably (d − 1)-recti-
fiable. An alternative (but less elementary) derivation of this special consequence
follows from Theorem 2.31 in [14]. Conversely, Theorem 2.31 in [14] can be
deduced from our proof of (2.7)

Proof of Theorem 2.1. LetA ⊂ R
d be non-empty and closed and letAn, n ∈ N, be

chosen according to Lemma 2.3. Then, Lemma 2.3 implies thatN(A) is a countably
(d − 1)-rectifiable set in the sense of [5]. Subsequently, we use the notion of an
approximate tangent space as defined in [28] (or [11]). Note that this concept is
different from the one encountered in the proof of Lemma 2.2, although we employ
the same notation. The rectifiability property of N(A) implies that, for Hd−1-a.e.
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(x, u) ∈ N(A), the approximate tangent space Tan(N(A), x, u) of N(A) at (x, u)
exists and is a (d − 1)-dimensional vector space; moreover,

Tan(N(A), x, u) = Tan(N(An), x, u) (2.10)

for Hd−1-a.e. (x, u) ∈ N(A)∩N(An) and for each n ∈ N. Due to these facts, it is
possible to extend the definition of the (generalized) principal curvatures

k1(A, x, u), . . . , kd−1(A, x, u) ∈ (−∞,∞]

in [35] (given for sets with positive reach) to our general setting. For Hd−1-a.e.
(x, u) ∈ N(A), these are the uniquely determined numbers which have the property
that the vectors

(
1√

1 + ki(A, x, u)2
ui,

ki(A, x, u)√
1 + ki(A, x, u)2

ui

)
, i = 1, . . . , d − 1,

span Tan(N(A), x, u). This can be easily deduced from (2.10). Here the unit vectors
ui = ui(x, u) ∈ Sd−1, i = 1, . . . , d − 1, are the (generalized) principal directions
of curvature (a sequence of orthonormal vectors lying in the orthogonal comple-
ment of u). Furthermore, here and in the sequel, expressions a(k) with k = ∞ are
defined as the corresponding limits limk→∞ a(k) ∈ (−∞,∞], which will always
be well-defined. For instance, 1/

√
1 + k2 = 0 and k/

√
1 + k2 = 1 for k = ∞.

An alternative description of the generalized curvatures can be given as follows.
For Hd−1-a.e. (x, u) ∈ N(A) ∩N(An) and ε ∈ (0, reach(An)), u(An, ·) is differ-
entiable at x + εu and the ratios ki(A, x, u)/(1 + εki(A, x, u)), i = 1, . . . , d − 1,
are the eigenvalues of the differential of u(An, ·) at x+ εu restricted to the orthog-
onal complement of u (and the ui from above are the corresponding eigenvectors).
Moreover, if t < δ(A, x, u), then we can find n ∈ N such that (x, u) ∈ N(An) and
reach(An) > t . Therefore

1 + tki(A, x, u) ≥ 0, i = 1, . . . , d − 1, (2.11)

holds for Hd−1-a.e. (x, u) ∈ N(A) with δ(A, x, u) > t .
We set M(A) := {(x, u, t) ∈ N(A) × (0,∞) : δ(A, x, u) > t}. For Hd -

a.e. (x, u, t) ∈ M(A), the Jacobian of the map T : N(A) × (0,∞) → R
d ,

(y, v, s) �→ y + sv, is given by

JT (x, u, t) =
d−1∏

i=1

1 + tki(A, x, u)√
1 + ki(A, x, u)2

.

In addition, T is injective onM(A) and Hd(Rd \ (A∪T (M(A)))) = 0. Injectivity
easily follows from the definition of the normal bundle and the reach function, and
the second assertion is implied by (2.1). Hence, using twice the coarea formula of
Federer [5] in a slightly more general version (see [28] or [11]), we obtain similarly
as in [35] that
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∫

Rd\A
f (z)Hd(dz) =

∫

N(A)

∫ ∞

0
1{t < δ(A, x, u)}f (x + tu)

×
d−1∏

i=1

1 + tki(A, x, u)√
1 + ki(A, x, u)2

dtHd−1(d(x, u)), (2.12)

for all measurable bounded functions f : R
d → R with compact support.

For Hd−1-a.e. (x, u) ∈ N(A), we define

Hj(A, x, u) :=
d−1∏

i=1

(1 + ki(A, x, u)
2)−1/2

∑

|I |=j

∏

l∈I
kl(A, x, u), (2.13)

for j ∈ {0, . . . , d − 1}, where the summation extends over all subsets I ⊂
{1, . . . , d − 1} of cardinality j . Note that for j = 0, the product over the empty
set is defined as 1, i.e.

H0(A, x, u) :=
d−1∏

i=1

(1 + ki(A, x, u)
2)−1/2.

For the remainder of the proof, we often suppress the argumentA in the curvatures
ki , the reach function δ and the functionsHj . By definition,Hj(x, u) ∈ (−∞,∞),
and Hj(x, u) = 0 if at least j + 1 of the principal curvatures are infinite. We can
now rewrite (2.12) as

∫

Rd\A
f (z)Hd(dz) =

∫

N(A)

∫ ∞

0
1{t < δ(x, u)}f (x + tu)

×



d−1∑

j=0

tjHj (x, u)



 dtHd−1(d(x, u)). (2.14)

Our next aim is to prove that
∫

N(A)

∫ ∞

0
1{x ∈ B}1{t < δ(x, u) ∧ r}tj

×|Hj(x, u)|dtHd−1(d(x, u)) < ∞, (2.15)

for an arbitrary r > 0, for all compact sets B ⊂ R
d and all j ∈ {0, . . . , d − 1}.

The first main estimate used for proving the above integrability property follows
from (2.14) applied to the function

f (z) := 1{p(A, z) ∈ B, 0 < d(A, z) ≤ r}.
Performing the inner integration in (2.14), we obtain that

∞ >

∫

Rd\A
1{p(A, z) ∈ B, 0 < d(A, z) ≤ r}Hd(dz)

=
∫

N(A)

1{x ∈ B}
( d−1∑

j=0

(j + 1)−1(δ(x, u) ∧ r)j+1

×Hj(x, u)

)
Hd−1(d(x, u)). (2.16)
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Our second tool in proving (2.15) is the following simple but crucial consequence
of (2.11),

(δ(x, u) ∧ r)ki(x, u) ≥ −1, (2.17)

which is satisfied for Hd−1-a.e. (x, u) ∈ N(A).
We now use the decomposition ki(x, u) = k+

i (x, u) + k−
i (x, u), where

k+
i (x, u) := max(ki(x, u), 0) and k−

i (x, u) := min(ki(x, u), 0), and define func-
tions H+

0 , . . . , H
+
d−1 and H−

0 , . . . , H
−
d−1 on N(A) as in (2.13) with ki(x, u)

replaced by k+
i (x, u) resp. k−

i (x, u), i = 0, . . . , d − 1. We then get the decompo-
sition

Hj =
j∑

l=0

H−
l H

+
j−l , j = 0, . . . , d − 1. (2.18)

Since H−
l H

+
s = 0, for l + s > d − 1, we deduce from this

d−1∑

j=0

(j + 1)−1(δ ∧ r)j+1Hj =
d−1∑

s=0

d−1∑

l=0

(s + l + 1)−1(δ ∧ r)lH−
l H

+
s (δ ∧ r)s+1.

In order to proceed, we need the following lemma. It refers to the j -th elementary
symmetric function hj of m real variables y1, . . . , ym,

hj (y1, . . . , ym) :=
∑

|I |=j

∏

i∈I
yi,

j ∈ {0, . . . , m}, where the summation again extends over all subsets I ⊂ {1, . . . , m}
of cardinality j . Note that h0 ≡ 1.

Lemma 2.4. For any m ∈ N and k ∈ N, the function

gk :=
m∑

i=0

hi/(k + i)

is bounded from below on [−1, 0]m by a positive constant depending only on m
and k.

