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1. Introduction

A Banach spaceX is said to have thdaugavet property{29] if every rank-one
operatorT : X — X satisfies the norm identity

[Hd +T| =1+1T], (DE)

known asDaugavet equationin such a case, all weakly compact operatorsxoalso
satisfy (DE) (sed29, Theorem 2.3] Therefore, this definition of Daugavet property
coincides with those that appeared[iti,1].

The study of the Daugavet equation was inaugurated by Daudagétin 1961
by proving that every compact operator @0, 1] satisfies (DE). Over the years,
the validity of the Daugavet equation was proved for compact operators on various
spaces, includingC(K) and Li(u) provided thatK is perfect andu does not have
any atoms (se¢41] for an elementary approach), and certain function algebras such
as the disk algebra (D) or the algebra of bounded analytic functioH$® [42,44] In
the 1990s, new ideas were infused into the field and the geometry of Banach spaces
having Daugavet property was studied. The state-of-the-art on the subject can be found
in [29,43] For very recent results we refer the reader[828,30] and references
therein.

Let us mention here several facts concerning the Daugavet property which are relevant
to our discussion. It is clear tha has the Daugavet property whenever its topological
dual X* does, but the converse result is falsé £ CJ0, 1], for instance). It is known
that a space with the Daugavet property cannot have the Radon-Nikodym property
(RNP in short)[44]; even more, every weakly open subset of its unit ball has diameter
2 [40]. A space with the Daugavet property contains a copy10129], it does not
have an unconditional basj27] and it does not even embed into a space with an
unconditional basi$29].

In 2002, Oikhberg[38] carried the classical results on the Daugavet property for
C(K) and Li(n) to the non-commutative case, characterizing when (complex)
C*-algebras and preduals of von Neumann algebras have the Daugavet property. A
C*-algebra has the Daugavet property if and only if it does not have atomic projections;
if the algebra is a von Neumann algebra (i.e., it is a dual space), its (unique) isometric
predual has the Daugavet property if and only if the algebra does. In 2004, Oikhberg
and the second named autH8i7], translated these results to the non-associative case,
characterizing (complexy B*-triples and predual of (complexj BW*-triples having
the Daugavet property in an analogous way, replacing atomic projections by minimal
tripotents. The necessary definitions and basic resultd Bittriples are presented in
Section3.

In the present paper we give geometric characterizations of the Daugavet property in
the setting of real and complekB*-triples and their isometric preduals. In particular,
our results contain the already mentioned onef3@f38] for complexC*-algebras and
complex J B*-triples, but our proofs are independent.

To state the main results of the paper we need to fix notation and recall some
definitions.
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Let X be a Banach space. The symbdlg and Sy denote, respectively, the closed
unit ball and the unit sphere of. Let us fixu in Sy. We define the seD(X, u) of
all statesof X relative tou by

DX, u) :={f € Bx+ : f(u) =1},

which is a non-emptyw*-closed face ofBx+. The norm ofX is said to besmooth
atu if D(X,u) reduces to a singleton, and it is said to Eréchet-smoottor Fréchet
differentiableat u € Sy whenever there exists lif#1=1 uniformly for x € By. We

o—0

define theroughness ofX at u by the equality

n(X. 1) = limsyp 1AL+ lu =Rl =2
IA—0 I172]]

We remark that the absence of roughnessXofat u (i.e., n(X,u) = 0) is nothing

other than the Fréchet-smoothness of the nornXoét u [13, Lemma 1.1.3] Given

0 > 0, the Banach spac& is said to beod-rough if, for every u in Sx, we have
n(X,u)>90. We say thatX is rough whenever it isé-rough for someé > 0, and

extremely roughwhenever it is 2-rough. Roughly speaking, the sp&ces rough if its

norm is “uniformly” non-differentiable at any point. Alice of By is a subset of the
form

S(Byx, f,a) ={x € By : Ref(x)>1—ua},

where f € Sx+ and O< o < 1. If X is a dual space and is actually taken from the
predual, we say thaf(Byx, f, o) is aw*-slice. By Deville et al[13, Proposition 1.1.11]

the norm ofX is é-rough if and only if every nonempty*-slice of Bx+ has diameter
greater or equal than.

Finally, a pointx € Sx is said to be anstrongly exposed poinif there exists
f € D(X, x) such that lim|x, — x| = O for every sequencéx,) of elements ofBy
such that lim Ref(x,) = 1 (equivalently, there are slices defined lfywith arbitrary
small diameter). It is known that is strongly exposed if and only if there is a point
of Fréchet-smoothness P (X, x) (see[13, Corollary 1.1.5].

The main results of the paper are the characterizations of the Daugavet property for
J B*-triples and preduals af BW*-triples given in Theorem8.10and 3.2, respectively.
For a real or complex/ B*-triple X, the following are equivalent:

(i) X has the Daugavet property,
(ii) the norm of X is extremely rough,
(i) the norm of X is not Fréchet-smooth at any point.

For the predualX, of a real or complex) BW*-triple X, the following are equivalent:

(i) X has the Daugavet property,
(i) X, has the Daugavet property,
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(iii) every relative weak-open subset &fy, has diameter 2,
(iv) Bx, has no strongly exposed points,
(v) By, has no extreme points.

This characterizations allow us to prove that, §aB*-triples and for preduals af BW*-

triples, the Daugavet property passes to ultrapowers. As a consequence, a stronger ver-
sion of the Daugavet property introduced[8], called the uniform Daugavet property,

is equivalent to the usual Daugavet property in the setting/ Bf-triples and their
isometric preduals.

