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Abstract

Given a relationΩ :X→ Y between topological spaces, we inquire whether it has a constant
selection. This problem has been investigated from different points of view, purely topological or
convex. We present here a synthesis of some of the most interesting results, with some generalizations
and new insights. 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

This work is a synthesis, with some simplifications and generalizations, of various
results dealing with the constant selection problem for a relation. After defining some
terms, we shall state the problem and provide some motivation.

By a relation from a setX to a setY we mean a map fromX to the power set ofY .
Relations are also called multifunctions or correspondences. We will use the functional
notationΩ :X → Y to denote a relation fromX to Y (they are just morphisms in
the appropriate category), the setΩx is the image of the pointx. Sets of the form
{x ∈X: y ∈Ωx} are calledfibersand are denoted byΩ−1y. The complement of a fiber
Ω−1y is called acofiber, it is denoted byΩ∗y. To a relationΩ :X→ Y are therefore
associated two relations,Ω−1 :Y → X, the inverse ofΩ , andΩ∗ :Y → X, the dual of
Ω . We will use the same notation for a relationΩ :X→ Y and for its graph, the subset
{(x, y) ∈X×Y : y ∈Ωx} ofX×Y . We will say thatΩ has the finite intersection property
if the family of its values has the finite intersection property.

Given a relationΩ :X→ Y between topological spaces there are three problems that
one can consider:
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(1) The continuous selection problem. Is there a continuous mapf :X→ Y such that
f (x) ∈Ωx for eachx ∈X?

(2) The fixed point problem. Assuming thatX ⊆ Y , is there a pointx ∈ X such that
x ∈Ωx?

(3) The constant selection problem. Is there a pointy ∈ Y such thaty ∈Ωx for each
x ∈X?

We will be mainly concerned with problem (3) which obviously asks if the set
⋂
x∈XΩx

is not empty. In many cases, as we will see, (3) cannot be dissociated from problems (1)
and (2). We next give some motivation for considering the constant selection problem.

The first and main motivation comes from minimax theory, going back to Von Neumann
and the fundamental theorem of zero sum games. Given a functionf :X × Y → R =
R∪ {−∞,+∞} defined on the product of two topological spacesX andY , we would like
to know if

inf
y∈Y

sup
x∈X

f (x, y)= sup
x∈X

inf
y∈Y

f (x, y).

We only need to establish the inequality

inf
y∈Y

sup
x∈X

f (x, y)6 sup
x∈X

inf
y∈Y

f (x, y),

we can therefore assume that

sup
x∈X

inf
y∈Y

f (x, y) 6=∞.

In this setting, to a real numberλ one can associate a relationΩλ :X→ Y defined as
follows:

Ωλx =
{
y ∈ Y : f (x, y)6 λ

}
.

Then, one can see that infy∈Y supx∈X f (x, y) = supx∈X infy∈Y f (x, y) if and only if⋂
x∈XΩλx 6= ∅ for eachλ > supX infY f (x, y). A most important result, which has

achieved the status of a reference point in minimax theory, is due to Maurice Sion [41].

Theorem 1 (Sion).LetX andY be convex compact subsets of topological vector spaces
andf :X× Y →R a function such that:

(i) for anyx ∈X the functionf (x, ·) is quasi-convex and lower semicontinuous onY ,
(ii) for any y ∈ Y the functionf (·, y) is quasi-concave and upper semicontinuous

onX.
Then

inf
y∈Y

sup
x∈X

f (x, y)= sup
x∈X

inf
y∈Y

f (x, y).

Recall that a functiong :X→ R is quasi-convexif for any real numberλ ∈ R the set
{x ∈X: g(x)6 λ} is convex, it isquasi-concaveif −g is quasi-convex.

There is an extensive literature on minimax theorems, a broad but partial review is
given in the paper of Simons [40] (citing over one hundred and thirty references), where
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topological results are almost absent. Sion’s proof of his theorem involved the theorem
of Knaster, Kuratowski and Mazurkiewicz [10] which can be seen as a geometric form
of Brouwer’s fixed point theorem. Other minimax equalities can be derived from Hahn–
Banach’s Theorem. Both methods require a convex setting. Much efforts have been spend
on trying to understand the nature of minimax theorems and on generalizations of Sion’s
theorem. Generalizations are of two different kinds. One can relax convexity, replacing it
by some algebraic conditions (we do not go into details since we are not concerned here
with this side of the problem for which Simons [40] can be consulted). Or we can look for
topological substitutes of convexity. The second possible generalization is in the direction
of continuity conditions weaker than lower or upper semicontinuity. We will be exclusively
concerned with the last two problems.

Additional motivation comes from mathematical economics whereΩ :X→ X repre-
sents apreference relationon a consumption setX. There are two possible interpretations
forΩ . As a large preference relation,y ∈Ωx is then interpreted asy is prefered or equiva-
lent to x, in which case it is natural to assume thatx ∈Ωx, or as a strict preference relation
y ∈Ωx is then interpreted asy is strictly prefered to x, in which case it is natural to assume
that x /∈ Ωx. In the first case, ify ∈⋂x∈XΩx theny is a largest element with respect
to Ω . In the second case, ifx ∈⋂y∈Y Ω∗y thenx is a maximal element with respect to
Ω . The basic ingredient in this kind of results is again Brouwer’s fixed point theorem. For
the role of relations and convexity in mathematical economics see Border [6] or Klein and
Thomson [26].

Any constant selection problem can be interpreted as the search for a winning strategy
in a zero sum game between two players. Indeed, let the strategy setsX andY be given as
well as a relation, which we identify with its graphΩ ⊆X×Y . Player I picks a pointx ∈X
and player II a pointy ∈ Y . If (x, y) ∈Ω then players II wins, otherwise player I wins. If⋂
x∈XΩx 6= ∅ then player II has a winning strategy, if

⋂
y∈Y Ω∗y 6= ∅ then player I has a

winning strategy. It is not difficult to see that⋂
x∈X

Ωx 6= ∅ or
⋂
y∈Y

Ω∗y 6= ∅

if and only if

inf
y∈Y

sup
x∈X

f (x, y)= sup
x∈X

inf
y∈Y

f (x, y),

wheref :X× Y →R is the characteristic function of the complement ofΩ in X× Y .
Now, we move on with a description of the paper.
There are two sections. The first one deals with the topological intersection theorems.

