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Abstract

Given a relation2: X — Y between topological spaces, we inquire whether it has a constant
selection. This problem has been investigated from different points of view, purely topological or
convex. We present here a synthesis of some of the most interesting results, with some generalizations
and new insights] 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

This work is a synthesis, with some simplifications and generalizations, of various
results dealing with the constant selection problem for a relation. After defining some
terms, we shall state the problem and provide some motivation.

By arelation from a setX to a setY we mean a map fronX to the power set of'.
Relations are also called multifunctions or correspondences. We will use the functional
notation £2: X — Y to denote a relation fronX to Y (they are just morphisms in
the appropriate category), the s&tx is the image of the poink. Sets of the form
{x € X: y € 2x)} are calledibersand are denoted b ~'y. The complement of a fiber
21y is called acofiber, it is denoted bys2*y. To a relations2: X — Y are therefore
associated two relations?~1: Y — X, the inverse of2, and2*:¥ — X, the dual of
£2. We will use the same notation for a relatiah: X — Y and for its graph, the subset
{(x,y) e X xY:yeRx}of X x Y. We will say that2 has the finite intersection property
if the family of its values has the finite intersection property.

Given a relation2: X — Y between topological spaces there are three problems that
one can consider:
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(1) The continuous selection problem. Is there a continuous fmap— Y such that
f(x) € 2x foreachx € X?
(2) The fixed point problem. Assuming thatC Y, is there a poink € X such that
X e 2x?
(3) The constant selection problem. Is there a p®iatY such thaty € £2x for each
xeX?
We will be mainly concerned with problem (3) which obviously asks if thg 3gt 2x
is not empty. In many cases, as we will see, (3) cannot be dissociated from problems (1)
and (2). We next give some motivation for considering the constant selection problem.
The first and main motivation comes from minimax theory, going back to Von Neumann
and the fundamental theorem of zero sum games. Given a fung¢tighx ¥ — R =
R U {—o00, 400} defined on the product of two topological spaseandY, we would like
to know if

inf supf(x,y)=supinf f(x,y).
yeYxeX xeXyeY

We only need to establish the inequality

inf supf(x, y) <supinf f(x,y),
yeYxeX xeX yeY

we can therefore assume that

supinf f(x,y) # oco.

xeXyeY

In this setting, to a real numberone can associate a relatio?) : X — Y defined as
follows:

x={yeY: f(x,y) <A}

Then, one can see that jpf sup.cx f(x,y) = sup.cx inf,cy f(x,y) if and only if
Nyex $20x # ¥ for each > supyinfy f(x,y). A most important result, which has
achieved the status of a reference point in minimax theory, is due to Maurice Sion [41].

Theorem 1 (Sion).Let X andY be convex compact subsets of topological vector spaces
and f: X x Y — R afunction such that
(i) foranyx € X the functionf (x, -) is quasi-convex and lower semicontinuousrgn
(ii) for any y € Y the functionf(-, y) is quasi-concave and upper semicontinuous
onX.
Then

inf supf(x, y) = supinf f(x,y).
yeYxeX xeXyeY

Recall that a functiorg : X — R is quasi-convexf for any real numben € R the set
{x € X: g(x) <A} is convey, it isquasi-concavé —g is quasi-convex.

There is an extensive literature on minimax theorems, a broad but partial review is
given in the paper of Simons [40] (citing over one hundred and thirty references), where
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topological results are almost absent. Sion’s proof of his theorem involved the theorem
of Knaster, Kuratowski and Mazurkiewicz [10] which can be seen as a geometric form
of Brouwer’s fixed point theorem. Other minimax equalities can be derived from Hahn—
Banach’s Theorem. Both methods require a convex setting. Much efforts have been spend
on trying to understand the nature of minimax theorems and on generalizations of Sion’s
theorem. Generalizations are of two different kinds. One can relax convexity, replacing it
by some algebraic conditions (we do not go into details since we are not concerned here
with this side of the problem for which Simons [40] can be consulted). Or we can look for
topological substitutes of convexity. The second possible generalization is in the direction
of continuity conditions weaker than lower or upper semicontinuity. We will be exclusively
concerned with the last two problems.

Additional motivation comes from mathematical economics whereX — X repre-
sents greference relatiorn a consumption sef. There are two possible interpretations
for £2. As a large preference relatione 22x is then interpreted asis prefered or equiva-
lent to x in which case it is natural to assume that £2x, or as a strict preference relation
y € £2x is then interpreted asis strictly prefered to xin which case itis natural to assume
thatx ¢ 2x. In the first case, ify € (), .x 22x theny is a largest element with respect
to £2. In the second case, if € [,y £2*y thenx is a maximal element with respect to
£2. The basic ingredient in this kind of results is again Brouwer’s fixed point theorem. For
the role of relations and convexity in mathematical economics see Border [6] or Klein and
Thomson [26].

Any constant selection problem can be interpreted as the search for a winning strategy
in a zero sum game between two players. Indeed, let the strategy setdY be given as
well as a relation, which we identify with its gragh C X x Y. Player | picks a point € X
and player Il a poiny € Y. If (x, y) € £2 then players Il wins, otherwise player | wins. If
Nyex $2x # ¢ then player Il has a winning strategy(Tj, ., £2*y # @ then player | has a
winning strategy. It is not difficult to see that

((2x#0 or [2*y+#0

xeX yey

if and only if

inf supf(x, y) = supinf f(x,y),
yeYxeX xeXyeY

wheref: X x Y — R is the characteristic function of the complementdin X x Y.

Now, we move on with a description of the paper.