Proof. Since the function gk is linear in each variable, it attains its minimum in
a vertex (y1, . . . , ym) of the cube [−1, 0]m. By symmetry, we can assume that
y1 = . . . = yj = −1 and yj+1 = . . . = ym = 0 for some j ∈ {0, . . . , m}. Then

gk(y1, . . . , ym) =
j∑

i=0

(−1)i
(
j

i

)
/(k + i) =

∫ 1

0
(1 − t)j tk−1dt > 0,

and the lemma is proved. ��
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For each pair (x, u), we apply Lemma 2.4 with k = s + 1 and m := card{i :
ki(x, u) < 0}. Then

d−1∑

j=0

(j + 1)−1(δ ∧ r)j+1Hj ≥
d−1∑

s=0

c1(s, d)H
−
0 H

+
s (δ ∧ r)s+1, (2.19)

for some positive constants c1(s, d). Formally, we first get this inequality for
Hj(x, u),H

−
0 (x, u),H

+
s (x, u)with constants c1(s, d) depending onm. Since there

are only finitely many values ofm this implies the corresponding inequality for the
functions Hj ,H

−
0 , H

+
s with universal constants c1(s, d). The case m = 0 is not

covered by Lemma 2.4, but follows directly since then Hj = H+
j and H−

0 = 1
and since we may choose c1(s, d) ≤ 1. Moreover, for l ∈ {0, . . . , d − 1} and
s ∈ {0, . . . , l}, we deduce from (2.17) that

H−
0 ≥ c2(s, l, d)(δ ∧ r)l−s |H−

l−s |, (2.20)

where c2(s, l, d) is a positive constant. Therefore, using (2.19) and (2.20), as well
as (2.18) again,

d−1∑

j=0

(j + 1)−1(δ ∧ r)j+1Hj ≥
l∑

s=0

c1(s, d)c2(s, l, d)(δ ∧ r)l+1|H−
l−s |H+

s

≥ c3(l, d)(δ ∧ r)l+1|Hl |, (2.21)

where c3(l, d) is another positive constant. The desired integrability is now implied
by (2.16) and (2.21).

It follows from (2.15) and Fubini’s theorem that, for all r > 0,
∫ r

0

∫

N(A)

1{t ≤ δ(x, u), x ∈ B}tj |Hj(x, u)|Hd−1(d(x, u))dt < ∞ (2.22)

and hence
∫

N(A)

1{ε ≤ δ(x, u), x ∈ B}|Hj(x, u)|Hd−1(d(x, u)) < ∞, (2.23)

for all ε > 0 and all compact sets B ⊂ R
d , where j = 0, . . . , d − 1. Therefore

µj (A; ·) := 1

ωd−j

∫

N(A)

1{(x, u) ∈ ·}Hd−1−j (x, u)Hd−1(d(x, u)) (2.24)

defines for each j ∈ {0, . . . , d−1} a reach measure ofA. In particular, the integrals
∫ ∞

0

∫

N(A)

td−1−j1{t < δ(A, x, u)}f (x + tu)µj (A; d(x, u))dt (2.25)

are well-defined and finite for all measurable bounded functions f : R
d → R with

compact support. To check this, let supp(f ) denote the support of f . If x + tu ∈
supp(f ), 0 ≤ t < δ(A, x, u) and (x, u) ∈ N(A), then x = p(A, x+ tu) and hence
t = d(A, x+ tu) ≤ |x+ tu− a| for an arbitrary but fixed a ∈ A. Since supp(f ) is
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compact, t ≤ max{|z−a| : z ∈ supp(f )} =: R < ∞ and x ∈ supp(f )+RBd . The
assertion then follows from (2.22). The local Steiner formula (2.3) is a consequence
of (2.14).

To see that the above reach measures are uniquely determined by (2.3), we
take ε > 0 and a compact set B ⊂ R

d . Then we obtain for all s ∈ (0, ε) and all
measurable and bounded functions f : R

d → R that
∫

Rd\A
1{ε ≤ δ(A, p(A, z), u(A, z)), p(A, z) ∈ B, d(A, z) ≤ s}

×f (p(A, z), u(A, z))Hd(dz)

=
d−1∑

i=0

κd−i sd−i
∫

N(A)

1{ε ≤ δ(A, x, u), x ∈ B}f (x, u)µi(A; d(x, u)).
(2.26)

Related issues of measurability are covered in Section 6. This determines the mea-
sures µi(A; ·) on {(x, u) ∈ N(A) : ε ≤ δ(A, x, u), x ∈ B}, for any ε > 0, as
asserted. ��

2.3 Support measures

The signed measuresµ0(A; ·), . . . , µd−1(A; ·)which have been introduced in Sub-
section 2.2, are called the support measures of the closed set A ⊂ R

d . An integral
representation for these support measures has been derived in the proof of Theorem
2.1 and will be stated explicitly in the next corollary.

Corollary 2.5. For any non-empty closed set A ⊂ R
d , the support measures of A

are given by

µi(A; ·) = 1

ωd−i

∫

N(A)

1{(x, u) ∈ ·}Hd−1−i (A, x, u)Hd−1(d(x, u)),

for i = 0, . . . , d − 1, where Hd−1−i (A, x, u) is defined by (2.13).

The integrability property (2.2) guarantees that all the integrals on the right-
hand side of (2.3) are finite. By Fubini’s theorem (applied to the measuresµ+

i (A; ·)
and µ−

i (A; ·)), we then also have

∫

Rd\A
f (z)Hd(dz) =

d−1∑

i=0

ωd−i
∫

N(A)

∫ δ(A,x,u)

0
td−1−i

×f (x + tu)dt µi(A; d(x, u)). (2.27)

By definition, µj (A;D) is defined for all Borel subsets D ⊂ R
d × Sd−1 for

which there is a ε > 0 and a compact subset B of R
d with D ∩N(A) ⊂ {(x, u) ∈

N(A) : ε ≤ δ(A, x, u), x ∈ B}. However, we can extend the definition of µj (A; ·)
by setting, for a Borel set D ⊂ R

d × Sd−1,

µj (A;D) :=
∫

N(A)

1{(x, u) ∈ D}µj (A; d(x, u))
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whenever the integral exists. In general, the class of all such admissible Borel sets
D need not be the whole Borel σ -field, but in many important cases it is. In the
following, we always considerµj (A; ·) as a set function defined on admissible sets
and, for simplicity, we speak of these set functions as measures.

Finally, we point out that the above construction of support measures includes
the case A = R

d . Here, N(Rd) = ∅ and µj (Rd; ·) = 0 for j = 0, . . . , d − 1. For
later use, we also extend the support measures (and the other relevant notions) to
the case A = ∅ by N(∅) := ∅ and µj (∅; ·) := 0, j = 0, . . . , d − 1.

3 Some special cases

Our aim in this section is to show how the support measures of general closed
sets specialize for particular classes of sets and to discuss the connection with the
literature.

If A ⊂ R
d is a convex body, i.e. an element of the set Kd of all non-empty,

compact and convex subsets of R
d , then δ(A, ·) ≡ ∞ and the support measures

of A are the (generalized) curvature measures C0(A; ·), . . . , Cd−1(A; ·) of A (see
[26], [27]). These are finite measures on R

d × Sd−1 concentrated on N(A). Their
projections, the measures C0(A; ·×Sd−1), . . . , Cd−1(A; ·×Sd−1) on R

d , are the
classical curvature measures of A.

The curvature measures enjoy an additivity property stating that

Ci(A1 ∪ A2; ·)+ Ci(A1 ∩ A2; ·) = Ci(A1; ·)+ Ci(A2; ·)
wheneverA1, A2, A1∪A2 ∈ Kd . Since they also depend continuously (with respect
to the weak topology on the space of measures) on the convex bodies, they can be
additively extended to the class Rd of all finite unions of convex bodies. In general,
Ci(A; ·) is a signed measure forA ∈ Rd , in the special case i = d−1 this measure
is non-negative. The curvature measures can be further extended to signed Radon
measures Ci(A; ·) on R

d × Sd−1 for any set A ⊂ R
d which can be represented as

a locally finite union ∪nAn of convex bodies An, n ∈ N. Here the assumption of
local finiteness means that each compact subset of R

d is intersected by only a finite
number of the sets An. The class of all such sets A is denoted by Sd and called the
extended convex ring. Theorem 3.3 in [17] shows that µi(A; ·) is a non-negative
measure and

µi(A; ·) = Ci(A;N(A) ∩ ·) (3.1)

whenever A ∈ Sd and i ∈ {0, . . . , d − 1}; moreover, it is also shown in [17] that
µd−1(A; ·) = Cd−1(A; ·). For A ∈ Sd , Theorem 2.1 has been proved in [22] and
[17].

IfA is a set of positive reach, thenµ0(A; ·×Sd−1), . . . , µd−1(A; ·×Sd−1) are
signed measures, the curvature measures introduced in [4]. The natural extension of
these measures to R

d×Sd−1 as the underlying space and the explicit representation
(2.24) have been established in [35].

Our next example are locally finite unions of sets with positive reach. More
precisely, we introduce Ud as the system of all sets A which can be represented
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as a locally finite union ∪An of sets An, n ∈ N, of positive reach such that each
intersection of any finite number of the sets An is also of positive reach. Note that
Sd ⊂ Ud . However, Ud is a much broader class than Sd , containing for instance
the fibre and surface systems of [31]. The curvature measures are additive on the
system of all sets of positive reach, and it has been proved in [24] that they can be
additively extended to Ud . For A ∈ Ud , the measures C0(A; ·), . . . , Cd−1(A; ·)
are signed Radon measures on R

d ×Sd−1 concentrated on ∂A×Sd−1. To compare
these measures with the support measures, we provide some further details. As in
[24], we define the Schneider index i(A, ·) : R

d × Sd−1 → Z by

i(A, x, u) := 1{x ∈ A}
(

1 − lim
ε→0+

lim
δ→0+

χ(A ∩ Bd(x + (ε + δ)u, ε))

)
,

(x, u) ∈ R
d × Sd−1, where χ denotes the Euler characteristic and the existence of

the double limit is proved in [24]. In this paper, the authors use a different notion
of normal bundle for sets A ∈ Ud , namely

N∗(A) := {(x, u) ∈ R
d × Sd−1 : i(A, x, u) �= 0}.