The first topological substitute for convexity that comes to mind is connectedness. One
might not expect much from such a simple property, so it came a bit as a surprise when
it was finally understood that many minimax theorems, including Sion’s theorem, could
be proved using exclusively arguments based on connectedness. In recent years there
has been an intense research on intersection theorems based merely on connectedness.
Contributions were made by Kindler [21,22], König [27,28], Ricceri [39] and the author
[17,18], extending previous important studies by Telkersen [46], Tuy [47,48] and Wu Wen
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Tsün [49]. Contributors are too numerous to be given their due share of recognition here,
but one should mention at least Joo [20] and Stacho [43]. We will not state a single minimax
theorem, apart from Sion’s result. The interested reader can consult the papers of Kindler
or König, which, according to König, settle completely the question of which minimax
theorems can be obtained from connectedness.

However, there is one result, Fan’s interection theorem [12] which is given below, that
one cannot expect to derive from methods based on connectedness, (some asked if it could
be done), and there are a few reasons for that. From Fan’s theorem one can derive Schau-
der–Tychonoff’s fixed point theorem and the latter does not rely only on the fact that
compact convex sets are connected, furthermore, all the results based on connectedness
are proved by induction. It appears doubtful that even Brouwer’s fixed point theorem could
be proved by induction. Before going any further let us state Fan’s theorem, and let us
say that it is one of the central results of nonlinear analysis, see, for example, the book by
Aubin and Ekeland [1].

Theorem 2 (Fan).Let Ω :X→ X be a relation from a convex subset of a topological
vector space to itself such that the following conditions hold:

(A) for eachx ∈X the setΩx is closed andx ∈Ωx,
(B) for eachy ∈X the setΩ∗y is convex,
(C) there is at least one pointx0 ∈X for whichΩx0 is compact.

Then⋂
x∈XΩx 6= ∅.

Section 1 presents a topological version of Fan’s theorem due to the author. The
formulation of that result involves topological conditions on arbitrary intersections of
cofibers, and a simple example shows that the theorem is in some way optimal. If one
restricts the domainX of the relationΩ to be finite-dimensional then one can do with
topological conditions on the individual cofibers, or images, of the relation. This is the
subject matter of the last part of the first section. We introduce there a new class of relations,
which we callSerre relations, the name being justified by the fact that the graph ofΩ with
the projection on the domainX is a Serre fibration. The idea of looking at relations as
fibrations goes back to Michael [36], the same point of view was exploited in a series of
papers by McClendon [30–32]. We do not define Serre relations directly as Serre fibrations,
our definition is much simpler, and so are the proofs. We dwell on Serre relations just
enough to develop their fundamental properties, the basic results of McClendon are proved,
the continuity properties of Serre relations are investigated. To prove that a relation has a
constant selection one sometimes has to combine a fixed point theorem with a continuous
selection theorem, therefore fixed point theorems and selection theorems for Serre relations
are also proved. We believe that Serre relations form an interesting class and we hope that
our presentation will contribute to carry further the initial ideas of Michael and McClendon.

The second section is entirely devoted to results of Greco and its associates [11,4,15].
With the results of Bassanezi and Greco or of Greco and Moschen we are back in the

convex setting, but with continuity conditions weaker than lower or upper semicontinuity.
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They obtained their results assuming that the domain is a finite-dimensional convex set
and they ask if that condition could be removed. We give a partial answer to their question.
Again, the analytic interpretation of the constant selection theorems are not presented here.

2. Topological intersection theorems

In this sectionX andY are topological spaces andΩ :X→ Y is a relation. The results
are of two kinds. Some give sufficient conditions forΩ to have the finite intersection
property while others show directly thatΩ has a constant selection. Recall thatΩ :X→ Y

is lower semicontinuous if for any open setV ⊆ Y the set{x ∈X: Ωx ∩V 6= ∅} is open in
X. It is upper semicontinuous if for any open setV ⊆ Y the set{x ∈X: Ωx ⊆ V } is open
in X.

Theorem 3 combines results of Kindler [21] and of the author [18], Corollary 1 is from
[18].

Theorem 3. Let X be connected topological space and assume thatΩ :X → Y has
nonempty values and also the following properties:

(A) for any nonempty finite subsetB ⊆X the set
⋂
x∈B Ωx is connected,

(B) for any nonempty subsetA⊆ Y the set
⋂
y∈AΩ∗y is connected.

Then, in any of the following three cases,Ω has the finite intersection property.
(1) Ω is lower semicontinuous and the values are open.
(2) Ω is upper semicontinuous and the values are closed.
(3) The values are closed and the fibers are open.

Proof. First, we show thatΩx1∩Ωx2 6= ∅ for anyx1, x2 ∈X.
Before proceeding with a proof of the claim, notice that the set

[[x1, x2]] =
⋂{

Ω∗y: {x1, x2} ⊆Ω∗y
}

is nonempty and connected, if{y: {x1, x2} ⊆Ω∗y} is empty thenY =Ωx1∪Ωx2, in this
case we let[[x1, x2]] =X.

We establish the claim by contradiction. Assume thatΩx1∩Ωx2= ∅.
Let Ai = {x ∈ [[x1, x2]]: Ωx ⊆ Ωxi}, i = 1,2. Since all theΩx are connected and

nonempty, and also all open, or all closed, we have, fromΩ([[x1, x2]]) ⊆ Ωx1 ∪ Ωx2,
Ai = {x ∈ [[x1, x2]]: Ωx ∩Ωxi 6= ∅}.

Notice thatAi 6= ∅, thatA1 ∩A2= ∅, and[[x1, x2]] = A1∪A2. If we show thatA1 and
A2 are both open, or both closed, we have a contradiction.

If (1) or (3) is the case, thenΩ is lower semicontinuous.
If (1) is the case, thenΩxi is open andAi = {x ∈ [[x1, x2]]: Ωx ∩ Ωxi 6= ∅}, it is

therefore open.
If (3) is the case, thenΩxi is closed andAi = {x ∈ [[x1, x2]]: Ωx ⊆Ωxi}, it is therefore

closed.
If (2) is the case, thenΩ is upper semicontinuous,Ωxi is closed and, by connectedness,

Ai = {x ∈ [[x1, x2]]: Ωx ∩Ωxi 6= ∅}, it is therefore closed.
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We have shown thatΩx1∩Ωx2 6= ∅ for anyx1, x2 ∈X.
To complete the proof, we proceed by induction. Assume that

⋂
x∈B Ωx 6= ∅ if B ⊆X

is a finite nonempty subset with at mostn elements, where 26 n. Fix a finite subset
{x1, . . . , xn+1} ⊆X and let

Ω̃x = (Ωx)∩
(
n+1⋂
i=3

Ωxi

)
.

