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ON SOME SPECIAL PSEUDOCONVEX
SPACES

M. HORVATH and I. JOO (Budapest)”

Abstract. We present two ways of constructing pseudoconvex spaces. The
first theorem states that an interval space is pseudoconvex if the intervals are
range sets of continuous functions and a cone erected to a convex set is convex.
Secondly, if H is pseudoconvex and in the Cartesian product H x R the intervals
are defined by going first along the H-segment, then along the R-segment (the
other coordinates fixed) then H x R is pseudoconvex.

In the existence theorems of Nash equilibrium points of games the fixed
point theorems of Browder [1] or Kakutani [6] are in general used (see e.g.
in Horvéath, Sovegjdrtd [3]). When game theory is extended using a more
general convexity concept, we need generalized versions of these fixed point
theorems. Here we mention first the work of Komiya [7] who introduced the
following structures.

DEFINITION. Let X be an arbitrary set. A convex hull operation on X
is a mapping {-) : p(X) — @(X) satisfying the conditions

& @ =0, ({z}) = {2} forzeX:
(2) (Ay =U{(F) : F C Ais a finite subset};
(3) ((4)) = (4).
The set A C X is called conver if (4) = A.
DEFINITION. A convez space is a triplet ( ,®) Where X is a topolog-
ical space, (-} is a convex hull operation on it and <IJ = {pr C X is finite}

is a set of mappings
Fi(F)y—=R", card(F)=n
for which
(4) @p is a homeomorphic imbedding of (F),
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14 M. HORVATH and L. JOO

and

(3)

{ ¢F is convex hull-preserving in the following sense:
A C(F) = ¢r({A)) = co(pr(4))

where co (-) denotes the usual convex hull in R™.

Komiya proved the Browder fixed point theorems in convex spaces. 1. Joé
[4] further generalized this notion.

DEFINITION [4]. A pseudoconves space is a triplet (X, (-),®) such that
a) X is a topological space and {-) is a convex hull operation on it,
b) & := {pr : F C X is finite}, where

F: A" = (FY, card(F)=n+1,

for which A™ := co (e, ..., ey) is the standard simplex in R™, g := (0,...,0),
= (0

e1 = (1,0,...,0), ..., e, ,..-50,1) and

(4") @p is continuous,

(5") er(co(€ig,- . i) = (Tig, -+, T4,
for all subsimplexes co (e, ..., €, ).

Suppose that the following additional assumptions fulfil:
i) X is an M;-space, i.e. every point z has a countable neighbourhood
basis G(x,n), n € N;
i) y € G(z,n) <z € Gy, n);
iii) For any =, N and z,, — =z there exists V] such that

n > Ny = G(z,,n) C G(z, N).

Finally we assume that the convex hull operation is continuous in the follow-
ing sense. Denote for A C X

G(A,n) :=U{G(z,n) : z € A},
then
(C) VAVN dn such that B C G(A,n) = (B) C G({4),N).
The aim of this paper is to introduce two types ol spaces which will be
proved to be pseudoconvex. We first define a special class of interval spaces

in the sense of Staché [g].
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ON SOME SPECIAL PSEUDOCONVEX SPACES 15
DEFINITION [8]. Au ¢nlerval space is a topological space X and a map-
ping [,+] : X x X — p(X) with the properties:

a) the sel [x1,z2] C X is connected,
b) 21,23 € [21, %2,

for all @wq,x9 € X.
A set H C X is called convez if

r1,22 € H= [1“1)562] C H.

A special class of interval spaces can be defined through a continuous func-
tion
g X xXx[0,1] =X, g2y 0)=2z glyl)=y

if we define the intervals by
(21, 20) := { g(z1,22,8) : t€[0,1]}.

Introduce the following axiom which tells us how to construct the convex
hull:

If K C X is convex and zg € K, then the set
(A)

U {[zo,z] : z € K} is convex.

Now we can prove the following

THEOREM 1. If the interval space generated by a continuous function g
as above is a compact topological space and satisfies (A), then it is a pseu-
doconvez space.

ProOOF. Deline inductively the continuous functions g : X*+! x A¥
— X by the following rules:

gilz,y, N =gz, A1) (A= (Ao, A1), do+Ar =1, Ag 20, A 20);

(A0 k) ) )
L0y Thal, A) 1= Ty v sy Thpy ——————— | [ Tpi1, Ag
gr+1(z0 k415 A) 9(%( 0 k Nt T k+1s Ak+1
if )\k+1<1;
= Th41 lf )\k+1:1-

We know that g1 is continuous. If g is continuous then in the points (x, A),
x =(20,...,Tk+1), A1 <1 the function ggy1 is deflined by a continuous
formula. To show the continuity in the points (z,A), Ag41 = 1 we need the
following
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LEMMA 1. Assume the conditions of Theorem 1. Then for every yo and
for every neighbourhood yo € U there exists o number 6 > 0 such that

t>1-6=g(z,y,t) €U V.