The outline of the paper is as follows. In Section 2, we give sufficient conditions
for a Banach space to have the Daugavet property, which will be the keys to state the
rest of the paper.

Section 3 is devoted to the above cited characterizations of the Daugavet property for
real or complexJ B*-triples and their isometric preduals, and we dedicate Section 4
to particularize these result to the setting of real or complgxalgebras and von
Neumann preduals.

Finally, in Section 5 we study the behaviour of the Daugavet property for ultraprod-
ucts of J B*-triples and of preduals af BW*-triples. As a consequence, we show that
the already mentioned uniform Daugavet property and the Daugavet property coincide
in real or complexJ B*-triples and their isometric preduals.

Throughout the paper, for a subsétof a Banach space, we wri® (A) for the
closed convex hull ofA, we use exB) to denote the set of extreme points of the convex
set B and, finally, if X and Y are Banach spaces, we wrif¢®; Y and X ®, Y to
denote, respectively, thé-sum and thel-sum of X andY.

2. Sufficient conditions for the Daugavet property

For a better comprehension of the geometry underlying the Daugavet property, we
present the following characterization frof@9, Lemma 2.1; 43, Corollary 2.3\We
shall have occasion to use it throughout the paper.

Lemma 2.1. The following assertions are equivalent

() X has the Daugavet property
(i) For all x € Sy, x* € Sx+, and ¢ > 0, there exists somg € Sy such that
Rex*(y) >1—¢c¢and|x +y| >2—¢.
(i) For all x € Sx, x* € Sx+, and ¢ > 0, there exists some* € Sx such that
Rey*(x) >1—¢ and ||x* + y*|| > 2 —¢.
(iv) For all x € Sx ande > 0,

Bx cto({ye X : |ylI<l+e, [x+yl>2-¢).

Observe that condition (i) in the above lemma implies that every weak slice of
the unit ball of a Banach spacg with the Daugavet property has diameter 2. Also,
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condition (iii) implies that everyw*-slice of the unit ball ofX* has diameter 2, thus
the norm of the space is extremely rough.
The next result is a sufficient condition for a Banach space to have the Daugavet

property which will be crucial in the rest of the paper. Recall that a closed subspace
Z of the dual of a Banach space is called norming whenever

Ixll = suplz*(x)| : z" e Z, [lz¥] =1}
for every x € X. This condition is clearly equivalent t8; be w*-dense inByx+.

Theorem 2.2. Let X be a Banach space such that there are two norming subspaces Y
and Z of X* such thatX* =Y @1 Z. Then X has the Daugavet property

Proof. We fix xg € Sx, fo € Sx» ande > 0. We write fo = yo + zo such thatyg € Y,
z0 € Z, | foll = llyoll + llzoll, and

U={x*e€ By : Rex®(xg) > 1— ¢},
a w*-open slice of Bx«. Since Bz is w*-dense inBx+, we may findz € ZNU.
Observe that, trivially||z|| > 1 — ¢. Now, sinceBy is w*-dense inBxx, we may find
a net(y;) in By which is w*-convergent toz. Sincez € U, we may suppose that

vy, € U for every /. On the other hand, since; + yo) — z + yo and the norm is
w*-lower semi-continuous, we have

liminf [y, + yoll = llz + yoll = llzll + Ilyoll > 1+ llyoll — ¢

and we may findu such that

lyu + yoll Z1+ llyoll — &/2.
To finish the proof, we just observe that
I fo+ yull = 1(vo + yu) + zoll
= llyo+ yull + llzoll > 1+ lIyoll — & + llzoll = 2 — &,
and that Re,(xo) > 1 — ¢ sincey, € U, and we use Lemma.l(jii). O
Just remembering Goldstine and Krein—Milman theorems, we obtain the following
useful particular case. Recall that a Banach spEcés said to belL-embedded if

X** = X @1 Z for some closed subspace of X**.

Corollary 2.3. Let X be a non-null L-embedded Banach space without extreme points.
Then X* (and hence Xhas the Daugavet property
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Proof. We haveX** = X @1 Z for some subspacg. On one hand, sinc&x has no
extreme points and €Bx«) = ex(Bx) | ex(Bz), we have ekBxs) = ex(Bz) and

the Krein—Milman theorem gives us th&t; is w*-dense inBx+. On the other hand,
Goldstine theorem gives us tha8ty is w*-dense inBys. [

It is worth mentioning that it is proved if34] that a Banach spac& such that
X** = X @1 Z with By w*-dense inByx+ satisfies that every weak open subset of
Bx has diameter two. Actually, the proof or Theor@12 has been inspired by the one
given there.

Let us finish the section by showing some immediate consequences of the above result.

Corollary 2.4. If X is an L-embedded space wigx(Bx) = ¥ and YCX is also an
L-embedded spac¢hen (X/Y)* (and henceX/Y) has the Daugavet property

Proof. On one handX/Y is a non-nullL-embedded space H1, Corollary 1V.1.3]
On the other hand21, Propositions IV.1.12 and 1V.1.14jives us that eiByx,y) = 0.
Therefore, Corollary2.3 applies. O

As a particular case of the above corollary we have the following result.

Corollary 2.5. If Y is an L-embedded space which is a subspacd.of= L1[0, 1],
then (L1/Y)* has the Daugavet property. In particulatLy/Y)* has the Daugavet
property for every reflexive subspace Y Igf and so doH* and its predualLl/HOl.