We have to see that̃Ωx1∩ Ω̃x2 6= ∅.
It is obvious that (A) holds for̃Ω . As for (B) notice that̃Ω∗y =Ω∗y if {x3, . . . , xn+1}∩

Ω∗y = ∅, andΩ̃∗y = X otherwise. Indeed,{x3, . . . , xn+1} ∩ Ω∗y = ∅ is equivalent to
y ∈⋂n+1

i=3 Ωxi , and also to{x3, . . . , xn+1} ⊆Ω−1y. From this, we see that (B) holds for̃Ω .
If the values ofΩ are open and ifΩ is lower semicontinuous, theñΩ is lower

semicontinuous with open values. Also, if the values ofΩ are closed and ifΩ is upper
semicontinuous, theñΩ is upper semicontinuous with closed values. We have one last case
to look at (3). FromΩ̃−1y =Ω−1y if {x3, . . . , xn+1} ⊆Ω−1y, andΩ̃−1y = ∅ otherwise,
we conclude that̃Ω−1y is open ifΩ−1y is open.

From the first part of the proof we can infer thatΩ̃x1 ∩ Ω̃x2 6= ∅. 2
Corollary 1. Let X be a connected topological space andΩ :X → Y closed graph
relation with nonempty compact values. If properties(A) and (B) below hold then⋂
x∈XΩx 6= ∅.
(A) for any nonempty finite subsetB ⊆X the set

⋂
x∈B Ωx is connected,

(B) for any nonempty subsetA⊆ Y the set
⋂
y∈AΩ∗y is connected.

Proof. We keep the notation of Theorem 3. First we show thatΩx1 ∩Ωx2 6= ∅ for any
x1, x2 ∈X.

We haveΩ([[x1, x2]])⊂Ωx1 ∪Ωx2. Let Γ : [[x1, x2]] →Ωx1 ∪Ωx2 be the restriction
ofΩ to [[x1, x2]]. It is a closed graph relation, and therefore upper semicontinuous because
Ωx1∪Ωx2 is compact. Ify ∈Ωx1 ∪Ωx2 thenΓ ∗y = [[x1, x2]] ∩Ω∗y. Also,Γ x =Ωx
if x ∈ [[x1, x2]]. This shows thatΓ verifies conditions (A) and (B-2) from Theorem 3.
ThereforeΩx1∩Ωx2 6= ∅.

Now, fix x1 ∈ X and consider the relationΩ1x = Ωx1 ∩ Ωx from X to Ωx1. It is
upper semicontinuous and it has nonempty compact values. Ify ∈Ωx1 thenΩ∗1y =Ω∗y.
From Theorem 3 we conclude thatΩ1 :X→Ωx1 has the finite intersection property, and
thereforeΩ also. Since the values are compact, the proof is complete.2

Connectedness is a rather weak condition and it is surprising that so much of the theory
of minimax can be based on it. Traditional proofs rely on the Hahn–Banach theorem or on
some form of Brouwer’s fixed point theorem. But we can not expect to recover everything
using only connectedness.

To prove the results of this section we had to use two kinds of very strong hypotheses:
(i) the relationΩ is semicontinuous, the values and the fibers are closed or open,
(ii) intersections of the values, or of the cofibers, must be connected.
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An intersection of connected sets is rarely connected, so it would be desirable to have
that kind of condition on the images or the fibers only and not on their intersections. This
will be subject matter of the second half of this section. For now, we turn our attention to
conditions that are strong enough to yield Fan’s like results, Theorems 4 and 5.

A topological property shared by all convex sets is contractibility. We recall that a
topological spaceX is contractibleif there exists a continuous mapH : [0,1]×X→X and
a pointx0 ∈ X, such that for anyx ∈ X, H(0, x)= x0 andH(1, x)= x. Any starshaped
set is contractible. A subsetX of a topological vector space isstarshapedif there is a point
x0 ∈X such that for any pointx ∈X the interval[x0, x] is contained inX. There is a notion
weaker than contractibility. A nonempty topological spaceX is homotopically trivialif for
any natural numbern and any continuous mapg : ∂∆n→ X, defined on the boundary of
an n-dimensional euclidean simplex, there exists a continuous mapf :∆n→ X whose
restriction to∂∆n is g. We will see that this is an adequate notion for our purpose.

The first theorem is a topological version of Fan’s intersection theorem. Its proof relies
on the following lemma which is a particular case of results from [19].

Lemma 1. In a topological spaceX let {Aj : j ∈ J } be a family of sets, all closed or all
open. Let〈J 〉 denote the family of nonempty finite subsets ofJ . Then

⋂
j∈J Aj 6= ∅ if and

only if there exists a family{CL: L ∈ 〈J 〉} of nonempty homotopically trivial subsets ofX
such that:

(A) CL1 ⊆ CL2 if L1⊆ L2,
(B) CL ⊆⋃j∈LAj for anyL ∈ 〈J 〉.

Theorem 4. Let X be a homotopically trivial space andΩ :X → X a relation with
nonempty values such that:

(A) all the values are open, or all the values are closed,
(B) for all x ∈X, x ∈Ωx,
(C) for any subsetA⊆X the set

⋂
y∈AΩ∗y is homotopically trivial, or empty.

ThenΩ has the finite intersection property.

Proof. To each nonempty finite subsetB ⊆X let us associate the following set:

∆Ω(B)=
⋂{

Ω∗y: B ⊆Ω∗y},
if {y: B ⊆Ω∗y} = ∅ let∆Ω(B)=X. It is easily verified that:

(1) ∆Ω(B) is homotopically trivial,
(2) if B ⊆ B ′ then∆Ω(B)⊆∆Ω(B ′),
(3) ∆Ω(B)⊆⋃x∈B Ωx.
A straightforward application of Lemma 1 shows thatΩ has the finite intersection

property. 2
In that theorem we still impose a condition on arbitrary intersections of cofibers and

not only on the cofibers themselves. But the following simple example shows that the
assumption on intersections of cofibers might be impossible to remove if we want to stay
at the level of generality of Theorem 4.



126 C.D. Horvath / Topology and its Applications 104 (2000) 119–139

Let X be a Banach space which is infinite-dimensional and putΩx = {x} for each
x ∈ X. The values ofΩ are convex and compact. IfA ⊆ X is a compact subset then⋂
y∈AΩ∗y = X \ A is homotopically trivial, since it is homeomorphic to the whole

space [5]. But, obviously,Ω does not have the finite intersection property.
Evidently condition (B) in Theorem 4 provides a continuous selection forΩ :X→X.