There are two sections. The first one deals with the topological intersection theorems.
The first topological substitute for convexity that comes to mind is connectedness. One
might not expect much from such a simple property, so it came a bit as a surprise when
it was finally understood that many minimax theorems, including Sion’s theorem, could
be proved using exclusively arguments based on connectedness. In recent years there
has been an intense research on intersection theorems based merely on connectedness.
Contributions were made by Kindler [21,22], Konig [27,28], Ricceri [39] and the author
[17,18], extending previous important studies by Telkersen [46], Tuy [47,48] and Wu Wen
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Tsln [49]. Contributors are too numerous to be given their due share of recognition here,
but one should mention at least Joo [20] and Stacho [43]. We will not state a single minimax
theorem, apart from Sion’s result. The interested reader can consult the papers of Kindler
or Konig, which, according to Konig, settle completely the question of which minimax
theorems can be obtained from connectedness.

However, there is one result, Fan’s interection theorem [12] which is given below, that
one cannot expect to derive from methods based on connectedness, (some asked if it could
be done), and there are a few reasons for that. From Fan’s theorem one can derive Schau-
der—Tychonoff’s fixed point theorem and the latter does not rely only on the fact that
compact convex sets are connected, furthermore, all the results based on connectedness
are proved by induction. It appears doubtful that even Brouwer’s fixed point theorem could
be proved by induction. Before going any further let us state Fan’s theorem, and let us
say that it is one of the central results of nonlinear analysis, see, for example, the book by
Aubin and Ekeland [1].

Theorem 2 (Fan).Let £2: X — X be a relation from a convex subset of a topological
vector space to itself such that the following conditions hold

(A) for eachx € X the set2x is closed and: € 22x,

(B) for eachy € X the set2*y is convex,

(C) thereis at least one poing € X for which £2xg is compact.
Then

ﬂxex Qx #0.

Section 1 presents a topological version of Fan's theorem due to the author. The
formulation of that result involves topological conditions on arbitrary intersections of
cofibers, and a simple example shows that the theorem is in some way optimal. If one
restricts the domairX of the relations2 to be finite-dimensional then one can do with
topological conditions on the individual cofibers, or images, of the relation. This is the
subject matter of the last part of the first section. We introduce there a new class of relations,
which we callSerre relationsthe name being justified by the fact that the grapkokith
the projection on the domaii is a Serre fibration. The idea of looking at relations as
fibrations goes back to Michael [36], the same point of view was exploited in a series of
papers by McClendon [30—32]. We do not define Serre relations directly as Serre fibrations,
our definition is much simpler, and so are the proofs. We dwell on Serre relations just
enough to develop their fundamental properties, the basic results of McClendon are proved,
the continuity properties of Serre relations are investigated. To prove that a relation has a
constant selection one sometimes has to combine a fixed point theorem with a continuous
selection theorem, therefore fixed point theorems and selection theorems for Serre relations
are also proved. We believe that Serre relations form an interesting class and we hope that
our presentation will contribute to carry further the initial ideas of Michael and McClendon.

The second section is entirely devoted to results of Greco and its associates [11,4,15].

With the results of Bassanezi and Greco or of Greco and Moschen we are back in the
convex setting, but with continuity conditions weaker than lower or upper semicontinuity.
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They obtained their results assuming that the domain is a finite-dimensional convex set
and they ask if that condition could be removed. We give a partial answer to their question.
Again, the analytic interpretation of the constant selection theorems are not presented here.

2. Topological intersection theorems

In this sectionX andY are topological spaces ael: X — Y is a relation. The results
are of two kinds. Some give sufficient conditions f@r to have the finite intersection
property while others show directly th& has a constant selection. Recall thatX — Y
is lower semicontinuous if for any open 3étC Y the set{x € X: 2xNV £ @} isopenin
X. Itis upper semicontinuous if for any open $€C Y the set{x € X: 2x C V}is open
inX.

Theorem 3 combines results of Kindler [21] and of the author [18], Corollary 1 is from
[18].

Theorem 3. Let X be connected topological space and assume thatX — Y has
nonempty values and also the following properties

(A) for any nonempty finite subsBtC X the sef ), $2x is connected,

(B) for any nonempty subsétcC Y the setﬂyeA £2*y is connected.
Then, in any of the following three cas&? has the finite intersection property.

(1) £2 is lower semicontinuous and the values are open.

(2) £2 is upper semicontinuous and the values are closed.

(3) The values are closed and the fibers are open.

Proof. First, we show thaf2x1 N 2x2 # ¥ for anyxyg, x2 € X.
Before proceeding with a proof of the claim, notice that the set

[[x1, x21l = m {2%y: {x1, x2} € 2%y}

is nonempty and connected,{if: {x1,x2} C 2%y} is empty thert = 2x1 U 2x», in this
case we lefixy, x2]] = X.

We establish the claim by contradiction. Assume f2at; N 2x = (.

Let A; = {x € [[x1, x2]l: £2x C R2x;}, i =1,2. Since all the2x are connected and
nonempty, and also all open, or all closed, we have, f@ifx1, x2])) C 2x1 U 2x2,
A; = {x € [[x1, x2]l: 2x N 2x; # B}.

Notice thatA; £ @, that A1 N A2 =@, and[[x1, x2]] = A1 U A». If we show thatd; and
A are both open, or both closed, we have a contradiction.

If (1) or (3) is the case, thef? is lower semicontinuous.

If (1) is the case, them2x; is open andA; = {x € [[x1, x2]l: 2x N 2x; # ¥}, it is
therefore open.

If (3) is the case, theRx; is closed andi; = {x € [[x1, x2]]: £2x C L2x;}, itis therefore
closed.

If (2) is the case, ther is upper semicontinuouf x; is closed and, by connectedness,
A; = {x € [[x1, x2]]: 2x N 2x; # ¥}, itis therefore closed.
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We have shown tha®Rx1 N 2x2 # ¥ for anyx1, x2 € X.

To complete the proof, we proceed by induction. Assume(tat, 2x # @ if BC X
is a finite nonempty subset with at mostelements, where & n. Fix a finite subset
{x1,...,xp+1} € X and let

n+1
Qx=(2x)N (ﬂ sle).
i=3
We have to see thaﬁxl N [~2x2 0.