Proof. The spacd.; is anL-embedded space with €;,,) = ¥ and the spacé{& C L
is also anL-embedded space (s§2l, Example IV.1.1]for instance). Then, the result
follows immediately from Corollany2.4. 0O

It is shown in[21, Proposition 1V.2.11}that X/Y fails the RNP whenX is an L-
embedded space with @x) = @ and YCX is also anL-embedded space. On the
other hand, it is proved ifi29, Proposition 3.2}hat L1/X has the Daugavet property
wheneverX is a reflexive subspace df;. The result forH> appeared if42,44]

3. JB*-Triples and preduals of JBW*-triples

We recall that acomplexJ B*-triple is a complex Banach spacé with a continuous
triple product{---} : X x X x X — X which is linear and symmetric in the outer
variables, and conjugate-linear in the middle variable, and satisfies:

(1) For allx in X, the mappingy — {xxy} from X to X is a hermitian operator on
X and has nonnegative spectrum.
(2) The main identity

{ab{xyz}} = {{abx}yz} — {x{bay}z} + {xy{abz}}

holds for alla, b, x, y,z in X.
(3) l{xxx}|| = |Ix||® for everyx in X.
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Concerning Condition (1) above, we also recall that a bounded linear opédrator
a complex Banach spack is said to behermitian if || exp(irT)|| = 1 for everyr
in R. By a complexJBW*-triple we mean a complex B*-triple whose underlying
Banach space is a dual space in metric sense. It is known3pethat every complex
JBW*-triple has a unique predual up to isometric linear isomorphisms and its triple
product is separatelw*-continuous in each variable.

Following [24], we definereal J B*-triples as norm-closed real subtriples of complex
J B*-triples. Here, by asubtriple we mean a subspace which is closed under triple
products of its elements. In particular, compléB*-triples are realJ B*-triples. A
triple ideal of a real or complexJB*-triple X is a subspaceM of X such that
(XXM} +{XMX} C M; if merely {(MXM} C M, then M is called aninner ideal

Real J BW*-triples where first introduced as those reAB*-triples which are dual
Banach spaces in such a way that the triple product becomes separatebntinuous
(see[24, Definition 4.1 and Theorem 4)]Later, it has been shown if86] that the
requirement of separate*-continuity of the triple product is superabundant. We will
apply without notice that the bidual of every real or comple*-triple X is a JBW*-
triple under a suitable triple product which extends the on& df14] for the complex
case and24] for the real case).

Examples of real/ B*-triples are the spaceS(H, K), for arbitrary real, complex,
or quaternionic Hilbert spaced and K, under the triple product

l * *
{xyz} := é(xy 74+ z2y7x).

The above examples become particular cases of those arising by considering either
the so-called complex Cartan factors (regarded as Jédi-triples) or real forms of
complex Cartan factorg33]. We recall thatreal formsof a complex Banach spacé
are defined as the real closed subspaceX¥ of the formX* :={x € X : ©(x) = x},
for some conjugation (i.e., conjugate-linear isometry of period two)XonWe note
that, if X is a complexJ B*-triple, then every real form ofX is a real J B*-triple
(since conjugations orX preserve triple product§31]). Conversely, ifX is a real
J B*-triple, there exist§24, Proposition 2.8k unique complex/ B*-triple structure on
the algebraic complexificatioX & i X (denotedf(\) and a conjugatior on X @ iX
such thatx = X7, i.e., every realJ B*-triple is a real form of its complexification,
which is a complexJ B*-triple.

Let X be a real or complex B*-triple. An elementy € X is said to be aripotent
if {uuu} =u, and it said to be aninimal tripotentif  # 0 and

{xe X : {uxu}=x}=Ru.

In the complex setting, this is equivalent #o# 0 and{uXu} = Cu.

If x is a norm-one element of a real or compléB*-triple X, then the seD(X, x) =
D(X**, x)NX* is a proper closed face @+, and therefore, by Edwards and Rittimann
[16, Lemma 2.1 and Theorem 3,7here is a unique tripotent in X** such that
D(X*™,x) N X* = D(X™,u) N X*. Such a tripotent: is calledthe support ofx in
X** and will be denoted by (X**, x).
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The complex case of the following result is stated[T) Corollary 2.11] the real
case follows from results of6] in an analogous way than the complex version. We
include the proof for the sake of completeness.

Lemma 3.1. Let X be a real or complex B*-triple and let x be inSx. Then X is
Fréchet-smooth at x if and only if(X**, x) lies in X and it is a minimal tripotent
of X

Proof. Recall that the norm of a Banach space is Fréchet-smooth i&tand only
if it is smooth and strongly subdifferentiable at the point ($£8]). Now, the proof
follows from the following facts: the norm ok is strongly subdifferentiable at if
and only if u(X**, x) belongs toX [6, Corollary 2.5] X is smooth atx if and only if
D(X*,x)NX* = {x*} for some extreme point* of Sx», and this is equivalent to the
fact thatu(X**, x) is a minimal tripotent ofX** [39, Lemma 2.7 and Corollary 2,1]
and, finally, a tripotent: € X is a minimal tripotent ofX (if and) only if it is a minimal
tripotent of X** (by the w*-density of X in X** and the separate™*-continuity of the
triple product of X**). O

It is known[4] that the predual of every real or complé®B W*-triple is L-embedded.
Therefore, Corollan?.3 gives us that such a space has the Daugavet property whenever
its unit ball does not have any extreme point. Actually, more can be proved:

Theorem 3.2.Let X be a real or complex BW*-triple and let X, be its predual.
Then the following are equivalent

() X has the Daugavet property
(i) X, has the Daugavet property
(iii) Every relative weak-open subset Bf, has diameter2.
(iv) Bx, has no strongly exposed points
(v) Bx, has no extreme points

Proof. (i) = (ii) is clear. (ii) = (iii) is consequence of40, Lemma 3] (iii) = (iv)
is clear.