Let S(N) denote the system of all non-empty finite subsets of N. Then, by the
additivity of the index function with respect to the set A, we obtain that

N∗(A) ⊂
⋃

v∈S(N)
N

(
⋂

i∈v
Ai

)
(3.2)

ifA = ∪An is a locally finite representation ofA as required in the definition of the
class Ud . From (3.2) one can derive the structure of the approximate tangent space
Tan(N∗(A), x, u), for Hd−1-a.e. (x, u) ∈ N∗(A), and define generalized curvature
functions H ∗

j (A, x, u) similarly as in (2.13) (see again [24]). Then the curvature

measures for sets A ∈ Ud and j ∈ {0, . . . , d − 1} are defined by

ωd−jCj (A; ·) :=
∫

1{(x, u) ∈ ·}i(A, x, u)H ∗
d−1−j (A, x, u)Hd−1(d(x, u)).

It is not difficult to infer from the definition of N(A) that i(A, x, u) = 1 for all
(x, u) ∈ N(A), hence N(A) ⊂ N∗(A); moreover, Hj(A, x, u) = H ∗

j (A, x, u)

for Hd−1-a.e. (x, u) ∈ N(A) and j = 0, . . . , d − 1. Therefore we obtain that
µi(A; ·) = Ci(A;N(A) ∩ ·) whenever A ∈ Ud and i ∈ {0, . . . , d − 1}, which
provides an extension of (3.1). The local Steiner formula (2.3) seems to be new in
this setting. In contrast to the caseA ∈ Sd , the support measuresµi(A; ·)may take
negative values for A ∈ Ud \ Sd and i ≤ d − 2. In Section 4, the case i = d − 1 is
discussed for general closed sets.

In our next example, we consider the boundary of a convex bodyK ∈ Kd with
interior points. Then,

µj (∂K; ·) = µj (K; ·)
+(−1)d−1−j

∫

N(K)

1{(x,−u) ∈ · ∩N(∂K)}µj (K; d(x, u)). (3.3)
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The proof of formula (3.3) follows from Corollary 2.5, since

ki(∂K, x,−u) = −ki(K, x, u)

for Hd−1-a.e. (x, u) ∈ N(K) satisfying (x,−u) ∈ N(∂K). Similarly, we have

µj (K
∗; ·) = (−1)d−1−j

∫

N(K)

1{(x,−u) ∈ · ∩N(K∗)}µj (K; d(x, u)), (3.4)

for the closed complementK∗ = cl (Rd \K) ofK . For a lower dimensional convex
body K , we have K∗ = R

d and relation (3.4) becomes trivial.
Equation (3.4) can be generalized to arbitrary closed setsA. We discuss the cor-

responding result in Section 5, in connection with extensions of the Steiner formula
to the interior of a set A.

4 Basic properties of support measures

4.1 Support measures of order d − 1

In this section, we derive and discuss some of the basic properties of the support
measures of closed sets A ⊂ R

d . Our first aim is to provide an explicit formula for
the support measure µd−1(A; ·) of order d − 1, which corresponds to the surface
measure in the case of a smooth set A. In particular, it will turn out that µd−1(A; ·)
is always a non-negative σ -finite measure on N(A). The set

∂+A := {x ∈ ∂A : (x, u) ∈ N(A) for some u ∈ Sd−1}

is called the positive boundary of A. It follows from Lemma 6.3, that this is a
measurable set. Moreover, as a consequence of Lemma 2.3, it is also countably
(d − 1)-rectifiable. In general, we may have Hd−1(∂A \ ∂+A) > 0. A simple
example in R

2 is a set A consisting of the x-axis L and a countable union of
(disjoint) lines parallel to L which accumulate at L from both sides. In this case,
L ⊂ ∂A but L ∩ ∂+A = ∅. Even for A ∈ Rd , we may have ∂A \ ∂+A �= ∅, but at
least Hd−1(∂A \ ∂+A) = 0 whenever A ∈ Sd . This can be proved analogously to
Theorem 2.2 in [33]. Finally, we remark that ∂+A = ∂A if A is a set with positive
reach; moreover, for A ∈ Ud , it can be shown that Hd−1(∂A \ ∂+A) = 0. The
relevance of the positive boundary in connection with the support measure of order
d − 1 will become clear in a moment.

For any x ∈ ∂+A, we define

N(A, x) := {u ∈ Sd−1 : (x, u) ∈ N(A)}.

Then we call n(A, x) := {λu : λ ≥ 0, u ∈ N(A, x)} the normal cone of A at x. It
is easy to check that the normal cone of A is convex. Let

∂++A := {x ∈ ∂+A : dim n(A, x) = 1},
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where dimB denotes the dimension of the affine hull of a set B ⊂ R
d . Clearly,

∂++A is the disjoint union of ∂1A and ∂2A, where

∂iA := {x ∈ ∂++A : cardN(A, x) = i}, i = 1, 2.

Again by Lemma 6.3 all these sets are measurable. (Moreover, they are countably
(d − 1)-rectifiable.) For x ∈ ∂1A, we let ν(A, x) (the outer normal of A at x)
denote the unique element of N(A, x), and for x ∈ ∂2A, we choose ν(A, x) from
N(A, x) according to some measurable rule. The mapping ν(A, ·) is measurable
on ∂++A (see Lemma 6.3).

Proposition 4.1. The support measure of order d − 1 of a closed set A ⊂ R
d is a

non-negative σ -finite measure on R
d × Sd−1 satisfying

µd−1(A; ·) = 1

2

∫

∂++A
1{(x, ν(A, x)) ∈ ·}Hd−1(dx)

+1

2

∫

∂2A

1{(x,−ν(A, x)) ∈ ·}Hd−1(dx). (4.1)

Proof. From (2.24) we deduce for any measurable and bounded function f :
N(A) → R with compact support
∫

N(A)

f (x, u)µd−1(A; d(x, u)) = 1

2

∫

N(A)

f (x, u)H0(x, u)Hd−1(d(x, u)).

It follows as in [35] that the function H0(x, u) is just the approximate Jacobian of
the mapping (x, u) �→ x from N(A) to ∂A.

Excluding a set of Hd−1-measure zero, we find that H0(x, u) = 0 whenever
(x, u) ∈ N(A) and x /∈ ∂++A, i.e. dimN(A, x) ≥ 2 (see e.g. [15] for a similar
assertion in a simpler situation). To justify this, we argue as follows. LetK(t, i, j)
denote a ball as defined in the proof of Lemma 2.3. Denoting by K̂(t, i, j) the
ball with the same centre as K(t, i, j) and with radius t/(4i), we may require that
already ∪∞

j=1K̂(t, i, j) = R
d . Let (x, u) ∈ N(A) be such that (2.10) is satisfied

and such that (x, u) is a point of differentiability of any of the strong Lipschitz sub-
manifolds (cf. [32]) N(An) which contain (x, u). Assume that x /∈ ∂++A, hence
dim n(A, x) ≥ 2. Since n(A, x) is a convex cone, there is a unit vector v ∈ n(A, x)
such that u and v are linearly independent. Clearly, there is some t0 ∈ T such that
δ(A, x,w) > t0 for all w ∈ [u, v], where [u, v] denotes the spherical arc con-
necting u and v. Let j ∈ N be such that x + t0u ∈ K̂(t0, 1, j). Then we can find
w ∈ [u, v]\{u} such that x+t0w ∈ K(t0, 1, j), thus x+t0u, x+t0w ∈ K(t0, 1, j).
Therefore x + t0u, x + t0w ∈ G(t0, 1, j), and we obtain as in the proof of Lemma
2.3 that (x, u), (x,w) ∈ N(A(t0, 1, j)) = N(An), for some n ∈ N. But then

(
x,

(1 − s)u+ sw

|(1 − s)u+ sw|
)

∈ N(An)

for all s ∈ [0, 1], hence (0, ū) ∈ Tan(N(An), x, u) with some ū ∈ Sd−1 ∩ u⊥.
From (2.10) and the representation of Tan(N(A), x, u) in the proof of Theorem
2.1, it now follows that ki(A, x, u) = ∞ for some i ∈ {1, . . . , d − 1}.
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Therefore the coarea formula yields that

∫

N(A)

f (x, u)H0(x, u)Hd−1(d(x, u)) =
∫

∂++A

∑

u∈N(A,x)
f (x, u)Hd−1(dx),

which implies (4.1). This formula also shows that µd−1(A; ·) is a non-negative
measure on R

d × Sd−1. ��

From (2.2) for j = d − 1 and (4.1) we obtain the following corollary.