Itis obvious that (A) holds fof2. As for (B) notice thaﬁ*y =%y if {x3,..., xp41}N
2%y =¢, and2*y = X otherwise. Indeedixs, ..., x,41} N 2%y = ¥ is equivalent to
ye ﬂl”:*?,l 2x;,and also tdxs, .. ., xu41} € 2~ 1y. Fromthis, we see that (B) holds for.

If the values of2 are open and if2 is lower semicontinuous, thef® is lower
semicontinuous with open values. Also, if the valuesoare closed and if2 is upper
semicontinuous, thef? is upper semicontinuous with closed values. We have one last case
to look at (3). From2 1y = 21y if {x3,...,xs41} € 271y, and2~1y = ¢ otherwise,
we conclude thaf2~1y is open ifs2 =1y is open.

From the first part of the proof we can infer thaky N 2x, £ 0. O

Corollary 1. Let X be a connected topological space afdl: X — Y closed graph
relation with nonempty compact values. If propertigs) and (B) below hold then
ﬂxeX 2x # 0.

(A) for any nonempty finite subsBtC X the sef ), §2x is connected,

(B) for any nonempty subsdtc Y the sef),, £2*y is connected.

Proof. We keep the notation of Theorem 3. First we show tRat; N 2x, # @ for any
x1,x2€ X.

We haves2 ([[x1, x2]]) C 2x1 U 2x2. Let I': [[x1, x2]] — £2x1 U £2x2 be the restriction
of £2 to [[x1, x2]]. Itis a closed graph relation, and therefore upper semicontinuous because
2x1 U 2x2 is compact. Ify € 2x1 U Qxp thenlI™y = [[x1, x2]] N 2*y. Also, 'x = 2x
if x € [[x1,x2]l. This shows that™ verifies conditions (A) and (B-2) from Theorem 3.
Therefore2x1 N 2x2 # 0.

Now, fix x1 € X and consider the relatiof21x = 2x1 N 2x from X to 2x1. It is
upper semicontinuous and it has nonempty compact values: i x; then2yy = 2*y.
From Theorem 3 we conclude th@y : X — 2x3 has the finite intersection property, and
therefore2 also. Since the values are compact, the proof is complete.

Connectedness is a rather weak condition and it is surprising that so much of the theory
of minimax can be based on it. Traditional proofs rely on the Hahn—Banach theorem or on
some form of Brouwer’s fixed point theorem. But we can not expect to recover everything
using only connectedness.

To prove the results of this section we had to use two kinds of very strong hypotheses:

() the relations2 is semicontinuous, the values and the fibers are closed or open,

(ii) intersections of the values, or of the cofibers, must be connected.
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An intersection of connected sets is rarely connected, so it would be desirable to have
that kind of condition on the images or the fibers only and not on their intersections. This
will be subject matter of the second half of this section. For now, we turn our attention to
conditions that are strong enough to yield Fan’s like results, Theorems 4 and 5.

A topological property shared by all convex sets is contractibility. We recall that a
topological spac« is contractibleif there exists a continuous map: [0, 1] x X — X and
a pointxg € X, such that for any € X, H(0, x) = xo and H(1, x) = x. Any starshaped
set is contractible. A subsét of a topological vector space $tarshapedf there is a point
xo € X such that for any point € X the intervalxo, x] is contained inX. There is a notion
weaker than contractibility. A nonempty topological sp&cies homotopically trivialif for
any natural numbet and any continuous map: A, — X, defined on the boundary of
an n-dimensional euclidean simplex, there exists a continuous fiap, — X whose
restriction tod A, is g. We will see that this is an adequate notion for our purpose.

The first theorem is a topological version of Fan’s intersection theorem. Its proof relies
on the following lemma which is a particular case of results from [19].

Lemma 1. In a topological space let {A;: j € J} be a family of sets, all closed or all
open. Let(J) denote the family of nonempty finite subsets.oThenﬂjeJ A; #¢ifand
only if there exists a familyC.: L € (J)} of nonempty homotopically trivial subsetsXof
such that

(A) Cp,CCp,if L1 C Ly,

(B) CL S U e AjforanyL e (J).

Theorem 4. Let X be a homotopically trivial space anf: X — X a relation with
nonempty values such that

(A) all the values are open, or all the values are closed,

(B) forall x € X, x € 2x,

(C) for any subsed C X the setﬂyeA £2*y is homotopically trivial, or empty.
Thens2 has the finite intersection property.

Proof. To each nonempty finite subsBtC X let us associate the following set:
Ao(B)=(){2*y: BS 2%y},

if {y: BCQ*y}=0letAgp(B)=X. Itis easily verified that:

(1) Ae(B) is homotopically trivial,

(2) if BC B thenAg(B) C A (B'),

(3) A(B) S U ep 2x.

A straightforward application of Lemma 1 shows th@t has the finite intersection
property. O

In that theorem we still impose a condition on arbitrary intersections of cofibers and
not only on the cofibers themselves. But the following simple example shows that the
assumption on intersections of cofibers might be impossible to remove if we want to stay
at the level of generality of Theorem 4.
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Let X be a Banach space which is infinite-dimensional and put= {x} for each
x € X. The values of©2 are convex and compact. K € X is a compact subset then
Nyea 2%y = X \ A is homotopically trivial, since it is homeomorphic to the whole
space [5]. But, obviously? does not have the finite intersection property.

Evidently condition (B) in Theorem 4 provides a continuous selectionXoX — X.
It is not too difficult to see from Theorem 4 th&: X — Y has the finite intersection
property if (A) and (C) hold, and if2 : X — Y has a continuous selection. This is the idea
behind the next result.