It is not too difficult to see from Theorem 4 thatΩ :X→ Y has the finite intersection
property if (A) and (C) hold, and ifΩ :X→ Y has a continuous selection. This is the idea
behind the next result.

Theorem 5. Let Ω :X→ Ybe a relation with nonempty values from a homotopically
trivial and paracompact spaceX to a spaceY which is homotopically trivial. Assume
that:

(A) all the values are open, or all the values are closed,
(B) for any subsetB ⊆X, the set

⋂
x∈B Ωx is homotopically trivial, or empty,

(C) for any subsetA⊆ Y the set
⋂
y∈AΩ∗y is homotopically trivial, or empty,

(D) X =⋃y∈Y intΩ−1y.
ThenΩ has the finite intersection property.

Proof. If A ⊆ Y is a nonempty finite subset, letCΩ(A) =⋂A⊆Ωx Ωx, CΩ(A) = Y if
there is nox ∈X such thatA⊆Ωx. ThenCΩ(A) is homotopically trivial, nonempty, and
CΩ(A)⊆CΩ(A′) if A⊆A′. Furthermore, ifA⊆Ωx thenCΩ(A)⊆Ωx.

Now, {intΩ−1y: y ∈ Y } is an open covering of the paracompact spaceX, take a
locally finite and finer open coveringV . For eachV ∈ V choosey(V ) ∈ Y such that
V ⊆ intΩ−1y(V ). We claim that there exists a continuous mapf :X→ Y such that

f (x) ∈ CΩ
({
y(V ): x ∈ V }).

Such a map is a selection ofΩ . Indeed, if x ∈ V then x ∈ int Ω−1y(V ), therefore
{y(V ): x ∈ V } ⊆Ωx and finally, by definition ofCΩ ,

CΩ
({
y(V ): x ∈ V })⊆Ωx.

Let Ω̃x = f−1(Ωx). We havex ∈ Ω̃x sincef is a continuous selection ofΩ , and from
the continuity off and hypothesis (A), the values of̃Ω are either all closed or all open.
We also havẽΩ∗x = Ω∗f (x), and consequently

⋂
x∈B Ω̃∗x is homotopically trivial, or

empty, for any subsetB of X.
From Theorem 4 it follows that̃Ω has the finite intersection property, and therefore

alsoΩ .
Now, we have to prove our claim.
Denote byN (V) the nerve of the coveringV , by |N (V)| its geometric realization and by
|N k(V)| thekth skeleton. Denote bypV ∈ |N 0(V)| the vertex associated toV ∈ V . Starting
from the mapη0 : |N 0(V)| → Y which associates to a vertexpV ∈ |N 0(V)| the point
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y(V ) ∈ Y and using condition (B) a skeleton by skeleton construction yields a continuous
mapη : |N (V)| → Y such that for any simplex[pV0, . . . , pVn] of |N (V)| one has

η

(
i=n⋂
i=0

St(pVi )

)
⊆CΩ

({
y(Vi): i = 0, . . . , n

})
,

whereSt(pVi )⊂ |N (V)| denotes the star of the vertexpVi . This is where condition (B) is
used, details can be found in [16] Theorem 1.

From a partition of unity{χV : V ∈ V} subortinated toV one has a continuous map
χ :X→|N (V)| such thatχ−1(St(pV ))⊆ V for eachV ∈ V .

The mapη ◦ χ :X → Y fulfils the claim sinceχ(x) ∈ ⋂{St(pV ): χV (x) > 0} and
therefore

η ◦ χ(x) ∈ CΩ
({
y(V ): χV (x) > 0

})⊆CΩ({y(V ): x ∈ V }). 2
The example given after Theorem 4 shows that it might be hard to improve any of

the previous two theorems without adding some strong conditions. The example uses in
an essential way the fact that the spaceX is not finite-dimensional, and, as we will see,
this is no coincidence. WhenX is finite-dimensional the assumptions on the intersections
of images and cofibers can be replaced with assumptions on the images or the cofibers
themselves. The results will be stated for a new class of relations.

A relationΩ :X→ Y between two topological spaces is aSerre relationif the following
condition holds:

Let h :∆n→X be a continuous map from an euclidean simplex∆n intoX andFn−1⊆
∆n one of its(n−1)-dimensional faces. Then any continuous selectiong :Fn−1→ Y of the
restriction ofΩ ◦ h to Fn−1, can be extended to a continuous selection ofΩ ◦ h :∆n→ Y .

Nothing is said here about the values ofΩx, but notice that ifX is pathconnected and
if a Serre relationΩ has at least one nonempty value, then all its values are nonempty. We
will also see that being a Serre relation implies some kind of continuity. The denomination
itself will soon be justified.

Lemma 2 (Homotopy extension).Ω :X→ Y is a Serre relation if and only if for any
homotopyH :∆n × [0,1] → X and for any continuous selectiong :∆n × {0} → Y of
Ω ◦H |∆n×{0} there exists a continuous selectionf :∆n × [0,1]→ Y ofΩ ◦H extending
g.

Proof. Let v0 be one of the vertices of the(n + 1)-dimensional simplex∆n+1 ⊆ Rn+1.
The face oppositev0 is identified with∆n × {0}. Let θ0 : ∂(∆n × [0,1])→ ∂∆n+1 be any
homeomorphism such thatθ0(∆n×{0})=∆n×{0}. A pointp in the interior of∆n×[0,1]
is of the form(1− t) · (b0,

1
2)+ t ·p′, wherep′ ∈ ∂(∆n×[0,1])with 06 t < 1 whereb0 is

the barycenter of∆n. Call b1 the barycenter of∆n+1, and extendθ0 to a homeomorphism
θ :∆n × [0,1]→∆n+1 by takingθ(b0,

1
2)= b1 andθ(p)= (1− t) · b1+ t · θ0(p

′).
The equivalence easily follows from the fact thatθ is bijective and fromθ(∆n × {0})=

∆n × {0}. 2
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This lemma is the justification for calling such relations Serre relations. Indeed, consider
Ω as a subset ofX×Y , in other words identify the relation with its graph and letp :Ω→X

be the projection which sends(x, y) ∈ Ω to x ∈ X. Lemma 2 says thatΩ :X→ Y is
a Serre relation if for any homotopyH :∆n × [0,1] → X and any continuous function
G0 :∆n×{0}→Ω such thatp◦G0=H(−,0) there exists an homotopyG :∆n×[0,1]→
Ω extendingG0 and such thatp ◦G = H . In other words, the functionp :Ω→ X has
the homotopy lifting property with respect to simplices, it is aweak fibration, or aSerre
fibration, see, for example, Switzer [44].