(iv) = (v). Of course, it is enough to show that every extreme pointBgf is
actually an strongly exposed point. Indeed, givéne ex(Bx,), [39, Corollary 2.1]
assures the existence of a minimal tripotantf X such thatu(f) = 1, andu is a
point of Fréchet-smoothness of the norm ¥fby Lemmag3.1 Therefore, there is a
point of Fréchet-smoothness, in D(X,, f) and, as we commented in the introduction,
this implies thatf is strongly exposed by (see[13, Corollary 1.1.5] for instance).

(v) = (i). X, is an L-embedded by Becerra et f4, Proposition 2.2Jand Bx, has
no extreme points, so Corolla3.3 applies. [

As an straightforward consequence of the above theorem we obtain the following
result, which states the “extreme” behaviour of the diameters of the weak-open subset
of the unit ball of the predual of d& BW*-triple.
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Corollary 3.3. Let Y be the predual of some real or compl&BW*-triple. Then
either every weak-open subset Bf has diameter2 or By has slices of arbitrary
small diameter

By Corollary 2.1 of[39], a real or complex/ BW*-triple has minimal tripotents if
and only if the unit ball of its predual has extreme points. Therefore, the following
result follows immediately from Theorer®.2

Corollary 3.4, Let X be a real or complex BW*-triple. Then X has the Daugavet
property if and only if it does not have any minimal tripotents

The complex case of the above corollary and the equivalences(ifii) of Theo-
rem 3.2 appear in[37, Theorem 4.7]
As a consequence of Theore®®2 we obtain:

Corollary 3.5. Neither the dual of a real or complekxB*-triple nor a real or complex
J B*-triple which is the bidual of some spadeas the Daugavet property

Proof. On one hand, the dua&™ of a J B*-triple X is also the predual of thé BW*-
triple X** and, as every dual spac8yx+ has extreme points. On the other hand, if
Y = Z** is a JB*-triple, then it is actually a/ BW*-triple whose predual, = Z*
has extreme points in its unit ball.C]

Remark 3.6. It is worth mentioning that, for an arbitrary Banach spacethe absence
of extreme points inBz or the fact that all weak-open subsets Bf have diameter
two, does not necessarily imply tha has the Daugavet property. For instance,
satisfies both assumptions (sfge Lemma 2.2]for instance), but it does not have the
Daugavet property.

On the other hand, assertions (iii), (iv), and (v) of Theorgm are not equivalent
for general Banach spaces. On one hathére exists a Banach space Z whose unit
ball has slices of arbitrary small diametebut it does not have any extreme pofab,
it does not have any strongly exposed ppit5, Proposition 1] On the other hand,
every slice of the unit ball of, has diameteR (and sq it does not have any strongly
exposed point but it is plenty of extreme poin{§t is a dual spacg

If X is a real or complex) BW*-triple, it is well known thatX, = A &1 N, where
A is the closed linear span of the extreme point$3@f, and the unit ball oV has no
extreme points (sefl9] for the complex case anf89] for the real case). Therefore,
X = A®s N, where A = N1 = A* is anatomic J BW*-triple (i.e. it is the weak*-
closed span of its minimal tripotents) and = A+ = N* is a J BW*-triple without
minimal tripotents. With this in mind, the following result is a consequence of Theo-
rem 3.2 and a characterization of the RNP in preduals/@#W*-triples given in[2].

Corollary 3.7. Let X be a real or compled BW*-triple. Then in the natural decom-
position X, = A®1 N, A has the RNP and N has the Daugavet property. Therefore
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the decompositioX = A @ N, A is a w*-Asplund spacdi.e., the dual of a space
having the RNPand N has the Daugavet property

Proof. In the complex case, sinct is the predual of the atomi¢ BW*-triple A, it has
the RNP by Barton and Godefrdg, Theorem 1]and, therefore,A is a w*-Asplund
space. In the real case, we considérthe complexification ofd. On one handA is
a w*-Asplund space by the above. On the other hatigs A, is a (real) subspace of
(A),. and the RNP passes to subspaces.

Since N* = N is a J BW*-triple without minimal tripotents, Corollarg.4 gives us
that A/, and hence its predua/, have the Daugavet property]

Our next aim is to prove a characterization of the Daugavet property for general
J B*-triples. We first prove that the algebraic characterization given in CoroBagy
for JBW*-triples is also valid in the general case, and then we will deduce more
characterizations in terms of the geometry of the norm of the triple.

We need a result about real or compléB*-triples which can be of independent
interest. Previously, we have to recall some known facts abidit-triples.

If X is a real or complex/ B*-triple, X** is a JBW*-triple. Therefore, we can
decomposeX* = (X**), into its atomic and not atomic parts, as we have commented
above, i.e.,.X* = A &1 N where A is the closed linear span of the extreme points of
Bx+, and the unit ball ofN has no extreme points. TheX** = A &, N, where
A = Nt = A* is an atomicJBW*-triple, and N’ = AL = N* is a JBW*-triple
without minimal tripotents. Let us calt 4 (resp.nns) the projection fromX** to A
with kernel A" (resp. to A/ with kernel A), and letJy : X — X** be the natural
inclusion. It is well known thatt 4o Jx : X —> A is an isometric embedding (Gelfand—
Naimark theoren{20]). The next result gives the same fofs o Jx, provided X has
no minimal tripotents.

Theorem 3.8. Let X be a real or compled B*-triple without minimal tripotents. Then
the mappingrp o Jx : X — N is an isometric embedding. Therefpi¢ is a norming
subspace of(*.