Theorem 5. Let £2: X — Ybe a relation with nhonempty values from a homotopically
trivial and paracompact spac& to a spaceY which is homotopically trivial. Assume
that

(A) all the values are open, or all the values are closed,

(B) forany subseB C X, the se{"), .z £2x is homotopically trivial, or empty,

(C) for any subsetA C Y the seﬂyeA £2*y is homotopically trivial, or empty,

(D) X =,cyint2ty.
Thens2 has the finite intersection property.

Proof. If A C Y is a nonempty finite subset, [€to(A) = (N co, 2x, Co(A) =Y if
thereis nar € X such thatA € 2x. ThenCq, (A) is homotopically trivial, nonempty, and
Co(A)CCqo(A)if AC A’ Furthermore, ifA C 2x thenC o (A) C Q2x.

Now, {int2=1y: y € Y} is an open covering of the paracompact spaGetake a
locally finite and finer open coveriny. For eachV € V choosey(V) € Y such that
vV Cint2~1y(V). We claim that there exists a continuous m@apX — Y such that

fx)e Cg({y(V): X € V})

Such a map is a selection @?. Indeed, ifx € V thenx € int 2-1y(V), therefore
{y(V): x € V} C £2x and finally, by definition olC,

Co({y(V): xeV}) cfx.

Let Ox = f1(£2x). We havex € Qx sincef is a continuous selection 2, and from
the continuity of f and hypothesis (A), the values ©f are either all closed or all open.
We also have2*x = 2* f(x), and consequentlf), .5 2*x is homotopically trivial, or
empty, for any subse® of X.

From Theorem 4 it follows thaf2 has the finite intersection property, and therefore
also2.

Now, we have to prove our claim.

Denote byV (V) the nerve of the covering, by |A (V)| its geometric realization and by
IN*(V)| thekth skeleton. Denote byy € |AV0(V)| the vertex associated 16 € V. Starting
from the mapno: |N°(V)| — Y which associates to a vertex, € |N°(V)| the point
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y(V) € Y and using condition (B) a skeleton by skeleton construction yields a continuous
mapn : [N (V)| — Y such that for any simplejpy,, ..., py,] of IN (V)| one has

n(ﬂ St(pv,-)) CCo({y(Vi):i=0,...,n}),
i=0
whereSt(py,) C N (V)| denotes the star of the vertgx, . This is where condition (B) is
used, details can be found in [16] Theorem 1.

From a partition of unity{xy: V € V} subortinated toV one has a continuous map
x:X — |N(V)| such thaty ~1(St(py)) C V for eachV e V.

The mapn o x: X — Y fulfils the claim sincey (x) € ({Stpy): xv(x) > 0} and
therefore

nox(x) eCo({y(V): xv(x)>0}) S Co({y(V): xeV}). O

The example given after Theorem 4 shows that it might be hard to improve any of
the previous two theorems without adding some strong conditions. The example uses in
an essential way the fact that the spacés not finite-dimensional, and, as we will see,
this is no coincidence. WhexXi is finite-dimensional the assumptions on the intersections
of images and cofibers can be replaced with assumptions on the images or the cofibers
themselves. The results will be stated for a new class of relations.

Arelation$2 : X — Y between two topological spaces iSarre relationf the following
condition holds:

Leth: A, — X be a continuous map from an euclidean simpigxinto X and F,,_1 C
A, one of its(n — 1)-dimensional faces. Then any continuous selectiof,_1 — Y ofthe
restriction of§2 o i to F,,_1, can be extended to a continuous selectiofRefi: A, — Y.

Nothing is said here about the values®@k, but notice that ifX is pathconnected and
if a Serre relation2 has at least one nonempty value, then all its values are nonempty. We
will also see that being a Serre relation implies some kind of continuity. The denomination
itself will soon be justified.

Lemma 2 (Homotopy extension)2: X — Y is a Serre relation if and only if for any
homotopyH : A, x [0,1] — X and for any continuous selectiof: A, x {0} — Y of
£2 o H| 4, xj0y there exists a continuous selectign A, x [0, 1] — Y of £2 o H extending

8.

Proof. Let vg be one of the vertices of the + 1)-dimensional simplex,, 1 € R*+1,
The face oppositeg is identified withA,, x {0}. Let6y:9(A, x [0,1]) - dA,+1 be any
homeomorphism such th@s(A,, x {0}) = A, x {0}. A point p in the interior ofA,, x [0, 1]
is of the form(1—1¢) - (bo, %) +rt-p',wherep’ € 3(A, x [0, 1]) with 0<r < 1 wherebgis
the barycenter ofp,,. Call b1 the barycenter ofA,,+1, and extendp to a homeomorphism
0: A, x [0, 1] — Ayy1 by takingd (bo, 3) = b1 andd(p) = (L—1) - by +1 - 6o(p").

The equivalence easily follows from the fact tidas bijective and frono (A, x {0}) =
A, x {0}, O
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This lemma is the justification for calling such relations Serre relations. Indeed, consider

£2 asasubset of x Y, in other words identify the relation with its graph andpet2 — X

be the projection which sends, y) € £2 to x € X. Lemma 2 says tha:X — Y is

a Serre relation if for any homotop#f : A,, x [0, 1] — X and any continuous function

Go: A, x{0} — 2 suchthapoGo = H(—, 0) there exists an homotogy: A, x [0, 1] —

£2 extendingGo and such thap o G = H. In other words, the functiop: 2 — X has

the homotopy lifting property with respect to simplices, it isva@ak fibration or aSerre
fibration, see, for example, Switzer [44].

Lemma 3. If £2: X — Y is a Serre relation with nonempty values, then for any continuous
maph: A, — X from a simplex intoX, the relation$2 o h: A, — Y has a continuous
selection.

Proof. If n = 0 the conclusion is obviously true. Assume that the lemma holds if the
dimension of the simplex is at most. Given a continuous map: A,,+1 — X, the
restriction of 2 o h to anm-dimensional face has a continuous selection. By definition
of a Serre relation, that selection can be extendetl,to;. O

The following theorem should be compared with Corollary 7.