Lemma 3. If Ω :X→ Y is a Serre relation with nonempty values, then for any continuous
maph :∆n→ X from a simplex intoX, the relationΩ ◦ h :∆n→ Y has a continuous
selection.

Proof. If n = 0 the conclusion is obviously true. Assume that the lemma holds if the
dimension of the simplex is at mostm. Given a continuous maph :∆m+1→ X, the
restriction ofΩ ◦ h to anm-dimensional face has a continuous selection. By definition
of a Serre relation, that selection can be extended to∆m+1. 2

The following theorem should be compared with Corollary 7.

Theorem 6 (Existence of selection on AR).Any Serre relation with nonempty values
whose domainX is a compact finite-dimensionalAR has a continuous selection.

Proof. We can assume thatX is contained in a simplex∆n. SinceX is an AR there
is a continuous retractionr :∆n→ X. By Lemma 3,Ω ◦ r :∆n→ Y has a continuous
selection. The restriction toX gives a continuous selection ofΩ . 2
Corollary 2. If X is a compact finite-dimensionalAR then any Serre relationΩ :X→X

has a fixed point.

Proof. By Theorem 6,Ω has a continuous selection, and a compact AR has the fixed point
property. 2

We are now ready to prove a Fan like intersection theorem for Serre relations, Theo-
rem 8. The nice thing is that the topological assumptions are on the individual images
and cofibers, exactly as in Fan’s theorem. On the other hand there is a strong continuity
asumption on the relation, it is upper semicontinuous, the domain is also restricted, it has
to be finite-dimensional. We will need a theorem of McClendon, (3.3) in [31], which we
state now.

Theorem 7 (McClendon).LetΩ :X→ Y be an open graph relation. If all the values are
homotopically trivial thenΩ is a Serre relation.
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We can now generalized Fan’s intersection theorem, Theorem 2, to relations with
homotopically trivial values. As a corollary we get Fan’s theorem inRn for relations with
starshaped values.

Theorem 8 (Fan’s Theorem on AR).Let X be a compact finite-dimensionalAR and
Ω :X→X a closed graph relation such that:

(A) x ∈Ωx for eachx ∈X,
(B) the cofibers are homotopically trivial, or empty.

Then
⋂
x∈XΩx 6= ∅.

Proof. If
⋂
x∈XΩx = ∅ thenΩ∗ :X→X has nonempty values, which are homotopically

trivial by (B). Furthermore, the graph ofΩ∗ is open, by Theorem 7Ω∗ is a Serre relation.
Finally, by Corollary 2 there is a pointx ∈X such thatx ∈Ω∗x, but this meansx /∈Ωx,
and it contradicts (A). 2

As we have seen, this is false if the restriction on the dimension ofX is dropped.

Corollary 3. Let X ⊆ Rn a compact starshaped subset which is the union of a finite
number of convex sets andΩ :X→X a closed graph relation such that:

(A) x ∈Ωx for eachx ∈X,
(B) the cofibers are starshaped, or empty.

Then
⋂
x∈XΩx 6= ∅.

One should notice that the spirit of the proof is here entirely different from what it was in
all the preceding theorems. We did not show first thatΩ has the finite intersection property,
we showed that the intersection can not be empty. The selection given by the identity
map played a crucial role, as did the fixed point theorem. The same technique, a selection
theorem combined with a fixed point theorem, has been used by Greco and Moschen [15]
as we will see in the next section. The proof of the next theorem is a good example of that
method. In the previous resultsΩ was a relation from a setX to itself, now we consider
relations between a priori different sets. Even in a convex framework one can not always
reduce the second case in any obvious way to the first, and radically new methods might
be required, as in [14], for example. Here again, topological assumptions are made on
individual images and cofibers of the relation, not on intersections as in Theorem 3.

Theorem 9. LetX be an arbitrary topological space,Y a compact finite-dimensionalAR
andΩ :X→ Y a closed graph relation with nonempty values such that:

(A) the images are homotopically trivial,
(B) the cofibers are homotopically trivial, or empty.

Then
⋂
x∈XΩx 6= ∅

Proof. Let us proceed by contradiction, as in the previous theorem. If
⋂
x∈XΩx = ∅ then

Ω∗ is a Serre relation. By Theorem 6 there is a continuous mapf :Y → X such that
f (y) ∈Ω∗y, for eachy ∈ Y .
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Let us consider the compositionΩ ◦ f :Y → Y . It is a closed graph relation, with
nonempty values, from a compact finite-dimensional AR to itself. The valuesΩ ◦ f (x)
are homotopically trivial, and therefore acyclic. By Eilenberg–Montgomery’s fixed point
theorem, there is a pointy ∈ Y such thaty ∈ Ω ◦ f (y). This is a contradiction, since
y /∈Ω ◦ f (y)for eachy ∈ Y . 2

Again, this is false if the restriction on the dimension ofY is dropped.

Corollary 4. LetX be an arbitrary topological space,Y ⊆ Rn a compact starshaped set
which is the union of a finite number of convex sets andΩ :X→ Y a closed graph relation
with nonempty values such that:

(A) the images are starshaped,
(B) the cofibers are starshaped, or empty.

Then
⋂
x∈XΩx 6= ∅.

We have seen that a Serre relation, with nonempty values, whose domain is a compact
finite-dimensional AR has a continuous selection, Theorem 6. We will now look at
existence and extension of continuous selections on polyhedrons and finite-dimensional
ANR.

By polyhedron, not necessarily finite, we mean the geometric realization of a simplicial
scheme with the Whitehead topology.

Theorem 10 is a reformulation of a standard result on Serre fibrations (see [42, The-
orem 6, p. 375]). It can also be proved from Lemma 2 with a skeleton by skeleton
construction.

Theorem 10. Let Ω :X→ Y be a Serre relation,P a polyhedron andP0 ⊆ P a sub-
polyhedron, which could be empty. Given a mapH :P × [0,1] → X and a continuous
selectiong of Ω ◦ H restricted to(P × {0}) ∪ (P0 × [0,1]), there exists a continuous
selection ofΩ ◦H extendingg.

Corollary 5. LetΩ :X→ Y be a Serre relation,P a polyhedron andhi :P →X, i = 1,2
two continuous maps. IfΩ ◦ h0 :P → Y has a continuous selection, and ifh0 andh1 are
homotopic, thenΩ ◦ h1 :P → Y has a continuous selection.

Corollary 6. If Ω :X→ Y is a Serre relation with nonempty values then the following
holds:

(A) if X is contractible then, for any polyhedronP and any continuous maph :P →X

the relationΩ ◦ h has a continuous selection,
(B) if P is a contractible polyhedron andh :P →X a continuous map, then the relation

Ω ◦ h has a continuous selection.