Corollary 4.2. Let A ⊂ R
d be a closed set. Then

∫

∂++A
1{x ∈ B}(δ(A, x, ν(A, x)) ∧ r)Hd−1(dx)

+
∫

∂2A

1{x ∈ B}(δ(A, x,−ν(A, x)) ∧ r)Hd−1(dx) < ∞, (4.2)

for all compact sets B ⊂ R
d and all r > 0.

4.2 A Steiner formula for support measures

To motivate our next theorem, we first look at a special case. Let K ⊂ R
d be a

non-empty compact convex set. For s > 0, we consider the map Ts : R
d×Sd−1 →

R
d×Sd−1 which is defined byTs(x, u) := (x+su, u). Then, for k ∈ {0, . . . , d−1},

the support measures of K satisfy the Steiner formula

µk(K⊕s; Ts(·)) =
k∑

i=0

sk−i
(
d − i

d − k

)
κd−i
κd−k

µi(K; ·);

see [27]. This result will be extended to general closed sets in the following Theorem
and in Corollary 4.4.

Theorem 4.3. Let A ⊂ R
d be a closed set, k ∈ {0, . . . , d − 1} and 0 < s < ε.

Then

∫

N(A⊕s )
1{ε − s ≤ δ(A⊕s , y, u)}1{(y − su, u) ∈ ·}µk(A⊕s; d(y, u))

=
k∑

i=0

sk−i
(
d − i

d − k

)
κd−i
κd−k

∫

N(A)

1{ε ≤ δ(A, x, u)}1{(x, u) ∈ ·}µi(A; d(x, u)).

Proof. Let ∅ �= A �= R
d , and choose t > 0 so that s + t < ε. For the proof, we

will use relation (2.26). Let B ⊂ R
d be compact and let f : N(A) → R be a

measurable and bounded function. Then we get
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∫
1{ε ≤ δ(A, p(A, z), u(A, z)), p(A, z) ∈ B}

(4.3)
× 1{0 < d(A, z) ≤ s + t}f (p(A, z), u(A, z))Hd(dz)

=
d−1∑

i=0

κd−i (s + t)d−i
∫

N(A)

1{ε ≤ δ(A, x, u), x ∈ B}f (x, u)µi(A; d(x, u))

=
d∑

k=0

td−k
k∧(d−1)∑

i=0

(
d − i

d − k

)
κd−i sk−i

∫

N(A)

1{ε ≤ δ(A, x, u), x ∈ B}

× f (x, u)µi(A; d(x, u)).
We write the integral in (4.3) as the sum of two integrals by means of

1{0 < d(A, z) ≤ s + t} = 1{0 < d(A, z) ≤ s} + 1{0 < d(A⊕s , z) ≤ t}
and apply again (2.26) to obtain

d−1∑

i=0

κd−i sd−i
∫

N(A)

1{ε ≤ δ(A, x, u), x ∈ B}f (x, u)µi(A; d(x, u))

+
∫

1{ε ≤ δ(A, p(A, z), u(A, z)), p(A, z) ∈ B, 0 < d(A⊕s , z) ≤ t}
× f (p(A, z), u(A, z))Hd(dz).

To rewrite the second term, recall that s + t < ε. Then, for Hd -a.e. z ∈ R
d with

0 < d(A⊕s , z) ≤ t ,

ε ≤ δ(A, p(A, z), u(A, z))

if and only if

ε − s ≤ δ(A⊕s , p(A⊕s , z), u(A⊕s , z));
moreover, if these conditions are satisfied, then

p(A, z) = p(A⊕s , z)− su(A⊕s , z) and u(A, z) = u(A⊕s , z).

Therefore, the last integral is equal to
∫

1{ε − s ≤ δ(A⊕s , p(A⊕s , z), u(A⊕s , z)), p(A⊕s , z)− su(A⊕s , z) ∈ B}
× 1{0 < d(A⊕s , z) ≤ t}f (p(A⊕s , z)− su(A⊕s , z), u(A⊕s , z))Hd(dz)

=
d−1∑

k=0

κd−ktd−k
∫

N(A⊕s )
1{ε − s ≤ δ(A⊕s , y, u), y − su ∈ B}

× f (y − su, u)µk(A⊕s; d(y, u)).
For the last step, we applied (2.26) to A⊕s instead of A and used that t < ε − s. A
comparison of coefficients now yields the assertion. ��
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Passing to the limit ε ↓ s in the formula of Theorem 4.3, we obtain the following
important consequence.

Corollary 4.4. Let A ⊂ R
d be a closed set and k ∈ {0, . . . , d − 1}. Then, for any

s > 0, the total variation measure of µk(A⊕s; ·) is locally finite and

µk(A⊕s; ·) =
k∑

i=0

sk−i
(
d − i

d − k

)
κd−i
κd−k

∫

N(A)

1{s < δ(A, x, u)}
×1{Ts(x, u) ∈ ·}µi(A; d(x, u)).

Proof. Applying Lebesgue’s increasing convergence theorem in passing to the limit
ε ↓ s in the equation of Theorem 4.3, we first obtain that the positive and the neg-
ative part of µk(A⊕s; ·) are both finite over compact sets. Hence the total variation
measure of µk(A⊕s; ·) is finite on compact sets. Then one can apply the bounded
convergence theorem to obtain the asserted equation. ��

4.3 Some consequences

Corollary 4.4 in particular implies that if A ⊂ R
d is compact and s > 0, then

µk(A⊕s; ·) has a finite total variation measure for k = 0, . . . , d − 1. Hence,
µd−1(A⊕s; ·) is a finite measure. Using a special case of Proposition 4.1 and since
∂+A⊕s = ∂++A⊕s for s > 0, we obtain that

Hd−1(∂+A⊕s) < ∞.

We now derive some further consequences of Corollary 4.4. Let again A ⊂ R
d

be compact. Then we set VA(r) := Hd(A⊕r ).
Equation (2.3) implies in particular that for r ≥ 0 the parallel volume of A can

be written as

VA(r) = VA(0)+
d−1∑

i=0

ωd−i
∫ r

0

∫

N(A)

td−1−i

×1{t < δ(A, x, u)}µi(A; d(x, u))dt, (4.4)

which is the general counterpart to (1.1). Equation (4.4) implies that the right and
left derivatives V (+)A (r) and V (−)A (r) of VA exist for all r ∈ (0,∞). More specifi-
cally, since

t �→
∫

N(A)

1{t < δ(A, x, u)}µi(A; d(x, u))

is well defined and right continuous, we have

V
(+)
A (r) =

d−1∑

i=0

ωd−i rd−1−i
∫

N(A)

1{r < δ(A, x, u)}µi(A; d(x, u)) (4.5)
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for r > 0. On the other hand, the function

t �→
∫

N(A)

1{t < δ(A, x, u)}µi(A; d(x, u))

has the left limit
∫

N(A)

1{t ≤ δ(A, x, u)}µi(A; d(x, u))

at t > 0, hence

V
(−)
A (r) =

d−1∑

i=0

ωd−i rd−1−i
∫

N(A)

1{r ≤ δ(A, x, u)}µi(A; d(x, u)) (4.6)

for r > 0. We summarize these considerations in the following corollary, which
complements and refines previous work by Kneser [21] and Stachó [29].

Corollary 4.5. Let A ⊂ R
d be compact. Then the derivative of VA at r > 0 exists

if
∫

N(A)

1{δ(A, x, u) = r}µi(A; d(x, u)) = 0, i = 0, . . . , d − 1. (4.7)

In particular, the derivative exists for all r ∈ (0,∞) with the possible exception of
an at most countable set.

It is clear that if the measures µi(A; ·) are all non-negative (cf. Section 3), then
condition (4.7) is necessary and sufficient for the differentiability of the function
VA at r > 0. Moreover, for a non-empty compact convex set A ⊂ R

d , condition
(4.7) is satisfied for all r > 0; for a set A with reach(A) > ε, this condition is
fulfilled at least for 0 < r ≤ ε.

Let r > 0 and A ⊂ R
d be compact. Then, combining Equation (4.5) with

Corollary 4.4, we find that

V
(+)
A (r) = 2µd−1(A⊕r ; R

d × Sd−1),

and hence

V
(+)
A (r) = Hd−1(∂+A⊕r ),

where Proposition 4.1 and ∂+A⊕r = ∂++A⊕r were used. By the main result in
[29], the (d − 1)-dimensional Minkowski content (cf. [3], [5]) Md−1(∂A⊕r ) of
∂A⊕r exists for all r > 0 and

Md−1(∂A⊕r ) = 1

2

(
V
(+)
A (r)+ V

(−)
A (r)

)
.