PROOF. Indirectly suppose that there exists a neighbourhood ¢y € U and
thn >1— %, zn € X such that g(z,,y0,tn) € U Vn. Since X is a compact
space, we have a point #* € X in every neighbourhood of which therc arc
infinitely many x,. Since g(z*,y0,1) = yo and ¢ is continuous, there exists a
neighbourhood z* € V' and a number é > 0 such that

x€eVit>1-6= gz, yg,t) €U
In particular
Zn € V,n 2 ng = g(n, vo,tn) € U.
Since there exists such an index n, we get a contradiction. a

Returning to the proof of Theorem 1 we see from Lemma 1 that gg4 is
continuous also if Ay = 1. Since g(z,y, A) runs over the segment [z,y], we
see by induction on k that

gk(xo, N ,:l?k,Ak) = <ZEO, e ,Ik>.
Even more is true. Namely let A* = co(e;,,...,€;,) C A" be a subsimplex
of A™, then

gn(Toy .- Zn, AY) = (24, ., T4y )
Indeed, use induction on k. If £ = —1 then the construction shows that

gnlz, X) :gn(x,([),.‘.,0,1%,0,,.,,0)) = gio (Zos - -+ Tig, (0,...,0,1)) = 24

If the case k — 1 is proved, then (in case A;, < 1)

gn(xa)‘) = iy (3307 cees Ly (/\07 . 1/\’%))

(/\05"'7)‘1' —1)
=g (gik—l (IOJ-'-axik—la )\0+ +)k\ ) axiku)"ik
i —

B (Bose e hi ) .
=94 Gi_1 VL0s- - Tap 1 )\0 + gy s L s Ady | -
.. i1

By induction hypothesis

(/\0,.4.,)\%_1))

Yy =gik_1 <x07"~axik__1a /\0_'_ gy
b1
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runs over {xj,,...,&; ;). Then the values g(y,x;,,A;, ), 0 < A;, <1, run over
the segments [y, x;, ] with eventual exception of the points z;,. However,

in
~—

Ty, :gn(‘ra(oa"woﬂ 1101"'70)>1

hence the axiom (A) implies that g,(z, A*) = (z;,,...,2;,) as asserted. The-
orem 1 is proved. O

REMARK 1. In the above proof the compactness of the space is used only
locally in the sense that every point x is an inner point of a compact set. So
if compactness is changed to local compactness, Theorem 1 remains true.

ReMARK 2. The question arises whether in the pseudoconvexity of The-
orem 1 the continuity axiom (C) holds or not. If we drop (A) and suppose
only that ¢ is continuous, then (C) may not be true. Here we provide an
example where the convex hull of a ball is the whole space. Namely let
X :=R? and for z,y € R? let the “segment” [z,y] be the union of ordinary
segments [z, 2z|, [2z,2y], [2y,y]. We define g(z,y,t) such that it goes lin-
early from z to y through the above polygon when ¢ varies from 0 to 1. It
is clear from the construction that g is continuous and that the convex hull
of any disk with center at the origin is the whole plane R2. So (C) fails to
hold; but the segments are not convex and neither is (A) true. We formulate

ProOBLEM 1. Is there a continuous function ¢ such that the related con-
vexity satisfies (A) but not (C)?

In the next part of the paper we investigate a generalization of the con-
struction of the Jo6-Staché-type convexities [5]. First recall the ideas from
Bezdek, Jo6 [2]. Suppose that we are given a set H, a set §) of subsets of H
such that

a) H; € H= n H; € § for every index set J (finite or infinite);
JE

b) A set M C H belongs to § if and only if P,Q € M = [P,Q] C M:
where
[P,Q]:=n{H; €9 : P,Qe H;}.

Now the sets of § are called convez subsets of H. Remark that this convexity

does not necessarily fulfil the axioms (1)~(3); for example, in case £ = {H}.
Consider the set H* := H x R and denote P; := (P,t) € H*. Define the set

[PtlaQtQ]* = [QtQ’Ptl]*
={R, : Re[P,QI}U{Q::teltt]} if t1Sta

Hence, we obtain a “product convexity” where along the “segment” [Py, s Q]
we first descend o the lower height, then inside the lower level we connect
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the points according to the convexity of H. This is precisely the convexity
of [5] (in a much more general setting). Now we suppose that in H we are
given a pscudoconvexity and investigate whether H* inherits this property.
We have

THEOREM 2. Suppose that H is a pseudoconver space, let
[P,Ql:=n{K : K CH is conver, P,Q € K},

and define o convezrity in H* = H X R as described above. Suppose that H*
is endowed with the product topology und suppose thal the following weakened
injectivity property of the mappings pp s true on H:

if £ C H s finite, F=AUB, AnNB=0, z € (4), y € (B)

and for some Ay, Ag, p € A", n = card (F) — 1 we have
(D
er(A) = er(Xe) =z, vp(n) =y,

then or(th + (1 —t)u) =pr(tha+ (1 —t)p) for te[0,1].