Proof. To prove the first part, consider an homotopyH :X × [0,1] X such thatH(−,0)
is a constant map, let us sayx0, andH(−,1) is the identity map. Then the map(p, t) 7→
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H(h(p), t) is a homotopy between the constant maph0 given byp 7→ x0 andh. Since
Ωx0 6= ∅, the relationΩ ◦ h0 has a selection. Consequently,Ω ◦ h has a selection.

To prove the second part, notice thatΩ ◦ h :P → Y is a Serre relation. Now, from part
(A) applied to the identity map ofP we have the conclusion.2

On a noncontractible polyhedronP , existence of a continuous selection will follow
either from existence of a continuous selection on a subpolyhedron which is strong
deformation retract ofP , Theorem 11, or from the assumption that the relation has
homotopically trivial values, Theorem 12.

Theorem 11. LetΩ :X→ Y be a Serre relation with nonempty values,P a polyhedron
and P0 ⊆ P a subpolyhedron which is a strong deformation retract ofP . Given a
continuous maph :P →X and a selectiong0 :P0→ Y ofΩ ◦ h|P0 there exists a selection
g :P → Y ofΩ ◦ h extendingg0.

Proof. Let ρ :P × [0,1] P be a strong deformation retraction ofP ontoP0, (ρ(p,1)= p
for eachp ∈ P , ρ(p, t)= p for each(p, t) ∈ P0× [0,1], andρ(−,0) is a retraction ofP
ontoP0.

Consider the homotopyH :P × [0,1] → X given by(p, t) 7→ h(ρ(p, t)). Notice that
g0(ρ(p, t)) ∈Ω ◦ h(ρ(p, t)) if (p, t) ∈ P0× [0,1] andg0(ρ(p,0)) ∈Ω ◦ h(ρ(p,0)) for
anyp ∈ P . In otherwords, we have a selection ofΩ ◦H restricted to(P × {0}) ∪ (P0×
[0,1]). By Theorem 10 there exists a selectionG :P × [0,1] → Y of Ω ◦ H such that
G(p, t) = g0(ρ(p, t)) if (p, t) ∈ P0 × [0,1], andG(p,0) = g0(ρ(p,0)) for anyp ∈ P .
The mapp→G(p,1) is a selection ofΩ ◦ h extendingg0. 2

Theorem 12 and Corollary 7 were proved by McClendon for what he calls r-open
relations (relations which are fibrewise retracts of an open set, [33, Definition 1.1]), [33,
Theorems 2.1 and 2.2]. We follow his proof closely.

Theorem 12 (McClendon).LetΩ :X→ Y be a Serre relation with nonempty homotopi-
cally trivial values. Then, for any polyhedronP and any continuous maph :P → X the
relationΩ ◦ h has a continuous selection.

Proof. Identify Ω with its graphΩ ⊆ X × Y and letp :Ω → X be the projection.
Fix points x0 ∈ Y and y0 ∈ Ωx0. For eachn > 1, the projectionp :Ω → X induces
a group homomorphism of homotopy groupsp∗ :Πn(Ω, (x0, y0))→ Πn(X,x0). From
Lemma 2, we know thatp :Ω→X is a weak fibration whose fibersp−1(x)= {x} ×Ωx
are homeomorphic toΩx. By hypothesis, each of the groupsΠn(Ωx0, y0) is trivial,
and therefore also each of the groupsΠn(p−1(x0), (x0, y0)). From the exact homotopy
sequence of the weak fibrationp :Ω → X (Switzer [44, p. 56]), and the triviality of
the groupsΠn(Ωx0, y0) we conclude thatp∗ :Πn(Ω, (x0, y0))→Πn(X,x0) is a groups
isomorphism for eachn> 1.

Denoting by[P,Ω] and [P,X] the sets of homotopy classes of maps and by[f ] the
homotopy class of a map, we have an onto mapp∗ : [P,Ω] → [P,X] induced byp
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(Switzer [44, Theorem 6.31]). There is therefore a mapG :P →Ω such that[p◦G] = [h].
Now, let q : Ω → Y be the projection of the graph ontoY , and putg = q ◦ G. Clearly
g :P → Y is a selection ofΩ ◦ p ◦G andp ◦G andh are homotopic. By Corollary 5,
Ω ◦ h has a continuous selection.2
Corollary 7 (Existence of selections on ANR).A Serre relationΩ :X → Y with
homotopically trivial and nonempty values whose domainX is a compact finite-
dimensionalANR has a continuous selection.

Proof. We can assume thatX is embedded in some euclidean space. SinceX is compact
any of its neighborhood has a subneighborhood which is a polyhedron. There is therefore
a retraction of a polyhedron ontoX. 2

Next comes the question of regularity of Serre relations. We show that on finite-
dimensional ANR they are lower semicontinuous. The next lemma could be obtained as
a variant of Lemma 3, it is also a simple consequence of Theorem 11. By apolytopewe
mean the convex hull of a finite set of points.

Lemma 4. If Ω :X→ Y be a Serre relation with nonempty values then for any polytopeP

and any continuous maph :P →X, the relationΩ ◦ h :P → Y is lower semicontinuous.

Proof. Take a pointp0 ∈ P and a pointΩ ◦h(p0). The one point set{p0} is a subpolytope
of P (considering any triangulation ofP havingp0 as a vertex), and we have an obvious
selectiong0 : {p0}→ Y ofΩ ◦h restricted to{p0}. There is therefore a continuous selection
g :P → Y ofΩ ◦ h such thatg0(p0)= y0. This proves the lower semicontinuity ofΩ ◦ h,
by Proposition 2.2 of [34]. 2
Theorem 13 (Lower semicontinuity of Serre relations).If X is a compact finite-dimen-
sionalANR, then any Serre relationΩ :X→ Y is lower semicontinuous.

Proof. We can assume thatX is embedded inRn. There is a finite polyhedronQ which
is a neighborhood ofX and there is a retractionr :Q→ X of P ontoX. Take a finite
family of polytopes{Pi : i = 1, . . . ,m} such thatQ =⋃i=m

i=1 Pi . For eachi = 1, . . . ,m
the relationΩ ◦ r|Pi :Pi → Y is lower semicontinuous. ThereforeΩ ◦ r :Q→ Y is
also lower semicontinuous. Finally,Ω which is the restriction ofΩ ◦ r to X is lower
semicontinuous. 2

At this point, one could ask for examples of Serre relations, or criteria for a given relation
to be a Serre relation. We have already seen McClendon’s Theorem 7 which gives one class
of Serre relations. As a matter of fact the class of Serre relations is rather large. We start
with a few obvious examples and then we proceed with nontrivial classes one of which is
derived from a selection theorem of Michael.