Thus, as a consequence of Corollary 4.5 we obtain the next result.
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Corollary 4.6. Let A ⊂ R
d be compact. Then, for all r ∈ (0,∞),

V
(+)
A (r) = Hd−1(∂+A⊕r );

moreover,

Md−1(∂A⊕r ) = Hd−1(∂+A⊕r )

for r ∈ (0,∞) with the possible exception of an at most countable set.

For d ≥ 4, ∂A⊕r need not be a rectifiable set (although it is a Hausdorff rectifi-
able set); see [7] for counterexamples and [10], [7], [9] for related work. Therefore,
we cannot use Theorem 3.2.39 in [5] to conclude that Hd−1(∂A⊕r \ ∂+A⊕r ) = 0.
However, the desired conclusion can now be obtained in a more direct way.

Corollary 4.7. Let A ⊂ R
d be compact. Then Hd−1(∂A⊕r \ ∂+A⊕r ) = 0 for

H1-almost all r ∈ (0,∞).

Proof. We already know that V (+)A (r) = Hd−1(∂+A⊕r ) for all r > 0. By Lemma
3.2.34 in [5] we also have

VA(r) = VA(0)+
∫ r

0
Hd−1(∂A⊕t )dt,

hence V (+)A (r) = Hd−1(∂A⊕r ) for H1-almost all r ∈ (0,∞). ��

In general, the parallel volume is not differentiable at the point r = 0. If it were,
then the boundary of each compact set with vanishing volume would admit a finite
(d − 1)-dimensional Minkowski content (see [5], [3]). Fractal sets of dimension
strictly greater than d − 1 do not have this property. We wish to illustrate this point
with just one very simple example.

Example 4.8. We consider the Sierpiński gasket A ⊂ R
2 (see [3]). It is constructed

by repeated removal of open equilateral triangles from an initial equilateral triangle
A1 with side length 1, say. In the first step one open triangle having side length 2−1

and its vertices on the boundary of A1 is removed. The result is a set A2 consisting
of 3 triangles with side length 2−1. Removing from each of the three triangles an
open triangle with side length 2−2 yields the set A3 consisting of 32 triangles each
with side length 2−2. The n-th set An is made up of 3n−1 equilateral triangles each
with side length 2−(n−1). The Sierpiński gasket A is then the intersection of all the
setsAn constructed in this way. Obviously this is a non-empty and compact set with
vanishing area. It is easy to see that the positive boundary ∂+A is the union of all
the boundaries ∂An and that H1(∂+A) = ∞. The set ∂++A is obtained from ∂+A
by removing the three vertices of A1 and coincides with ∂1A. If x ∈ ∂++A ∩ ∂An
and x belongs exactly to one of the triangles of side length 2−(n−1) forming An,
then ν(A, x) is the outer normal of this particular triangle; otherwise, ν(A, x) is
the unique common outer normal vector of the two triangles to which x belongs.
If x ∈ ∂+A \ ∂++A (i.e. a vertex of A1), then k1(A, x, u) = ∞ for almost all
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u ∈ N(A, x). If x ∈ ∂++A, then k1(A, x, ν(A, x)) = 0. Hence we obtain from
(2.24) that

µ0(A; ·) = 1

2π

∑

x∈∂+A\∂++A

∫

N(A,x)

1{(x, u) ∈ ·}H1(du),

µ1(A; ·) = 1

2

∫

∂++A
1{(x, ν(A, x)) ∈ ·}H1(dx).

Since it is also quite easy to determine the reach function, it is in fact possible to
compute the right-hand side of (2.16) explicitly. Some calculus yields that

H2(A⊕r ) ≥ πr2 + cr2−log 3/ log 2, r > 0,

where c is an absolute constant. Hence

lim inf
r→0+

ra−2H2(A⊕r ) = ∞,

whenever a < log 3/ log 2, in accordance with the fact that the box-counting
(or Minkowski) dimension of A is given by log 3/ log 2 (see Definition 3.1 and
Proposition 3.2 in [3]). In particular, we have r−1H2(A⊕r ) → ∞ as r → 0+.

4.4 Further properties

Equation (2.24) implies that the support measures are locally defined. This means
that for any two non-empty closed setsA1, A2 ⊂ R

d satisfyingA1 ∩U = A2 ∩U ,
for some open set U ⊂ R

d ,

µi(A1;D) = µi(A2;D), i = 0, . . . , d − 1,

for all Borel sets D ⊂ U × Sd−1 for which one side (and hence both sides) of this
equation are well-defined.

Another useful property of the support measures which follows immediately
from Theorem 2.1 (or from (2.24)) is that they are translation covariant, i.e.

µi(A+ z; (B + z)× C) = µi(A;B × C), i = 0, . . . , d − 1,

for all z ∈ R
d , all non-empty closed sets A ⊂ R

d and all measurable sets B ⊂ R
d ,

C ⊂ Sd−1, such that the right-hand side is well-defined.
As in the classical case, the support measures satisfy an important scaling prop-

erty.

Proposition 4.9. For any non-empty closed set A ⊂ R
d and any c > 0,

µj (cA; ·) = cj
∫

1{(cx, u) ∈ ·}µj (A; d(x, u)), j = 0, . . . , d − 1.
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Proof. Since d(cA, z) = cd(A, c−1z) for all z ∈ R
d , we have that z ∈ exo(cA) if

and only if c−1z ∈ exo(A). It is now easy to check that p(cA, z) = cp(A, c−1z)

and u(cA, z) = u(A, c−1z) for all z /∈ cA ∪ exo(cA). Using this together with
the scaling properties of Lebesgue measure, we obtain from the Steiner formula
(2.3) that, for any bounded and measurable function f : [0,∞)× R

d × Sd−1 with
compact support,

∫

Rd\cA
f (d(cA, z), p(cA, z), u(cA, z))Hd(dz) =

d−1∑

i=0

ωd−ici

×
∫ ∞

0

∫

N(A)

sd−1−i1{s < cδ(A, x, u)}f (s, cx, u)µi(A; d(x, u))ds.

Noting that cδ(A, x, u) = δ(cA, cx, u) for all (x, u) ∈ N(A), we can conclude the
assertion from the uniqueness part of Theorem 2.1. ��

We conclude this section by providing a more explicit description of the support
measures of order zero.

Proposition 4.10. The support measure of order 0 of a closed set A ⊂ R
d is given

by

ωdµ0(A; ·) =
∫

Sd−1

∑

x:(x,u)∈N(A)
1{(x, u) ∈ ·}(−1)j (A,x,u)Hd−1(du),

where j (A, x, u) := card{i ∈ {1, . . . , d − 1} : ki(A, x, u) < 0}. Moreover,
∫

Sd−1

∑

x:(x,u)∈N(A)
1{x ∈ B}(δ(A, x, u) ∧ r)dHd−1(du) < ∞

for all compact sets B ⊂ R
d and r > 0. In particular, for Hd−1-a.e. u ∈ Sd−1

there are at most countably many x ∈ R
d such that (x, u) ∈ N(A).

Proof. We are using Corollary 2.5 and apply the coarea formula to the mapping
(x, u) �→ u from N(A) to Sd−1. Since the approximate Jacobian of this mapping
equals |Hd−1(A, x, u)| (see e.g. [15]) we obtain the first assertion. The second is
then a consequence of (2.2). ��

5 Interior reach

For a non-empty closed set A ⊂ R
d , it is easy to see that

exo(∂A) = exo(A) ∪ exo(A∗),

and
N(∂A) = N(A) ∪N(A∗), N(A) ∩N(A∗) = ∅.

The elements (x, u) ∈ N(A∗) consist of boundary points x ∈ ∂A and normal
vectors u reaching into the interior of A. Thus the reach function, the normal bun-
dle and the support measures of ∂A can be used to extend the corresponding notions
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ofA by taking boundary points with ‘interior normals’ into account. In this section,
we discuss such extensions. Our final goal is to develop the total integral

∫
f (z)Hd(dz) (5.1)

into a Steiner formula with respect to the given set A.
For this purpose, we introduce the extended normal bundle Ne(A) of A as

Ne(A) := N(A) ∪ T (N(A∗)),

where T : R
d × Sd−1 → R

d × Sd−1 is the reflection (x, u) �→ (x,−u). Thus
Ne(A) consists of the exterior normal bundle N(A) and the reflection of the
interior normal bundle N(A∗). The reach function of A is now called the exte-
rior reach function, and denoted by δ+(A, ·). We define a corresponding interior
reach function δ−(A, ·) : R

d × Sd−1 → [−∞, 0] by

δ−(A, x, u) := −δ(A∗, x,−u), (x, u) ∈ R
d × Sd−1.