Theorem 6 (Existence of selection on ARAny Serre relation with honempty values
whose domairX is a compact finite-dimensionAR has a continuous selection.

Proof. We can assume that is contained in a simplex,. Since X is an AR there
is a continuous retraction: A, — X. By Lemma 3,2 or: A, — Y has a continuous
selection. The restriction t& gives a continuous selection &f. O

Corollary 2. If X is a compact finite-dimensionAR then any Serre relatio® : X — X
has a fixed point.

Proof. By Theorem 642 has a continuous selection, and a compact AR has the fixed point
property. O

We are now ready to prove a Fan like intersection theorem for Serre relations, Theo-
rem 8. The nice thing is that the topological assumptions are on the individual images
and cofibers, exactly as in Fan’s theorem. On the other hand there is a strong continuity
asumption on the relation, it is upper semicontinuous, the domain is also restricted, it has
to be finite-dimensional. We will need a theorem of McClendon, (3.3) in [31], which we
state now.

Theorem 7 (McClendon).Let2: X — Y be an open graph relation. If all the values are
homotopically trivial thens2 is a Serre relation.



C.D. Horvath / Topology and its Applications 104 (2000) 119-139 129

We can now generalized Fan’s intersection theorem, Theorem 2, to relations with
homotopically trivial values. As a corollary we get Fan's theore®nfor relations with
starshaped values.

Theorem 8 (Fan’'s Theorem on AR)Let X be a compact finite-dimensionAR and
£2:X — X aclosed graph relation such that

(A) x € 2x for eachx € X,

(B) the cofibers are homotopically trivial, or empty.
Then(,cx 2x # 0.
Proof. If (), cx $2x =¥ then2*: X — X has nonempty values, which are homotopically
trivial by (B). Furthermore, the graph ¢2* is open, by Theorem 2* is a Serre relation.
Finally, by Corollary 2 there is a poiit € X such thafx € £2*x, but this meang ¢ 2%,
and it contradicts (A). O

As we have seen, this is false if the restriction on the dimensionisfdropped.

Corollary 3. Let X € R" a compact starshaped subset which is the union of a finite
number of convex sets ai2l: X — X a closed graph relation such that

(A) x € 2x for eachx € X,

(B) the cofibers are starshaped, or empty.
Then(,cx 2x # 0.

One should notice that the spirit of the proof is here entirely different from what it was in
all the preceding theorems. We did not show first f2dias the finite intersection property,
we showed that the intersection can not be empty. The selection given by the identity
map played a crucial role, as did the fixed point theorem. The same technique, a selection
theorem combined with a fixed point theorem, has been used by Greco and Moschen [15]
as we will see in the next section. The proof of the next theorem is a good example of that
method. In the previous resulf2 was a relation from a seX to itself, now we consider
relations between a priori different sets. Even in a convex framework one can not always
reduce the second case in any obvious way to the first, and radically new methods might
be required, as in [14], for example. Here again, topological assumptions are made on
individual images and cofibers of the relation, not on intersections as in Theorem 3.

Theorem 9. Let X be an arbitrary topological space;, a compact finite-dimensionAR
and$2: X — Y aclosed graph relation with nonempty values such:that

(A) the images are homotopically trivial,

(B) the cofibers are homotopically trivial, or empty.
Then),cx £2x # ¢
Proof. Let us proceed by contradiction, as in the previous theoref, Ify 2x = ¢ then
£2* is a Serre relation. By Theorem 6 there is a continuous riap — X such that
f(y) e 2%y, foreachy €Y.
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Let us consider the compositia2 o f:Y — Y. It is a closed graph relation, with
nonempty values, from a compact finite-dimensional AR to itself. The vafuesf (x)
are homotopically trivial, and therefore acyclic. By Eilenberg—Montgomery’s fixed point
theorem, there is a point € Y such thaty € 2 o f(y). This is a contradiction, since
v¢ 2o f(y)foreachyeY. O

Again, this is false if the restriction on the dimensionyois dropped.

Corollary 4. Let X be an arbitrary topological spaceg; C R"” a compact starshaped set
which is the union of a finite number of convex sets@nd — Y a closed graph relation
with nonempty values such that

(A) the images are starshaped,

(B) the cofibers are starshaped, or empty.

Then(,cx 2x #0.

We have seen that a Serre relation, with nonempty values, whose domain is a compact
finite-dimensional AR has a continuous selection, Theorem 6. We will now look at
existence and extension of continuous selections on polyhedrons and finite-dimensional
ANR.

By polyhedronnot necessarily finite, we mean the geometric realization of a simplicial
scheme with the Whitehead topology.

Theorem 10 is a reformulation of a standard result on Serre fibrations (see [42, The-
orem 6, p. 375]). It can also be proved from Lemma 2 with a skeleton by skeleton
construction.

Theorem 10. Let 2: X — Y be a Serre relationP a polyhedron andPy € P a sub-
polyhedron, which could be empty. Given a nfdpP x [0,1] — X and a continuous
selectiong of £2 o H restricted to(P x {0}) U (Pp x [0, 1]), there exists a continuous
selection of2 o H extendingg.

Corollary 5. Let$2:X — Y be a Serre relationP a polyhedronand; : P — X,i=1,2
two continuous maps. 2 o ig: P — Y has a continuous selection, andiif and 1 are
homotopic, thew2 o h1: P — Y has a continuous selection.

Corollary 6. If £2:X — Y is a Serre relation with nonempty values then the following
holds
(A) if X is contractible then, for any polyhedrahand any continuous map: P — X
the relations2 o 4 has a continuous selection,
(B) if P isacontractible polyhedron and: P — X a continuous map, then the relation
£2 o h has a continuous selection.