Proof. We start by proving the result in the complex case. Kebe a complex/ B*-
triple and let us consider = XN.A, which is clearly a closed ideal of. On one hand,

Y has no minimal tripotents (indeed, if 8 u € Y is a minimal tripotent ofY, then
{uYu} = Cu; sinceY is a triple ideal (and hence an inner ideal), we hgw&u} C Y,

so we obtaif{luXu} = Cu andu is a minimal tripotent ofX, which is impossible). On
the other hand, by Bunce and CI®, Proposition 3.7]Y* has the RNP (i.eY is an
Asplund space) and, i # 0, the norm ofY has points of Fréchet-smoothness. But
the existence of points of Fréchet-smoothness itmplies the existence of minimal
tripotents inY (Lemma3.1), a contradiction. We deduce thétis null and, therefore,
nar o Jx IS injective. Being a triple-homomorphism, it is routine (using axiom (3)) to
show that it is an isometric embedding as desired (actually, in the complex case, the
converse result is also true, sg&l]). Since N’ = AL = N*, it is clear thatN is
norming.
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The proof for the real case is very similar. Xf is a real J B*-triple, we will show
that Y = X Nn.A has no minimal tripotents and that it is an Asplund space, and then
the rest of the above proof works. First, if:8 u € Y is a minimal tripotent, then
{yeY : {uyu} = y} = Ru; sinceY is a inner ideal,{uXu} C Y, so if x € X is
such that{uxu} = x, we obtain thatx € Y, which impliesx € Ru, i.e., u is a minimal
tripotent of X, a contradiction. Second, we consider the complexmcaﬁoof Y, and
we observe that = A N X where X** = A EBoo/\/ is the decomposition into the
atomic and non-atomic pafB9, Theorem 3.6] Therefore,Y is an Asplund spacg9,
Proposition 3.7]and so does its real subspate [

As a consequence of the above result and Thedeinwe obtain that/ B*-triples
without minimal tripotents have the Daugavet property. The complex case of this result
appear in[37, Theorem 4.7with a different proof.

Proposition 3.9. Let X be a real or complex B*-triple. Then X has the Daugavet
property if and only if it has no minimal tripotents

Proof. SupposeX has no minimal tripotents and writ¥* = A @, N. On one hand,
since eXByx+) C Bja, the Krein—Milman theorem gives us thatis a norming subspace

of X*. On the other hand, iX has no minimal tripotents, Theoref8 gives us that

N is also norming. Now, Theorerd.2 gives us thatX has the Daugavet property.
Conversely, ifX has a minimal tripotents, then it has a point of Fréchet-smoothness by
Lemma3.1; but the norm of a Banach space with the Daugavet property is extremely
rough (use Lemma.1(iii)), a contradiction. [

Actually, we can state a characterization of the Daugavet property Brtriples in
terms of the geometry of the norm of the triple.

Theorem 3.10. Let X be a real or compled B*-triple. Then the following are equiv-
alent

(i) X has the Daugavet property
(iiy The norm of X is extremely rough
(i) The norm of X is not Fréchet-smooth at any point

Proof. (i) = (ii). As we commented in the introduction, the norm ¥fis extremely
rough if and only if everyw*-slice of Bx+ has diameter 2, and the latest fact is
consequence of Lemma 1(iii).

(i) = (iii) is clear.

(i) = (i). By Lemma3.1, the norm ofX is Fréchet-smooth at the minimal tripotents,
so we deduce thaX has no minimal tripotents and PropositiB® applies. O

Remark 3.11. It is worth mentioning that the above geometric characterizations are
not valid for arbitrary Banach spaces. For instartbe, norm of¢q is extremely rough
(and so¢; has no points of Fréchet-smoothnessit £, does not have the Daugavet

property.
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Also, the implication (iii) = (ii) of the above theorem is not valid in general.
Indeed,there exists a Banach space whose norm does not have any point of Fréchet
differentiability but it is not rough(see[26, Remark 4, pp. 34]]

To finish the section, let us comment some results ffdinwhich are related to our
development.

Remark 3.12. Let us consider the following conditions for a Banach space

(a) every relative weak-open subset Bf has diameter 2,
(b) the norm ofX is extremely rough.

It is proved in[4, Theorem 2.3]that condition (a) is satisfied whek is a non-
reflexive real or complex/ B*-triple, while our Theorem3.2 says that condition (a)
characterizes the Daugavet property in the class of preduals of real or compI&X-
triples.

With respect to condition (b), it is shown if#, Corollary 2.5]that the predual
of every non-reflexive real or complexBW*-triple satisfies it, while condition (b)
characterizes the Daugavet property for real or compldX-triples (Theoren3.10.

Since a reflexive Banach space never satisfies neither (a) nor (b), the above paragraphs
contains the answer to every question about this conditions in the setting of real or
complex J B*-triples and their isometric preduals.

4. C*-algebras and von Neumann preduals

Despitereal C*-algebrascan be defined by different systems of intrinsic axioms
(see[25] for a summary), we prefer to introduce them as the norm-closed self-adjoint
real subalgebras of comple&*-algebras. Since compleK*-algebras are complex
J B*-triples under the triple product

1 * *
{xyz} == é(xy Z+2zy"x),

certainly real C*-algebras are real B*-triples. The concept of aeal W*-algebra
(real von Neumann algebyawas first defined as a re@l*-algebraA having a com-
plete predualA, such that the product ofA is separatelyw*-continuous, but the
latest condition was shown to be redundan{fdb]. Real W*-algebras are real BW *-
triples.

Therefore, the geometric characterizations given in Theorgradsand 3.10 can be
stated for real or complex*-algebras and preduals &¥*-algebras. The next results
summarize those theorems and also CorollaBi€sand 3.5 in terms of C*-algebras.