Note that δ+(A, ·) = δ(∂A, ·)onN(A) and δ−(A, ·) = −δ(∂A, T (·))onT (N(A∗)).
In addition, we have Ne(A) = T (Ne(A

∗)) if A = cl intA.
As a next step, we now use the support measures of ∂A to extend the support

measures of A to the extended normal bundle Ne(A). The starting point is the
relation

µj (∂A; ·)�N(A) = µj (A; ·), µj (∂A; ·)�N(A∗) = µj (A
∗; ·),

j = 0, . . . , d − 1, where µ�M denotes the restriction of a set function µ to the
Borel setM . The idea is to combine µj (A; ·)with (−1)d−1−j T (µj (A∗; ·)), which
is possible if both measures coincide on the intersection of their support. This is
shown by the following result which extends equation (3.4) to general closed sets
A.

Proposition 5.1. For a non-empty closed set A ⊂ R
d and a measurable set B ⊂

N(A) ∩ T (N(A∗)),

µj (A;B) = (−1)d−1−jµj (A∗; T (B)), j = 0, . . . , d − 1, (5.2)

provided that one side, and hence both sides, are well-defined.

Proof. Using the explicit description of the tangent space of the normal bundles of
A and A∗, we find that, for Hd−1-a.e. (x, u) ∈ N(A) ∩ T (N(A∗)),

ki(A
∗, T (x, u)) = −ki(A, x, u), i = 1, . . . , d − 1.

Since JT (x, u) = 1, we thus get that
∫

B

Hd−1−j (A, x, u)Hd−1(d(x, u))

= (−1)d−1−j
∫

T (B)

Hd−1−j (A∗, x, u)Hd−1(d(x, u)), (5.3)

for all Borel sets B ⊂ N(A) ∩ T (N(A∗)) for which one of the two sides of the
required equation is well-defined. This is equivalent to the assertion. ��
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As a consequence of Proposition 5.1, we define the extended support measure
νj (A; ·) on Ne(A) by

νj (A; ·) := µj (A; ·)+ (−1)d−1−j T (µj (A∗; ·))
−µj (A; · ∩N(A) ∩ T (N(A∗)),

for j = 0, . . . , d − 1. It is now possible to combine the Steiner formula (2.3) (or
its equivalent version (2.27)) for A with the one for A∗, which gives the following
result.

Theorem 5.2. For a non-empty closed proper subset A ⊂ R
d and a measurable

bounded function f : R
d → R with compact support,

∫

Rd\∂A
f (x)Hd(dx)

=
d−1∑

i=0

ωd−i
∫

Ne(A)

∫ δ+(A,x,u)

δ−(A,x,u)
td−1−if (x + tu)dt νi(A; d(x, u)). (5.4)

In particular, if Hd(∂A) = 0, then the integral in (5.1) is equal to the right-hand
side of (5.4). However, the assumption Hd(∂A) = 0 is not fulfilled automatically,
it may fail, for example, for Cantor-type sets A.

6 Measurability and integrability properties

The applications of support measures in stochastic geometry, which will be consid-
ered in Sections 7 and 8, require some additional measurability properties related to
the spaceFd of all non-empty and closed subsets of R

d .We endowFd with the usual
Fell-Matheron “hit-or-miss” topology (see [23]). Then, Fd is a locally compact,
second-countable Hausdorff space. Measurability on this space does always refer to
the Borelσ -field generated by the Fell-Matheron topology.A mappinghon Fd×R

d

with values in some arbitrary set is called covariant if h(A, z) = h(A−z, 0) for all
(A, z) ∈ Fd ×R

d . A subset of Fd ×R
d is called covariant if its indicator function

is covariant.

Lemma 6.1. The set {(A, z) ∈ Fd × R
d : z ∈ exo(A)} is measurable and covari-

ant. Moreover, the mappings (A, z) �→ p(A, z) and (A, z) �→ u(A, z) from Fd ×
R
d to R

d are measurable.

Lemma 6.2. The map δ : Fd × R
d × R

d → [0,∞], (A, x, u) �→ δ(A, x, u), is
measurable, and covariant with respect to the first two arguments. In particular,
the map (A, x, u) �→ 1{(x, u) ∈ N(A)} is measurable, and covariant with respect
to the first two arguments.

In the following Lemma we extend the definition of ν(A, x) by giving ν(A, x)
some fixed value in Sd−1 whenever x ∈ R

d \ ∂++A.
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Lemma 6.3. The mapping

(A, x) �→ (1{x ∈ ∂+A}, 1{x ∈ ∂++A}, 1{x ∈ ∂1A}, ν(A, x))
from Fd × R

d to R × R × R × Sd−1 is measurable and covariant.

The proofs of the preceding three lemmas follow from the results and arguments
provided at the end of Section 3 in [17].

Lemma 6.4. For any compact set B ⊂ R
d , ε > 0, for any measurable set D ⊂

B × Sd−1, and j ∈ {0, . . . , d − 1} the mapping

A �→ µj (A; {(x, u) ∈ N(A) : (x, u) ∈ D, δ(A, x, u) > ε})
from Fd to R is measurable. Furthermore, the map A �→ |µj |(A; ·) from Fd to
[0,∞] is measurable.

Proof. The first assertion is implied by Lemmas 6.1 and 6.2, Fubini’s theorem and
by relation (2.26).

For the second assertion, it is sufficient to consider the case where µj (A; ·)
has finite total variation. Let C0 denote a countable and dense (with respect to the
maximum norm) set of continuous functions f : R

d×Sd−1 → [0, 1] with compact
support. Then

|µj |(A;C) = sup

{∫

C

f (x, u)µj (A; d(x, u)) : f ∈ C0

}
,

which yields the required measurability. ��
The following improvement of the integrability property (2.2) will be useful in

the next section.

Theorem 6.5. Let V be a σ -finite measure on Fd and B ⊂ R
d a measurable set.

Then ∫

Fd

∫

Rd\A
1{0 < d(A, z) ≤ r, p(A, z) ∈ B}Hd(dz)V(dA) < ∞ (6.1)

for some r > 0 if and only if
∫

Fd

∫

Rd×Sd−1
1{x ∈ B}(δ(A, x, u) ∧ r)d−j |µj |(A; d(x, u))V(dA) < ∞ (6.2)

for some r > 0 and all j = 0, . . . , d − 1. In this case, both (6.1) and (6.2) are
satisfied by any r > 0.

Proof. The constants c3(l, d) appearing in (2.21) do not depend on A. Therefore,
if (6.1) holds for some fixed r = r0 > 0, then (6.2) holds with the same r = r0.
But then∫

Fd

∫

Rd×Sd−1
1{ε ≤ δ(A, x, u), x ∈ B}|µj |(A; d(x, u))V(dA) < ∞

for j = 0, . . . , d − 1, first for 0 < ε < r0 and then for all ε > 0. Together with
(6.2), for r = r0, this implies that (6.2) is true for all r > 0. Conversely, if (6.2)
holds for just one r0 > 0 and for j = 0, . . . , d − 1, then it holds for all r > 0 and
(6.1) follows from the local Steiner formula. ��
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The inclusion

{z ∈ R
d : 0 < d(A, z) ≤ r, p(A, z) ∈ B} ⊂ A⊕r ∩ B⊕r

implies that (6.1) is trivially satisfied if B is bounded and V is a finite measure.

7 Contact distributions of random closed sets

In this section, we consider a random closed set Z defined on the probability space
(�,A,P). Formally, Z is a random element of the measurable space Fd . The
requirement Z �= ∅ is no restriction of generality. If Z is a random element of
Fd ∪ {∅}, then we can apply the results of this section to the conditional prob-
ability measure P(·|Z �= ∅). Our basic assumption on Z is stationarity, i.e. the
distributional invariance of Z under all translations.

Due to stationarity, the volume fraction

p := P(0 ∈ Z)
of Z can be expressed as p = E[Hd(Z ∩B)] for any Borel set B of volume 1. We
study the distribution of the distance d(Z, z) of z ∈ R

d from Z. If p = 1, then
P(d(Z, z) = 0) = 1 for all z ∈ R

d and hence Z = R
d is satisfied P-almost surely.

To exclude this trivial case we assume here that p < 1. The spherical contact
distribution function of Z (see e.g. [31]) is defined by

H(t) := P(d(Z, z) ≤ t | z /∈ Z), t ≥ 0.

Again by stationarity, H is independent of z. More generally, we define (see [22],
[17], [19])

H(t, C) := P(d(Z, z) ≤ t, u(Z, z) ∈ C | z /∈ Z), (7.1)

for any measurable C ⊂ Sd−1.
It follows from Theorem 6.5 that

E

[∫
1{x ∈ B}(δ(Z, x, u) ∧ r)d−j |µj |(Z; d(x, u))

]
< ∞ (7.2)

for j = 0, . . . , d − 1, for all compact sets B ⊂ R
d and all r > 0. This is the

expected value version of (2.2). Define

βj (·) :=
∫

1{(x, u, δ(Z, x, u)) ∈ ·}µj (Z; d(x, u)), j = 0, . . . , d − 1.