Proof. To prove the first part, consider an homotafly X x [0, 1] X such thatH (—, 0)
is a constant map, let us say, and H (—, 1) is the identity map. Then the mdp, ¢) —
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H(h(p),t) is a homotopy between the constant nigpgiven by p — xg and . Since
2x0 # @, the relations2 o hg has a selection. Consequenty,o 4 has a selection.

To prove the second part, notice thato 2 : P — Y is a Serre relation. Now, from part
(A) applied to the identity map oP we have the conclusion.

On a noncontractible polyhedraR, existence of a continuous selection will follow
either from existence of a continuous selection on a subpolyhedron which is strong
deformation retract ofP, Theorem 11, or from the assumption that the relation has
homotopically trivial values, Theorem 12.

Theorem 11. Let 2: X — Y be a Serre relation with nonempty valugsa polyhedron
and Pp € P a subpolyhedron which is a strong deformation retract Rf Given a
continuous map : P — X and a selectiorgo: Po — Y 0f £2 o i} p, there exists a selection
g: P — Y of 2 o h extendinggo.

Proof. Letp: P x [0, 1] P be a strong deformation retraction Bfonto Po, (o(p,1) = p
foreachp € P, p(p,t) = p for each(p, ) € Py x [0, 1], andp(—, 0) is a retraction ofP
onto Pop.

Consider the homotop¥ : P x [0, 1] — X given by (p,1) — h(p(p,1)). Notice that
go(p(p, 1) € 2 oh(p(p,1) if (p,t) € Pox [0, 1] andgo(p(p,0)) € 2 o h(p(p,0)) for
any p € P. In otherwords, we have a selection@fo H restricted to(P x {0}) U (Py X
[0, 1]). By Theorem 10 there exists a selectién P x [0,1] — Y of £ o H such that
G(p,t) = go(p(p.1) if (p,1) € Po x [0,1], andG(p,0) = go(p(p,0)) for any p € P.
The mapp — G(p, 1) is a selection of2 o h extendinggp. O

Theorem 12 and Corollary 7 were proved by McClendon for what he calls r-open
relations (relations which are fibrewise retracts of an open set, [33, Definition 1.1]), [33,
Theorems 2.1 and 2.2]. We follow his proof closely.

Theorem 12 (McClendon)Let 2: X — Y be a Serre relation with nonempty homotopi-
cally trivial values. Then, for any polyhedra? and any continuous map: P — X the
relation £2 o 4 has a continuous selection.

Proof. Identify £ with its graph£2 € X x Y and letp:£2 — X be the projection.
Fix pointsxg € Y and yp € £2xp. For eachn > 1, the projectionp: 2 — X induces
a group homomorphism of homotopy groups: I7,,($2, (xo, yo)) — IT,(X, xp). From
Lemma 2, we know thap : 2 — X is a weak fibration whose fibegs 1 (x) = {x} x £2x
are homeomorphic ta2x. By hypothesis, each of the groups, (£2xo, yo) is trivial,
and therefore also each of the groufis(p—1(xo), (xo, y0)). From the exact homotopy
sequence of the weak fibration: 2 — X (Switzer [44, p. 56]), and the triviality of
the groupsT, (£2xg, yo) we conclude thap, : IT,,($2, (xo, yo)) — IT,(X, xo) iS a groups
isomorphism for each > 1.

Denoting by[ P, 2] and[P, X] the sets of homotopy classes of maps and plythe
homotopy class of a map, we have an onto mgp[P, 2] — [P, X] induced by p
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(Switzer [44, Theorem 6.31]). There is therefore a rGapP — 2 such thafpo G] = [A].
Now, letg : £2 — Y be the projection of the graph ontt and putg = g o G. Clearly
g:P — Y is a selection 0f2 o p o G and p o G andh are homotopic. By Corollary 5,
£2 o h has a continuous selectionc

Corollary 7 (Existence of selections on ANRA Serre relation2:X — Y with
homotopically trivial and nonempty values whose domainis a compact finite-
dimensionaANR has a continuous selection.

Proof. We can assume that is embedded in some euclidean space. Ski¢e compact
any of its neighborhood has a subneighborhood which is a polyhedron. There is therefore
a retraction of a polyhedron onfo. O

Next comes the question of regularity of Serre relations. We show that on finite-
dimensional ANR they are lower semicontinuous. The next lemma could be obtained as
a variant of Lemma 3, it is also a simple consequence of Theorem 11 pBlytpewe
mean the convex hull of a finite set of points.

Lemmad4. If 2: X — Y be a Serre relation with nonempty values then for any polyi®pe
and any continuous map: P — X, the relations2 o 4 : P — Y is lower semicontinuous.

Proof. Take a pointpg € P and a point?2 o 4 (po). The one point s€tpo} is a subpolytope
of P (considering any triangulation df having po as a vertex), and we have an obvious
selectiongo: { po} — Y of 2 oh restricted td po}. There is therefore a continuous selection
g: P — Y of £ o h such thaigo(po) = yo. This proves the lower semicontinuity 6f o &,

by Proposition 2.2 of [34]. O

Theorem 13 (Lower semicontinuity of Serre relationdj. X is a compact finite-dimen-
sional ANR, then any Serre relatiof? : X — Y is lower semicontinuous.

Proof. We can assume that is embedded ifR". There is a finite polyhedro® which
is a neighborhood ok and there is a retraction: Q — X of P onto X. Take a finite
family of polytopes{P;: i =1,...,m} such thatQ = Ufj’f P;. Foreachi =1,....m
the relation$2 o r|p,: P; — Y is lower semicontinuous. Therefol® o r:Q — Y is
also lower semicontinuous. Finally? which is the restriction of2 o r to X is lower
semicontinuous. O

At this point, one could ask for examples of Serre relations, or criteria for a given relation
to be a Serre relation. We have already seen McClendon’s Theorem 7 which gives one class
of Serre relations. As a matter of fact the class of Serre relations is rather large. We start
with a few obvious examples and then we proceed with nontrivial classes one of which is
derived from a selection theorem of Michael.