Any continuous mapf :X→ Y is a Serre relation, the constant relationΩ :X→ Y

whose graph is the cartesian productX→ Y is a Serre relation.
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Let us assume thatΩ :X→ Y is a Serre relation, that1 ⊆ Ω and that there exists a
vertical retraction(a continuous retractionr :Ω→1 of the form(x, y) 7→ (x, r̃(x, y))),
then1 is a Serre relation. This is straightforward from the definition. This, in connection
with McClendon’s theorem raises an interesting question:

Let X and Y be topological spaces, even ANR or AR, which subsetsΩ ⊆ X × Y
of the cartesian product are vertical retracts of an open neighborhoodU ⊇ Ω with Ux
homotopically trivial for eachx ∈X?

One thing is clear, such anΩ must share all the properties that a neighborhood retract
of X× Y would have.

Let us say thatΩ :X→ Y is a locally trivial relation if there exists an open covering
{Uλ}λ∈Λ of X, a topological spaceZ and a family of continuous mapsφλ :Uλ × Z→ Y

such that:
(a) φλ(x, z) ∈Ωx for each(x, z) ∈ Uλ ×Z,
(b) for eachλ ∈Λ the map(x, z) 7→ (x,φλ(x, z)) is a homeomorphism fromUλ × Z

onto(Uλ × Y )∩Ω .
We have seen that a trivial relationΩ :X→ Y is a Serre relation. Less obvious, is the

fact that a locally trivial relationΩ :X→ Y is a Serre relation. This is a restatement
of a standard result on fibre bundles, a proof of which can be found in Switzer [44,
Proposition 4.10]. It is also a consequence of the fact that a local Serre fibration is a Serre
fibration.

For our last result we need to recall a definition.
For subsetsA ⊆ B ⊆ Y of a topological spaceY , the notationA vn B means that

for each natural numberm 6 n and each continuous mapg : ∂∆m+1→ A there exists a
continuous mapf :∆m+1→ B whose restriction to∂∆m+1 is g.

A family F of nonempty subsets ofY is equi-LCn if for any y ∈ ⋃F and any
neighborhoodU of y there exists a neighborhoodV of y such thatF ∩ V vn F ∩ U
for anyF ∈ F . The family is equi-LC∞ if it is equi-LCn for eachn. A family of convex
sets in a locally convex topological vector space is equi-LC∞. Notice that a subfamily of
an equi-LCn is also equi-LCn.

Theorem 14. Let Y be a complete metric space andΩ :X→ Y a lower semicontinuous
relation with nonempty, closed and homotopically trivial values. If the set of values
{Ωx: x ∈X} is equi-LC∞ thenΩ is a Serre relation.

Proof. Consider a continuous maph :∆n→X and a continuous selectiong :Fn−1→ Y

on an(n− 1)-dimensional face of∆n of Ω ◦ h|Fn−1. From Theorem 1.2 in [35],g can be
extended to a continuous selection ofΩ ◦ h. 2

In [36] Michael gives a theorem on Serre fibrations similar to Theorem 14. Our proof is
somewhat more direct. Theorem 14 and Corollary 6 yield right away a selection theorem.



134 C.D. Horvath / Topology and its Applications 104 (2000) 119–139

3. Convex intersection theorems

This section offers three intersection theorems. They all deal with concave-convex
relations. A relationΩ :X→ Y between two convex sets isconvexif the values are convex,
it is concaveif the cofibers are convex, this is equivalent toΩ([x1, x2]) ⊆ Ωx1 ∪ Ωx2

for any x1, x2 ∈ X. It is concave-convexif it is both concave and convex. The name
is due to Greco [13]. The first theorem below is a slight generalization of a result of
Greco and Moschen [15], it gives a partial answer to a question raised in their paper.
The proof, which relies on a selection theorem of Michael, follows the original idea of
Greco and Moschen, to combine a selection theorem with a fixed point theorem. Their
method has already been used in the previous section. Their theorem is not of the finite-
intersection type. The second theorem is due to Bassanezi and Greco [4]. They ask if the
finite-dimensionality of the space is unavoidable. Unfortunately, we are not able to answer,
but we can show that a similar result holds in infinite dimension. The great interest of
the theorems of Bassanezi–Greco and Greco–Moschen is that the values ofΩ are not
closed, this has been a sine qua non condition with everyone else. In functional terms,
it means that semicontinuity (upper in one variable, lower in the other), of the function
f :X× Y →R can be replaced with marginal semicontinuity. Since the seminal paper of
Sion [41], it has been more or less taken for granted by everyone working on minimax
that one can not do without semicontinuity. The third theorem, the proof of which is too
involved to be given here, is due to Flåm and Greco [11]. It gives a nontrivial necessary
and sufficient condition for a concave-convex multifunction with compact values to have
a constant selection. It is without a doubt one of the most original results of its kind. It
has up till now resisted all efforts to give a simple proof, or to show that it can be derived
from, or linked to other classical results, like the theorem of Knaster, Kuratowski and
Mazurkiewicz, or some selection theorem. Also, the nature of the Simplex Condition is
not so clear.

Let us now recall a theorem of Michael in [37] which will be the main ingredient of the
proofs.

A face of a closed convex setC ⊂ E contained in a Banach spaceE is a closed convex
subsetF ⊂ C such that any segment inC, which has an interior point inF , must be
contained inF . In other words, if[x0, x1] ⊆ C and ]x0, x1[ ∩F 6= ∅ then [x0, x1] ⊆ F .
Let I(C) be the complement inC of the union of the faces ofC. If C is separable then
I(C) 6= ∅, Lemma 5.1 in [34].

Theorem 15 (Michael).LetX be a metric space,E a Banach space andΩ :X→ E a
lower semicontinuous relation with nonempty closed convex values. If, for eachx ∈X,Ωx
is separable then the relationx 7→ I(Ωx) has a continuous selection.

From the Hahn–Banach theorem we have:

Lemma 5. LetC ⊆E be a convex subset of a Banach spaceE. If C is finite-dimensional,
or if int C 6= ∅ thenI(C)⊆ C.
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The following result was obtained by Greco and Moschen [15] under the assumtion that
X andY are finite-dimensional convex spaces. They asked if that assumption could be
removed.