Thenβj (Rd×Sd−1×{0}) = 0 so thatβj can be interpreted as a random signed mea-
sure on R

d×Sd−1×(0,∞]. SinceZ is assumed to be stationary, it can be easily seen
from translation covariance and from the equation δ(Z+y, x, u) = δ(Z, x−y, u),
y ∈ R

d , that βj is stationary, i.e. its distribution is invariant under shifts in the first
variable. Therefore, if B ⊂ R

d is a Borel set with 0 < Hd(B) < ∞, then

�j (·) := 1

Hd(B)
E

[∫
1{x ∈ B}1{(u, δ(Z, x, u)) ∈ ·}µj (Z; d(x, u))

]
(7.3)
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is a signed measure which does not depend on the choice of B. In general we may
have |�j (Sd−1 × (s,∞])| → ∞ as s → 0, but equation (7.2) implies that

∫ r

0
sd−1−j |�j |(Sd−1 × (s,∞])ds < ∞ (7.4)

for r ≥ 0 and j = 0, . . . , d − 1. The following result can now be proved similarly
to Theorem 5.1 and Corollary 5.2 in [17]. In that paper the random closed setZ was
assumed to be Sd -valued. A first version of a result of this type has been established
in [22].

Theorem 7.1. Let Z be a stationary random closed set. Then

(1 − p)H(t, C) =
d−1∑

i=0

ωd−i
∫ t

0
sd−1−i�i(C × (s,∞])ds

for any t ≥ 0 and any measurable set C ⊂ Sd−1.

Absolute continuity of the contact distribution H(t) has been proved (inde-
pendently of [22]) in [2] (see also [13]) using Federer’s coarea theorem. The new
and very pleasing fact here is that the density of (1 − p)H(·, C) is of the same
explicit form as in [22] and [17] where the case of a random set taking values in the
extended convex ring is studied. Note in particular that we do not need to impose
any integrability condition on Z.

Since �i(C × (s,∞]) is a right continuous function of s ∈ (0,∞), it follows
that (1 − p)H(·, C) admits a right derivative on (0,∞). Moreover, since the left
limit of �i(C × (·,∞]) exists, the contact distribution also has a left derivative.
It is even differentiable with the possible exception of at most countably many
points. Example 8.2 below shows that (1 −p)H(·, C) need not be differentiable at
the point 0. Such a differentiability property can be deduced under the additional
assumption

E[|µi |(Z;B × Sd−1)] < ∞, i = 0, . . . , d − 1, (7.5)

for some Borel setB with positive volume. Under this assumption (which certainly
excludes fractal behaviour ofZ), the curvature measuresµi(Z; ·) can be considered
as random signed measures on R

d ×Sd−1. The associated total variation measures
|µi |(Z; ·) are (locally finite) random measures.

Corollary 7.2. Let Z be a stationary random closed set satisfying (7.5) for some
Borel set B with positive volume. Then

lim
t→0+

t−1(1 − p)H(t, C) = 2λd−1(C)

for any measurable set C ⊂ Sd−1, where

λd−1(C) := E[µd−1(Z; [0, 1]d × C)] < ∞. (7.6)

Proof. Assumption (7.5) ensures that the �j are finite signed measures. Therefore
the assertion is an immediate consequence of Theorem 7.1. ��
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Under (7.5) we have in particular that

�d−1 := E[µd−1(Z; ·)] (7.7)

is a locally finite measure on R
d × Sd−1. According to Proposition 4.1 we may

interpret �d−1(· × Sd−1) as the surface intensity measure of Z. From stationarity
we obtain that

�d−1 = Hd ⊗ λd−1. (7.8)

Again by Proposition 4.1 we can interpret the number λd−1(S
d−1) as the surface

intensity of Z and (assuming λd−1(S
d−1) > 0) the probability measure

R := λd−1/λd−1(S
d−1)

as the rose of directions of Z.
In some applications one might have λd−1(S

d−1) = 0. An example are fibre
processes in R

3 (see [31]). If the surface intensity is 0, the first (right) derivative of
(1 − p)H(·, C) vanishes at the point 0. Since the first derivative is itself differen-
tiable with the exception of only countably many points, we then can consider the
second (right) derivative at 0. This yields the following result.

Corollary 7.3. Let Z be a non-empty stationary random closed set satisfying (7.5)
and λd−1(S

d−1) = 0. Then, for any measurable set C ⊂ Sd−1, (1 − p)H(·, C)
has a second derivative at the point 0 which is given by

2πE[µd−2(Z; [0, 1]d × C)].

8 Contact distributions of Boolean models

We finally discuss the important special case of a Boolean model with compact
particles. Hence we assume now that

Z =
⋃

n∈N

(Zn + ξn),

where the ξn, n ∈ N, build a stationary Poisson process � in R
d with positive

and finite intensity γ and where the grains Z1, Z2, . . . form a sequence of inde-
pendent, identically distributed random elements of Cd (the space of non-empty
compact subsets of R

d ) which is independent of � (see [23] and [31] for more
details). Denoting the common distribution of the Zn by Q we make the standard
assumption

∫
Hd(A⊕ B)Q(dA) < ∞ (8.1)
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for all compact sets B ⊂ R
d , where A⊕ B := {x + y : x ∈ A, y ∈ B}. Since any

bounded set can be covered by finitely many balls of a fixed radius, condition (8.1)
is equivalent to

∫
Hd(A⊕r )Q(dA) < ∞ (8.2)

for just one r > 0. Assumption (8.1) guarantees that each compact set is intersected
by only a finite number of the (shifted) grains Zn + ξn, n ∈ N.

A good starting point for the analysis of the spherical contact distribution func-
tion is the formula for the capacity functional of Z stating that

P(Z ∩ B �= ∅) = 1 − exp

[
−γ

∫
Hd(A⊕ (−B))Q(dA)

]
, (8.3)

for all Borel sets B ⊂ R
d , where −B := {−z : z ∈ B}. By (8.1), this number is

strictly less than 1, if B is bounded. In particular, we obtain for the volume fraction
that

p = 1 − exp

[
−γ

∫
Hd(A)Q(dA)

]
< 1.

Taking B = Bd in (8.3) and using the preceding formula for p, we obtain

1 −H(t) = exp

[
−γ

∫
Hd(A⊕t \ A)Q(dA)

]
. (8.4)

By Theorem 6.5, assumption (8.1) implies that
∫∫

(δ(A, x, u) ∧ r)d−j |µj |(A; d(x, u))Q(dA) < ∞ (8.5)

for r > 0 and j = 0, . . . , d − 1. Therefore we can apply the local Steiner formula
(2.3) to deduce from (8.4) that

H(t) = 1 − exp

[
−
∫ t

0
λ(s)ds

]
, t ≥ 0,

where

λ(s) :=
d−1∑

i=0

ωd−i sd−1−iγ
∫∫

1{s < δ(A, x, u)}µi(A; d(x, u))Q(dA).

Using different methods we can generalize this result to contact distribution
functions H(·, C).
Theorem 8.1. Let Z be the stationary Boolean model defined above and let C ⊂
Sd−1 be measurable. Then H(·, C) is absolutely continuous with density

t �→ (1 −H(t))γ

d−1∑

i=0

ωd−i td−1−i
∫∫

1{t < δ(A, x, u)}1{u ∈ C}
×µi(A; d(x, u))Q(dA).
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Proof. It follows exactly as in the proof of Theorem 3.1 in [18] that

H(t, C) = γ

∫∫
(1 −H(d(A, z)))1{0 < d(A, z) ≤ t, u(A, z) ∈ C}

×Hd(dz)Q(dA) (8.6)

for all t ≥ 0 and all measurable C ⊂ Sd−1. The only additional argument, which
is required, concerns Lemma 3.1 of [18]. In order to get the corresponding result
in the present context, we need to show that the boundary of A⊕s has volume
0, for all A ∈ Cd and s > 0. This can be seen as follows. Let x ∈ ∂A⊕s be
fixed for the moment. Then there is some a ∈ clA such that |x − a| = s and
∂A⊕s ∩ intBd(a, s) = ∅. Therefore, we find that

lim sup
r→0+

Hd(∂A⊕s ∩ Bd(x, r))
Hd(Bd(x, r))

< 1,

for any x ∈ ∂A⊕s . The assertion now follows from Theorem 2.9.11 in [5].
Since z �→ 1 − H(d(A, z)) is a bounded function and A is compact, we can

exploit the local Steiner formula to express the inner integral of (8.6) in terms of
the support measures. By (8.5) we can then use Fubini’s theorem to conclude the
desired result. ��
Example 8.2. Assume that Q is the distribution of a random multiple ξA0 of some
fixed compact set A0, where ξ is a positive random variable with E[ξd ] < ∞.
Using the scaling properties in Proposition 4.9 we obtain from Theorem 8.1 that
H(t, C) has the density

(1 −H(t))γ

d−1∑

i=0

ωd−i td−1−i

×E

[
ξ i
∫

1{t < ξδ(A0, x, u)}1{u ∈ C}µi(A0; d(x, u))
]
.