Any continuous mapf: X — Y is a Serre relation, the constant relati®t X — Y
whose graph is the cartesian prodict> Y is a Serre relation.
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Let us assume tha? : X — Y is a Serre relation, thak C 2 and that there exists a
vertical retraction(a continuous retraction: 2 — A of the form(x, y) — (x,7(x, y))),
thenA is a Serre relation. This is straightforward from the definition. This, in connection
with McClendon’s theorem raises an interesting question:

Let X and Y be topological spaces, even ANR or AR, which subsets X x Y
of the cartesian product are vertical retracts of an open neighbortiood2 with Ux
homotopically trivial for eachx € X?

One thing is clear, such a? must share all the properties that a neighborhood retract
of X x Y would have.

Let us say that?2 : X — Y is alocally trivial relation if there exists an open covering
{U,}rea Of X, atopological spac& and a family of continuous mags, :Uy x Z — Y
such that:

(8) ¢a(x,z) € 2x foreach(x,z) e Uy x Z,

(b) for eachx € A the map(x, z) — (x, ¢a(x, z)) is @ homeomorphism frorty, x Z

onto(U, xY)NS2.

We have seen that a trivial relatigld: X — Y is a Serre relation. Less obvious, is the
fact that a locally trivial relationf2: X — Y is a Serre relation. This is a restatement
of a standard result on fibre bundles, a proof of which can be found in Switzer [44,
Proposition 4.10]. It is also a consequence of the fact that a local Serre fibration is a Serre
fibration.

For our last result we need to recall a definition.

For subsetsA € B C Y of a topological space’, the notationA C,, B means that
for each natural numben < n and each continuous mag dA,,+1 — A there exists a
continuous magf : A,,+1 — B whose restrictiont@ A,, 11 is g.

A family F of nonempty subsets of is equiLC" if for any y € | JF and any
neighborhood/ of y there exists a neighborhodd of y such thatF NV C, FNU
for any F € F. The family is equi-LC? if it is equi-LC" for eachn. A family of convex
sets in a locally convex topological vector space is equiLBlotice that a subfamily of
an equi-LC is also equi-LC.

Theorem 14. Let Y be a complete metric space as?l: X — Y a lower semicontinuous
relation with nonempty, closed and homotopically trivial values. If the set of values
{2x: x € X} is equiLC™ thens2 is a Serre relation.

Proof. Consider a continuous map A, — X and a continuous selectign F,_1 — Y
on an(n — 1)-dimensional face ofA,, of §2 o h|f, ,. From Theorem 1.2 in [35f can be
extended to a continuous selection®@b 4. O

In [36] Michael gives a theorem on Serre fibrations similar to Theorem 14. Our proof is
somewhat more direct. Theorem 14 and Corollary 6 yield right away a selection theorem.
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3. Convex intersection theorems

This section offers three intersection theorems. They all deal with concave-convex
relations. Arelation2 : X — Y between two convex sets@snvexf the values are convex,
it is concaveif the cofibers are convex, this is equivalents®([x1, x2]) € 2x1 U 2x2
for any x1,x2 € X. It is concave-conve¥ it is both concave and convex. The name
is due to Greco [13]. The first theorem below is a slight generalization of a result of
Greco and Moschen [15], it gives a partial answer to a question raised in their paper.
The proof, which relies on a selection theorem of Michael, follows the original idea of
Greco and Moschen, to combine a selection theorem with a fixed point theorem. Their
method has already been used in the previous section. Their theorem is not of the finite-
intersection type. The second theorem is due to Bassanezi and Greco [4]. They ask if the
finite-dimensionality of the space is unavoidable. Unfortunately, we are not able to answer,
but we can show that a similar result holds in infinite dimension. The great interest of
the theorems of Bassanezi—-Greco and Greco—Moschen is that the valiesref not
closed, this has been a sine qua non condition with everyone else. In functional terms,
it means that semicontinuity (upper in one variable, lower in the other), of the function
f:X x Y — R can be replaced with marginal semicontinuity. Since the seminal paper of
Sion [41], it has been more or less taken for granted by everyone working on minimax
that one can not do without semicontinuity. The third theorem, the proof of which is too
involved to be given here, is due to FIdm and Greco [11]. It gives a nontrivial necessary
and sufficient condition for a concave-convex multifunction with compact values to have
a constant selection. It is without a doubt one of the most original results of its kind. It
has up till now resisted all efforts to give a simple proof, or to show that it can be derived
from, or linked to other classical results, like the theorem of Knaster, Kuratowski and
Mazurkiewicz, or some selection theorem. Also, the nature of the Simplex Condition is
not so clear.

Let us now recall a theorem of Michael in [37] which will be the main ingredient of the
proofs.

A face of a closed convex s€tC E contained in a Banach spagkis a closed convex
subsetF C C such that any segment i@, which has an interior point irF', must be
contained inF. In other words, if{xg, x1] € C and]xo, x1[ N F # @ then[xg, x1] C F.

Let Z(C) be the complement i@ of the union of the faces of'. If C is separable then
Z(C)# @, Lemmab.1in [34].

Theorem 15 (Michael).Let X be a metric spacek a Banach space an®:X — F a
lower semicontinuous relation with nonempty closed convex values. If, foneadh 2x
is separable then the relation— Z(£2x) has a continuous selection.

From the Hahn—Banach theorem we have:

Lemma 5. LetC C E be a convex subset of a Banach spacef C is finite-dimensional,
orifint C # @ thenZ(C) C C.
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The following result was obtained by Greco and Moschen [15] under the assumtion that
X andY are finite-dimensional convex spaces. They asked if that assumption could be
removed.