Under these assumptions H* is also a pseudoconvez space.

PRrROOF. Consider the set F* := { (Po,t0)....,(Pn,tn)}. We have to con-
struct a mapping pp+ : A" — (F*) with the desired properties of pseudo-
convex spaces. Use induction on the number of different heights ¢;. If there
is only one height ¢ then let F := {Py,..., P,}. The operator A; : P — (P,t)
is an isomorphic imbedding of H into H*, and it is convex hull preserving.
Thus pp« := A; 0 wp is a proper choice. In the general case denote t* the
lowest height in F* and let F* = Fy U Fy, card (F}*) = n; + 1, be the parti-
tion of F* where Fy is the subset of points of height t* and F} = F™\ F7.
By the induction hypothesis there exists a mapping ¢ry : A™ — (F7). The
points A € A", card (F*) = n+ 1 can be uniquely decomposed into the form

A=t(AL0) + (1—1)(0,X), X €A™, telo1]

The following operators are continuous:

a) A t, A /\1, A /\2, /\1 = ai= cppf(/\l),

b)ara,a—71ila=(a7)€ll xR

Now take any point A; € A™ with & = ¢r(A1,0) and define wp-()) in
the following way:

i) if te [O, Tﬁ%*] then ¢p+()A) decreases linearly the height of the
point a from 7 to t* (here A\; and Ay are kept fixed),

i) if t € [ 25555, 1] then op-(A) = (A 0 pr)(c(t)),
where ¢(t) varies linearly from (A1,0) to (0,As). Now the weak injectivity
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ON SOME SPECIAL PSEUDOCONVEX SPACES 19

property (I) shows that ¢p~ is continuous. Clearly the points ¢p=()) in i)
run over the whole part of (F*) over the lowest height. On the other hand,
since the values @ (A1, 0) cover (Fy), we see from (I) that the values g« (\)
from ii) cover the lowest level of (F*). Hence, (F*) = pp«(A™). Now con-
sider a subset F* ¢ F*, with card (F*) =n+ 1. The above method shows
that (F*) = @p«(A"). The proof is complete. O

REMARK 3. If there are only two levels in the set F™* then the mapping
A — A can be made continuous so in this case the additional assumption (I)
can be eliminated. For general sets F* this question remains open.

REMARK 4. If in the pseudoconvex space H the convex hull operation
is continuous in the sense of (C) then the same is true in H*. This follows
from the facts that

a) product topology is given in H* = H X R;

b) if A* C H* then the convex hull (A*) cau be obtained in the [ollowing
way. Let ¢ be any height for which A* has points at heights < ¢ and 2 ¢.
Then the set

(A%)¢ := {a € {4*) : a has height t}

can be generated as follows: project all points of A* with height 2 ¢ to the
“hyperplane” of height ¢ and take the convex hull of this set corresponding
to the H-convexity. Since the H-convex hull is continuous, it follows from
a) and b) that this is true also for the H*-convexity. In connection with this
we formulate the following

PROBLEM 2. Prove or disprove that all pseudoconvex spaces have prop-
erty (C).

REMARK 5. There are pseudoconvex spaces where the convex sets are
not homeomorphic to “ordinary” convex sets in Euclidean spaces. For exam-
ple, in the pseudoconvexity of [5] (see our Theorem 2) a pseudoconvex set is
a rectangle and a segment over it, which is not homeomorphic to an ordinary
convex set since inner points are invariant in homeomorphic transformations.

References

(1] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector
spaces, Math. Ann., 177 (1968), 23-301.

[2] K. Bezdek and I. Jod, Stufenkonvexitat in der Geometrie, Beitrdge zur Algebra und
Geometrie, 19 (1985), 169-175.

[3] M. Horvath and A. Sévegjartd, On convex functions, Annales Univ. Sci. Budapest.,
Sectio Math., 29 (1986), 193-198.

[4] I. Joé, On some convexities, Acta Math. Hungar., 54 (1989), 163-172.

[5] I. Jo6 and L. L. Stachd, A note on Ky Fan’s minimax theorem, Acta Math. Hungar.,
39 (1982), 401-407.

Acta Mathematica Hungarica 81, 1998



20 M. HORVATH and 1. JOO: ON SOME SPECIAL PSEUDOCONVEX SPACES

[6] S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J., 8
(1941), 457-459.

[7] H. Komiya, Convexity on a topological space, Fund. Math., 111 (1981), 107-113.

[8] L. L. Stachd, Minimax theorems beyond topological vector spaces, Acta Sci. Math.
(Szeged), 42 (1980), 157-164.

(Received March 12, 1996; revised November 7, 1997)

TECHNICAL UNIVERSITY
DEPARTMENT OF MATHEMATICS
H-1111 BUDAPEST

MUCEGYETEM RKP. 3-9.

Acte Mathematica Hungarica 81, 1998