Corollary 4.1. Let X be a real or complex*-algebra. Thenthe following are equiv-
alent

(i) X has the Daugavet property



328 J. Becerra Guerrero, M. Martin/Journal of Functional Analysis 224 (2005) 316—337

(i) The norm of X is extremely rough
(i) The norm of X is not Fréchet-smooth at any point

Corollary 4.2. Let X be a real or complex¥*-algebra and letX, be its predual.
Then the following are equivalent

(i) X has the Daugavet property
(i) X, has the Daugavet property
(iiiy Every weak-open subset 8fy, has diameter2.
(iv) Bx, has no strongly exposed points
(v) Bx, has no extreme points

Corollary 4.3. (a) Let X be the predual of some real or complgx‘-algebra. Then
either every weak-open subset B has diameter2 or By has slices of arbitrary
small diameter

(b) Neither the dual of a real or compleX*-algebra nor a real or complex
C*-algebra which is the bidual of some spat¢ms the Daugavet property

The algebraic characterization of the Daugavet property Jir-triples (Proposi-
tion 3.9) is of course valid forC*-algebras, but it could be more convenient to write
it in terms of atomic projections. Let us give the definitions and results.

If X is a real or complexC*-algebra, then: € X is a tripotent if and only if it is a
partial isometry i.e., u satisfies thatiu*u = u. Recall that gorojectionin a C*-algebra
is an elementp € X such thatp* = p and p? = p. It is clear that projections are
partial isometries (and so tripotents), but there are partial isometries which are not
projections. A projectiorp in X is said to beatomicif p # 0 and

(xeX : px*p=x}=Rp,

i.e., p is minimal seen as a tripotent. Therefore, in the complex case this is equivalent
to p #0 and pXp = Cp. The C*-algebraX is said to benon-atomicif it does not
have any atomic projection.

If X has atomic projections, then it clearly has minimal tripotents. Conversely, if
X has a minimal tripotent, say, then the projectiond = u*u (called the domain
projection associated ta) is atomic. Indeed, we take € X such thatdx*d = x.
Then,

u(ux)*u = (wuuw)x*u*u = uw*ux*u*u) = u(dx*d) = ux
S0, sinceu is minimal, ux = Au for somel € R. Then,

Ad = u*(Ju) =u™(ux) = u*(u(dx*d))

=u*((uu*u)x*u*u) = u*ux*u*u = dx*d = x.
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We have shown thaa real or complexC*-algebra has no minimal tripotents if and
only if it is non-atomic So, for C*-algebras, PropositioB.9 can be written in terms
of atomic projections.

Corollary 4.4. (a) A real or complexC*-algebra has the Daugavet property if and
only if it is non-atomic

(b) The predual of a real or compleW*-algebra has the Daugavet property if and
only if the algebra is non-atomic

The complex case of the above result appear@B38 Theorem 2.1]

As a J BW*-triple, every real or compleX¥*-algebraX admits a natural decompo-
sition into the atomic and non-atomic parts which is originated by the natural decom-
position of the preduak,, i.e., X, = A®1 N, where the unit ball ofV does not have
any extreme point, and, is the closed convex hull of the extreme points Bf, .
Thus, X = A @ N, where the subtripled = N+ = A* is norm-generated by the
minimal tripotents ofX, and the subtripleV = AL = N* has no minimal tripotents.
Moreover, A and N are w*-closed subalgebras of, the first one is generated by its
atomic projections and the second one has no atomic projections.

The next results put Corollar$.7 and TheorenB.8 in terms of C*-algebras.

Corollary 4.5. Let X be a real or compleX¥ *-algebra. Thenin the natural decom-
position X, = A®1 N, A has the RNP and N has the Daugavet property. Therefore
the decompositioX = A @ N, A is a w*-Asplund spacdi.e., the dual of a space
having the RNPand A has the Daugavet property

Corollary 4.6. Let X be a real or complex*-algebra without atomic projectionsnd
let X** = A®. N the natural decomposition of its bidual into atomic and non-atomic
parts. Then the decomposition of every € X as x = a™ + n™*, with a** € A,
n** e N satisfies| x|| = ||a**|| = [|n**].
5. The uniform Daugavet property
Following [8], a Banach spac# is said to have theniform Daugavet propertyf

Dx(e) :=inf{n e N : conv,((*(x,¢e)) D Sx Vx € Sx}

is finite for everye > 0, where
IF(x,e):={yeX : llyI<l+e lx+yl>2-¢)

and cony (A) is the set of all convex combination of altpoint collections of elements
of A. By Bilik et al. [8, Remark 6.3] X has the uniform Daugavet property if and
only if

lim Daug,(X,e) =0
n—o0
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for everye > 0, where

Daug, (X, ¢) := sup dist(y, conv, (" (x, £))).

x,yeSx

Since (Lemma2.l) X has the Daugavet property if and only if
By cco({fye X : lyl<l+e lx+yl>2-¢}

for everyx € Sx and everye > 0, the uniform Daugavet property implies the Daugavet
property, and it can be view as a quantitative approach to it.

Examples of spaces satisfying the uniform Daugavet property. gi@ 1] and C(K)
for every perfect compact spaée [8, Section 6] On the other hand, if80] it is shown
an example of a Banach space with the Daugavet property which does not satisfy the
uniform Daugavet property.

The uniform Daugavet property was introduced[& to study when the Daugavet
property passes from a Banach space to its so-called ultrapowers.