Theorem 16. Let X andY be convex subsets of Banach spaEgsnd E> , with eitherX
or Y compact, and2: X — Y a relation with convex cofibers. Fa2 to have a constant
selection it is sufficient that the following three conditions hold
(A) 22*y is separable and (2*y) C 2*y foranyy e Y,
(B) (Nycy $2x is closed inY for any open subséf C X,
(C) there exists a lower semicontinuous relation with nonempty separable convex
valuesA : X — Y such that, for each € X, Z(Ax) € Ax C Qx.

Proof. We proceed by contradiction. [, .y 2x = @ then 2*y # ¢ for eachy € Y.
Condition (B) says thap — £2*y is a lower semicontinuous relation fromto Y. The
relationy — 2*y from X to E; is lower semicontinuous with convex separable values.
From Michael’'s theoremy — Z(£2*y) has a continuous selection, from (A) it is also a
continuous selection aR*.

In conclusion, we have a continuous mapY — X such thaty ¢ 2y (y) for each
yeY.

Now, considerA : X — Y. Michael's theorem implies that— Z(Ax) has a continuous
selection, from (C) it is also a continuous selectionsdf We have a continuous map
§:X — Y such that(x) € 2x for eachx € X.

By hypothesis, eithek or Y is compact. IfY is compact, consider the continuous map
oy :Y — Y.By Schauder's fixed point theorem there exists Y suchthat oy (y) =7y.

We haves o y(7) € 2y (y), and thereforg € 2y (y). Buty ¢ 2y (y) for eachy € Y,
we have reached a contradiction.

If X is compact, one proceeds similarly with the map §: X — X to obtain a point
X € X suchthat(x) ¢ 2x. O

Obviously, some of the separability assumptions can be removed, depending on which
space is assumed to be compact.

Let us see in which ways we have generalized the theorem of Greco and Moschen. If
X andY are finite-dimensional convex sets, then the s2ts and Ax are automatically
separable and from Lemma 5 we see that condition (A) is verified, as well as the left hand
side of the inclusion in (C). If we do not assume thatand Y are finite-dimensional,
Lemma 5 shows that it is enough to assume that the valueand the cofibers2*y are
finite-dimensional, or that the valuesx are finite-dimensional and the fibefz~1y are
closed.

The following fixed point theorem, which is an obvious generalization of Schauder’s
fixed point theorem, is worth mentioning. The proof is clear from Michael’s selection
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theorem and Schauder’s fixed point theorem. The finite-dimensional version is explicitely
stated in Greco and Moschen.

Theorem 17. Let X C E be a compact convex set in a Banach spaA¢candR: X — X

a lower semicontinuous relation with nonempty convex values. If the values are finite-
dimensional, or have nonempty interior, or more generalf(iRx) < Rx for eachx € X,

then there exists € X such thafx € R(x).

Is that result true in locally convex topological vector spaces?
Bassanezi and Greco gave in [4] the following intersection theorem for relations with
finite-dimensional codomain.

Theorem 18 (Bassanezi and Grecd)et X be a convex set in a locally convex topological
vector spaceY a compact convex finite-dimensional set. A relatienX — Y has a
constant selection if the following poperties hold
(A) forany open set/ < X the sef), ., 2x is closed inY,
(B) there is a lower semicontinuous concave-convex relation with nonempty values
A: X — Y such thatAx C £2x for eachx € X.

It is still unknown wether that result holds without the finite-dimensional assumption
onY. At first one could be tempted to prove the theorem of Bassanezi and Greco as we
proved the theorem of Greco and Moschen, by contradiction. We would have a lower
semicontinuous relatio®*: Y — X with nonempty values. From*y C A*y we can
take the convex hull of2*y to get a lower semicontinuous relatigry € A*y. Now A
has a continuous selection, since the values are finite-dimensional. But the difficulty is that
we do not know that™: Y — X has a continuous selection, it is a lower semicontinuous
relation with nonempty convex values. To use Michael’s theorem we would have to know
thatZ(I"y) € I'y.

We conclude with the theorem of Flam and Greco [11] whose topological nature is still,
as we said, somewhat mysterious.

First, let us introduce what they call@de Simplex Property

Arelation$2 : X — Y between two convex sets has the simplex property if the following
condition holds: for any simpleg € X of dimension at least one and for any vertex S,

it [ Qx#0 then [ 2x#0.

xeS\{v} xes

Theorem 19 (Flam and Greco)Let £2: X — Y be a concave-convex multifunction with
nonempty compact values. Then

ﬂ.Qx;éﬂ

xeX

if and only if the simplex property holds.
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In the paper of Flam and Greco it is shown that one cannot replace the compactness
assumption on all the values by the hypothesis that the values are closed and one is
compact. So, this is not a finite intersection type theorem.

4. Conclusion

The conclusion will take us back to the beginning, to what has been the main motivation
for most of these intersection results, the theory of minimax.
Given a functionf : X x ¥ — R we ask whether

inf supf(x,y)=supinf f(x,y).

yeYxeX xeXyeY
To a real numbei one can associate a relatiohx = {y € Y: f(x,y) < A} for which
we would like to show thaf),_y $2,x # ¥. The translation of the conditions a@;, in
terms of analytical conditions on the functigh X x ¥ — R are well understood in the
classical theorems, Sion or Fan, or in the theorems of Bassanezi and Greco and Greco and
Moschen. For the theorem of FIdm and Greco one knows natural analytical conditions on
the function which imply that2, has the simplex property, but there is still no convincing
analytic translation of the simplex property itself (by convincing we mean a condition that
is not a simple tautology), but useful conditions that imply the simplex property are known.

The topological intersection theorems raise the same kind of questions. What analytical

conditions on a functiorf : X x ¥ — R defined, say on subsetsBf, will guarantee that
the sets{y € Y: f(x,y) < A} are homotopically trivial, or form an equi-l’Cramily, or
that the relatiort2,, is locally trivial?
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