IfA0 is a fractal, we might have that the above density tends to ∞ as t → 0. Indeed,
it follows directly from (8.4) that

H(t) = 1 − exp
(
−γE[ξdHd(A0 + ξ−1tBd)]

)
.

Assume now that A0 is a fractal with box-counting dimension a ∈ (d − 1, d). For
instanceA0 could be the Sierpiński gasket introduced and discussed in Example 4.8.
Further, we assume that ξ ≥ t0 > 0 holds P-a.s. Then we choose ε ∈ (0, a−d+1).
By definition, if t > 0 is sufficiently small, we get that

d − a + ε >
log Hd(A0 + ξ−1tBd)

log(ξ−1t)
,

hence

ξdHd(A0 + ξ−1tBd) > td−a+εta−ε0 .
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This shows that

H(t) ≥ (γ /2)ta−ε0 td−a+ε

if t > 0 is sufficiently small. In particular, t−1H(t) → ∞ as t → 0.

Finally, we turn to the relationships between the measures �j introduced in
Section 7 for a general stationary closed set and corresponding mean values with
respect to Q.

Theorem 8.3. Let Z be a stationary Boolean model as above. Then

�j (C × (s,∞]) = (1 − p)(1 −H(s))γ

∫∫
1{s < δ(A, x, u)}

× 1{u ∈ C}µj (A; d(x, u))Q(dA), (8.7)

for all measurable sets C ⊂ Sd−1, s > 0, and j ∈ {0, . . . , d − 1}.
The proof of this theorem requires the following lemma. Recall that S(N) de-

notes the system of all non-empty finite subsets of N.

Lemma 8.4. LetA ⊂ R
d be the union set of the locally finite family of compact sets

Ai ⊂ R
d , i ∈ N. Let j ∈ {0, . . . , d−1}, s > 0, and letB ⊂ R

d be measurable and
bounded. Then, for all measurable and bounded functions f : R

d × Sd−1 → R,
∫
f (x, u)1{s < δ(A, x, u), x ∈ B}µj (A; d(x, u))

=
∑

v∈S(N)

∫
1{Bd(x + su, s) ∩ A(v) = ∅}

∏

i∈v
1{s < δ(Ai, x, u), x ∈ B}

×f (x, u)µj (Av; d(x, u)),

where

Av :=
⋂

i∈v
Ai and A(v) :=

⋃

i /∈v
Ai.

An analogous relationship is satisfied for the total variation measures |µj |(A; ·)
and |µj |(Av; ·), v ∈ S(N).

Proof. It is an easy consequence of the definition that N(A) is the disjoint union
of the sets Dv , v ∈ S(N), where

Dv := ((Rd \ A(v))× Sd−1) ∩
⋂

i∈v
N(Ai).

Moreover, if (x, u) ∈ Dv and s > 0, then δ(A, x, u) > s if and only if Bd(x +
su, s) ∩ A(v) = ∅ and δ(Ai, x, u) > s for i ∈ v. Since clearly

⋂
i∈v N(Ai) ⊂

N(Av), we have (in obvious notation) Hd−1−j (A, x, u) = Hd−1−j (Av, x, u), for
Hd−1-a.e. (x, u) ∈ Dv . Hence the result follows from (2.24). ��
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Proof of Theorem 8.3. Let B ⊂ R
d denote a bounded Borel set of volume 1. Fur-

ther, let s > 0 and an arbitrary Borel set C ⊂ Sd−1 be given. Then, by definition
(7.3) and Lemma 8.4,

�j (C × (s,∞])

=
∞∑

n=1

1

n!
E

[∑∗
1{Bd(x + su, s) ∩ Z(A1, x1, . . . , An, xn) = ∅}

∫

B×C

×
n∏

i=1

1{s < δ(Ai + xi, x, u)}µj ((A1 + x1) ∩ . . . ∩ (An + xn); d(x, u))
]
,

where the sum
∑∗ extends over all n-tuples ((A1, x1), . . . , (An, xn)) of mutu-

ally different elements of {(Zm, ξm) : m ∈ N} and where, for any such tuple,
Z(A1, x1, . . . , An, xn) is the union of all Zm + ξm such that (Zm, ξm) does not
pertain to {(A1, x1), . . . , (An, xn)}. To justify the interchange of summation and
expectation in deducing the previous equation, one first derives the corresponding
equation for the total variation measure |�j |, which is finite for the sets considered.

By a fundamental property of the Poisson process (see e.g. [20]) we conclude
that

�j (C × (s,∞]) = (1 − p)(1 −H(s))

∞∑

n=1

γ n

n!

∫
· · ·
∫ ∫

· · ·
∫ ∫

B×C

×
n∏

i=1

1{s < δ(Ai + xi, x, u)}µj ((A1 + x1) ∩ . . . ∩ (An + xn); d(x, u))

× dx1 . . . dxnQ(dA1) . . .Q(dAn), (8.8)

where dx1, . . . , dxn denote integration with respect to Lebesgue measure. Using
this result for C = Sd−1 and comparing Theorem 8.1 with Theorem 7.1, we obtain
that

0 =
d−1∑

j=0

∞∑

n=2

ωd−j sd−1−j γ n

n!

∫
· · ·
∫ ∫

· · ·
∫ ∫

B×Sd−1

×
n∏

i=1

1{s < δ(Ai + xi, x, u)}

× µj ((A1 + x1) ∩ . . . ∩ (An + xn); d(x, u))
× dx1 . . . dxnQ(dA1) . . .Q(dAn). (8.9)

We are now fixing j and n in the above formula, as well as the sets Bi := Ai + xi ,
i = 1, . . . , n. It is easy to check that

δ′(B1, . . . , Bn, x, u) := min{δ(Bi, x, u) : i = 1, . . . , n} ≤ δ(B1 ∩ . . .∩Bn, x, u)
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for all (x, u) ∈ N(B1)∩ . . .∩N(Bn). Therefore we can apply (2.21) to obtain from
(8.9) that

0 =
∞∑

n=2

γ n

n!

∫ r

0
sd−1−k

∫
· · ·
∫ ∫

· · ·
∫ ∫

B×Sd−1

× 1{s < δ′(A1 + x1, . . . , An + xn, x, u)}
× |µk|((A1 + x1) ∩ . . . ∩ (An + xn); d(x, u))
× dx1 . . . dxnQ(dA1) . . .Q(dAn)ds

for all k ∈ {0, . . . , d − 1} and all r > 0. Hence

0 =
∫

· · ·
∫ ∫

· · ·
∫ ∫

B×Sd−1

× 1{s < δ′(A1 + x1, . . . , An + xn, x, u)}
× |µk|((A1 + x1) ∩ . . . ∩ (An + xn); d(x, u))
× dx1 . . . dxnQ(dA1) . . .Q(dAn)

for all n ≥ 2, k ∈ {0, . . . , d − 1} and s > 0. Inserting this relation into (8.8), we
obtain the desired result. ��

It is tempting to take the limit s → 0 in (8.7). This requires the integrability
condition

∫
|µj |(A; R

d × Sd−1)Q(dA) < ∞, j = 0, . . . , d − 1. (8.10)

As we will see, assumption (8.10) implies that (7.5) is satisfied (the converse is
also true). Hence, under this condition

�i := E[µi(Z; ·)], i = 0, . . . , d − 1,

are signed Radon measures on R
d × Sd−1. Since Z is stationary,

�i = Hd ⊗ λi, i = 0, . . . , d − 1, (8.11)

where λi(C) = �i([0, 1]d × C) for any Borel set C ⊂ Sd−1. Note that λd−1 has
already been introduced by (7.8).

Together with
∫ Hd(A)Q(dA) < ∞, condition (8.10) is a stronger assump-

tion than (8.1). Fractal grains are excluded this way. Our final theorem generalizes
results in [23] and [17].

Theorem 8.5. Let Z be the stationary Boolean model defined above and assume
that (8.10) holds. Then (7.5) is satisfied and

λj (C) = (1 − p)γ

∫
µj (A; R

d × C)Q(dA) (8.12)

for j = 0, . . . , d − 1 and all measurable sets C ⊂ Sd−1.
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Proof. Fix a Borel set C ⊂ Sd−1 and j ∈ {0, . . . , d − 1}, and let B ⊂ R
d be a

bounded and measurable set of volume 1. It follows as in the proof of Theorem 8.3
that

E

[∫
1{x ∈ B}1{s < δ(Z, x, u)}|µj |(Z; d(x, u))

]

= (1 − p)(1 −H(s))γ

∫∫
1{s < δ(A, x, u)}|µj |(A; d(x, u))Q(dA), (8.13)

for all s > 0. Letting s → 0 we obtain (7.5) by dominated convergence. The
assumption of stationarity implies that

λj (C) = E[µj (Z;B × C)] = �j (C × (0,∞]). (8.14)

Letting s → 0 in (8.7), the assertion (8.12) now follows again by dominated con-
vergence. ��
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