Let us recall here the notion of (Banach) ultraprody28y. Let U/ be a free ultrafilter
on a non-empty sef, and let{X;};c; be a family of Banach spaces. We can consider
the £o.-sum of the family,[®;c; Xi]e... together with its closed subspace

Ny = {{xi}iel € [@iciXiley, Ii{{n llx: |l = 0} :

The quotient spacé®;c;X;l¢,, /Ny is called theultraproduct of the family {X;}ic;
relative to the ultrafilteé/, and is denoted byX;);,. Let (x;) stand for the element of
(Xi)y containing a given family{x;} € [®;er Xl . It is easy to check thaf(x;)| =
limg/ ||x;||. Moreover, the ultraproduatX;);; can be seen as a subspace[©Of;)y/]*
by identifying each elementf;) € (X?);; with the (well-defined) functional orX;);,
given by

(xi) — "Lr/n (fitx)) () € (Xi)e)-

If {Y;};c; is another family of Banach spaces and for eaeh/ we take an operator
T; € L(X;, Y;) with sup.; | T;]| < oo, we can define theitraproduct of the family of
operators{7;};c; with respect to the ultrafiltet/, denoted(7;), as

(x;) — (Tix;) ((xi) € (Xu)-
This is a well-defined operator fromX;);; to (¥;)y, with

Tl =|ig1 I 1l
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If all the X; are equal to some Banach spacgethe ultraproduct of the family is called
the U-ultrapower of X and it is usually denoted by;,. For T € L(X), by (T) we
denote the ultraproduct of the familif;};c; whereT; = T for everyi € I.

In [8, Corollary 6.5] it is proved that a Banach spaée has the uniform Daugavet
property if and only if every ultrapoweX;,, U a free ultrafilter onN, has the Daugavet
property, in which cas&;, even has the uniform Daugavet property. Let us comment
that it is routine to prove that a Banach has the (usual) Daugavet property whenever
Xy does,U a free ultrafilter on an arbitrary sdt (we can use Lemma&.1(ii) or,
alternatively, we can prove directly that every rank-one oper&tor L(X) satisfies
(DE) since its ultrapowerT) € L(Xy), which is also a rank-one operator oy,
does). On the other hand, as we have said before, there is a Banach space with the
Daugavet property which does not have the uniform Daugavet prof&dty thus the
Daugavet property does not always pass to ultrapowers.

Our aim in this section is to prove that the Daugavet property and its uniform version
are equivalent for real or complekB*-triples and their isometric preduals. As we said
before, this is true foiC(K) spaces and foL1[0, 1]. These facts were proved {8,
Section 6] where explicit estimations foDc¢)(¢) and Dp,[0,1j(¢) were done. Our
approach is different: we will use Theorer®82 and 3.10to show that, forJ B*-triples
and their isometric preduals, the Daugavet property passes to arbitrary ultrapowers.

Since an ultrapower of d B*-triple is again aJ B*-triple (see[14]), the result for
this class follows immediately from Theore110 and the following lemma, which
can be of independent interest.

Lemma 5.1. Let {X;};c; be a family of Banach spaceld a free ultrafilter of a set ||
and 0 > 0. If the norm of eachX; is o-rough then so does the norm @X;);,.

Proof. Given a norm-one element = (x;) € (X;)yy and a positive numbes < 1,
we have to show that the slic&(Bx,y,1+, (xi), «) of the unit ball of [(X;);/]* has
diameter greater thad. Indeed, we can suppose thiat;|| = 1 for everyi € I and,
since the norm of eaclX; is J-rough, given a family{e;} of positive number with
limy; e; = 0, we can findf;, g; € Sx such that

I fi —gill >0 —¢; and Refi(x;) >1—a, Regi(x;)>1—a.

Now, we consider the elements = (f;) and g = (g;) of the unit ball of (X7);; <
[(X)y1*, and we observe that, on one hand,

1) — (@)l = "ern I fi —&ill=o
and, on the other hand,

Ref(x) = |in}1 fitxi) >1—a, Reg(x) = |ibrp gilxp)) >1—o. O
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By using the above lemma and TheoréhiQ we have thatX;; has the Daugavet
property whenever thd B*-triple X does. But, as we already mentioned, the converse
result is true in general.

Theorem 5.2. Let X be a real or complex B*-triple and leti/ be a free ultrafilter
on a set |. ThenX has the Daugavet property if and only X, does. Thereforethe
Daugavet property and the uniform Daugavet property are equivalent/ ®t-triples.

As a consequence of the above theorem and Propodt®mwe obtain the following
result aboutJ B*-triples.

Corollary 5.3. Let X be a real or complex B*-triple and U/ a free ultrafilter on a
set |. Then X;; has a minimal tripotent if and only if X does

Remark 5.4. It is also true that every ultraproduct dfB*-triples is aJ B*-triple (see
[14]). Then, by using Theore®.10and Lemmaéb.1, we also obtain thahe ultraproduct

of a family of J B*-triples with the Daugavet property also has the Daugavet property
In other words (Propositior3.9), the ultraproduct of a family of/ B*-triples without
minimal tripotents also has no minimal tripotent.

The second part of the present section is devoted to predualB &f*-triples.

Even though the ultrapower of the dual of a Banach space is not, in general, the
dual of the ultrapower of the space (sg2, Section 7}, it can be proved that the
ultrapower of a predual of & BW*-triple is again the predual of someBW*-triple.

In the complex case, the proof is easy to state: the dual of the ultrap&wyeof a
Banach spac& is 1-complemented in another ultrapow@f*), of X* [22], and the
contractive projection theorem applies.

Since we have not find any reference to the above result in the literature, we give a
detailed proof. Actually, a more general result can be state.

Proposition 5.5. Let {X;};c; be a family of Banach spaces such that eachis a
(real or compleX J BW*-triple, and let!/ be a free ultrafilter on I. Then(X;)y, is the
predual of somdreal or complex JBW*-triple.