Theorem 16. LetX andY be convex subsets of Banach spacesE1 andE2 , with eitherX
or Y compact, andΩ :X→ Y a relation with convex cofibers. ForΩ to have a constant
selection it is sufficient that the following three conditions hold:

(A) Ω∗y is separable andI(Ω∗y)⊆Ω∗y for anyy ∈ Y ,
(B)

⋂
x∈U Ωx is closed inY for any open subsetU ⊆X,

(C) there exists a lower semicontinuous relation with nonempty separable convex
values1 :X→ Y such that, for eachx ∈X, I(1x)⊆1x ⊆Ωx.

Proof. We proceed by contradiction. If
⋂
x∈XΩx = ∅ thenΩ∗y 6= ∅ for eachy ∈ Y .

Condition (B) says thaty 7→ Ω∗y is a lower semicontinuous relation fromX to Y . The
relationy 7→ Ω∗y from X to E2 is lower semicontinuous with convex separable values.
From Michael’s theorem,y 7→ I(Ω∗y) has a continuous selection, from (A) it is also a
continuous selection ofΩ∗.

In conclusion, we have a continuous mapγ :Y → X such thaty /∈ Ωγ (y) for each
y ∈ Y .

Now, consider1 :X→ Y . Michael’s theorem implies thatx 7→ I(1x) has a continuous
selection, from (C) it is also a continuous selection ofΩ . We have a continuous map
δ :X→ Y such thatδ(x) ∈Ωx for eachx ∈X.

By hypothesis, eitherX or Y is compact. IfY is compact, consider the continuous map
δ ◦γ :Y → Y . By Schauder’s fixed point theorem there existsy ∈ Y such thatδ ◦γ (y)= y.

We haveδ ◦ γ (y) ∈Ωγ (y), and thereforey ∈Ωγ (y). But y /∈Ωγ (y) for eachy ∈ Y ,
we have reached a contradiction.

If X is compact, one proceeds similarly with the mapγ ◦ δ :X→ X to obtain a point
x ∈X such thatδ(x) /∈Ωx. 2

Obviously, some of the separability assumptions can be removed, depending on which
space is assumed to be compact.

Let us see in which ways we have generalized the theorem of Greco and Moschen. If
X andY are finite-dimensional convex sets, then the setsΩ∗y and1x are automatically
separable and from Lemma 5 we see that condition (A) is verified, as well as the left hand
side of the inclusion in (C). If we do not assume thatX andY are finite-dimensional,
Lemma 5 shows that it is enough to assume that the values1x and the cofibersΩ∗y are
finite-dimensional, or that the values1x are finite-dimensional and the fibersΩ−1y are
closed.

The following fixed point theorem, which is an obvious generalization of Schauder’s
fixed point theorem, is worth mentioning. The proof is clear from Michael’s selection
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theorem and Schauder’s fixed point theorem. The finite-dimensional version is explicitely
stated in Greco and Moschen.

Theorem 17. LetX ⊆ E be a compact convex set in a Banach spaceE, andR :X→ X

a lower semicontinuous relation with nonempty convex values. If the values are finite-
dimensional, or have nonempty interior, or more generally ifI(Rx)⊆Rx for eachx ∈X,
then there existsx ∈X such thatx ∈R(x).

Is that result true in locally convex topological vector spaces?
Bassanezi and Greco gave in [4] the following intersection theorem for relations with

finite-dimensional codomain.

Theorem 18 (Bassanezi and Greco).LetX be a convex set in a locally convex topological
vector space,Y a compact convex finite-dimensional set. A relationΩ :X→ Y has a
constant selection if the following poperties hold:

(A) for any open setU ⊆X the set
⋂
x∈U Ωx is closed inY ,

(B) there is a lower semicontinuous concave-convex relation with nonempty values
1 :X→ Y such that1x ⊆Ωx for eachx ∈X.

It is still unknown wether that result holds without the finite-dimensional assumption
on Y . At first one could be tempted to prove the theorem of Bassanezi and Greco as we
proved the theorem of Greco and Moschen, by contradiction. We would have a lower
semicontinuous relationΩ∗ :Y → X with nonempty values. FromΩ∗y ⊆ 1∗y we can
take the convex hull ofΩ∗y to get a lower semicontinuous relationΓy ⊆ 1∗y. Now 1

has a continuous selection, since the values are finite-dimensional. But the difficulty is that
we do not know thatΓ :Y → X has a continuous selection, it is a lower semicontinuous
relation with nonempty convex values. To use Michael’s theorem we would have to know
thatI(Γ y)⊆ Γy.

We conclude with the theorem of Flåm and Greco [11] whose topological nature is still,
as we said, somewhat mysterious.

First, let us introduce what they calledThe Simplex Property:
A relationΩ :X→ Y between two convex sets has the simplex property if the following

condition holds: for any simplexS ⊆X of dimension at least one and for any vertexv ∈ S,

if
⋂

x∈S\{v}
Ωx 6= ∅ then

⋂
x∈S

Ωx 6= ∅.

Theorem 19 (Flåm and Greco).LetΩ :X→ Y be a concave-convex multifunction with
nonempty compact values. Then⋂

x∈X
Ωx 6= ∅

if and only if the simplex property holds.
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In the paper of Flåm and Greco it is shown that one cannot replace the compactness
assumption on all the values by the hypothesis that the values are closed and one is
compact. So, this is not a finite intersection type theorem.

4. Conclusion

The conclusion will take us back to the beginning, to what has been the main motivation
for most of these intersection results, the theory of minimax.

Given a functionf :X× Y →R we ask whether

inf
y∈Y

sup
x∈X

f (x, y)= sup
x∈X

inf
y∈Y

f (x, y).

To a real numberλ one can associate a relationΩλx = {y ∈ Y : f (x, y) 6 λ} for which
we would like to show that

⋂
x∈XΩλx 6= ∅. The translation of the conditions onΩλ in

terms of analytical conditions on the functionf :X × Y → R are well understood in the
classical theorems, Sion or Fan, or in the theorems of Bassanezi and Greco and Greco and
Moschen. For the theorem of Flåm and Greco one knows natural analytical conditions on
the function which imply thatΩλ has the simplex property, but there is still no convincing
analytic translation of the simplex property itself (by convincing we mean a condition that
is not a simple tautology), but useful conditions that imply the simplex property are known.

The topological intersection theorems raise the same kind of questions. What analytical
conditions on a functionf :X× Y →R defined, say on subsets ofRn, will guarantee that
the sets{y ∈ Y : f (x, y) 6 λ} are homotopically trivial, or form an equi-LCn family, or
that the relationΩλ is locally trivial?
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