Proof. We start with the complex case. By Heinrif22, Corollary 7.6] there is another
free ultrafilter3 on an index sel’, such that[(X,-)u]* is isometric to a 1-complemented
subspace of (X)), Which is aJ B*-triple. But 1-complemented subspaces of com-
plex J B*-triples areJ B*-triples (se€[32]).

If each X7 is a real JBW*-triple, then there is a conjugation on eachX; such
that (fi)* is a complexJ BW*-triple and X; = 5(7" [24]. On one hand[(f(?)u]*
a JBW*-triple by the complex case. On the other hand, we consider (1;), the
ultraproduct of the family of the conjugations, and we observe that is a con-
jugation (routine) and tha{(f)u] = (X;)y. Indeed, (x;) € [(5(\)“]1 if and only
if I|mu||r,(x,) —xl|| = 0. Thus, the image of the natural |nclu5|on of;), into
(X )y falls into [(X Ywl®, and it is onto since, for everyx;) € [(X )wult, we have
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F) = @) € Xy = (Xy. Now, the dual of(Xi)y = [(XiyI is a real
form (using t*, which is also a conjugation) of(X;);/]*, and hence it is a real
JBW*-triple. [

With this in mind, the equivalence of the Daugavet property and its uniform version
for preduals of/ BW*-triples is a consequence of Theor&h2

Theorem 5.6. Let X be a real or comple¥ BW*-triple and leti/ be a free ultrafilter

on a set I. ThenX, has the Daugavet property if and only (iX.);, does. Therefore

the Daugavet property and the uniform Daugavet property are equivalent for preduals
of JBW*-triples.

In the proof we will use the following easy fact: if is a Banach space arii C Y*
is a norming subspace, then for every strongly exposed poiatSy, the exposing
functional belong taZ. Observe that this is the case of the ultraproduct of the duals of a
family of Banach space seen as a norm-closed subspace of the dual of the ultraproduct
of the spaces.

Proof of Theorem 5.6. We only have to show thatX,);; has the Daugavet property
wheneverX, does. Since(X,);, is the predual of some BW*-triple, it suffices to
show that its unit ball has no strongly exposed points (TheoB2n Therefore, we
suppose, for the sake of contradiction, that the unit ball(®f);; has a strongly
exposed point, sayx;). By the preceding remark, there exisig;) in the unit sphere
of (X)y; (which we can suppose to satisfyp;|| = 1 for everyi) which strongly
expose(x;). Let us fix O< g9 < 1. Now, for everya > 0, sinceX, has the Daugavet
property, we can apply Lemma.1(ii) to get, for everyi € I, a pointy; € Sx,
such that

lxi —yil >2—e  and Rep; (yi) > 1—a/2.
Now, (y;) belong to the unit ball of X,),
(i) — o)ll = “zT xi —yill 22— eo0

and
Re(p)[(yi)] = ”{{n ¢;(yi) >1—o.

Sincew is arbitrary, we conclude that every slice of the unit ball(&f,);, defined by
(¢;) has diameter greater or equal than-2¢ (recall that Re&¢;)[(x;)] = 1). Hence,
(¢;) does not strongly exposg;), a contradiction. [J

As a consequence of the above theorem and The@&@mwe obtain the following.
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Corollary 5.7. Let X be a real or compled BW*-triple and letl/ be a free ultrafilter
on a set I. Thenthe unit ball of (X,);; have extreme points if and only Ky, does

As a consequence of TheorerB2, 5.2 and 5.6, we obtain

Corollary 5.8. Let X, be the predual of a real or complekxB W*-triple X. Then X,
has the uniform Daugavet property if and only if X does

It is worth mentioning that it is not known whether the uniform Daugavet property
passes from the dual of a Banach space to the space.

Remark 5.9. The proof of Theorenb.6 can be straightforwardly adapted to show that
the ultraproduct of a family of preduals of BW*-triples with the Daugavet property
also has the Daugavet propertyherefore, Corollarn.7 can be also adapted to show
that the unit ball of the ultraproduct of a family of preduals &BW*-triples has no
extreme pointsprovided that the unit ball of each factor does not have any extreme
point.

It is worth mentioning that Corollar$.7 cannot be stated for general Banach spaces,
as the following example shows.

Example 5.10. There exists a Banach spacé whose unit ball does not have any
extreme point and a free ultrafiltéd on N such that the unit ball ofX;; has an
extreme poinf23, Example 2.14]

Let us comment a particular case in which the conclusion of CoroBarycan be
easily stated.

Remark 5.11. Let X be a Banach space. Suppose that there e&ist® such that for
everyx € Sy, there isy € X with | y||>0 such that||x 4+ y||<1 (in particular, Bx
has no extreme pointsThen for every free ultrafilter/ on a set ] the unit ball of
Xy, does not have any extreme poiiideed, let(x;) be a norm-one element ofy,,
which we can suppose to satisfy;|| = 1 for everyi. Then, for everyi € I, take
y; € X with |ly;|| =0 and ||x; £ y;||<1. If we consider(y;) € Xy, then

Iollzo  and  [[(x) £ ()II<L

Therefore,(x;) is not an extreme point of the unit ball of;,.
It is easy to show that the above situation is fulfilled by{0O, 1] with § = 1.
Example 5.12.For every f € L1[0, 1] with | f]l1 = 1, there isg € L1[0, 1] with

llgllr = 1 and such that| f + g||1 = 1. Indeed, up to an isometric isomorphism, we
can supposef (1) >0 for everyt € [0, 1] and, by continuity, we can findy €]0, 1[
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fo 1 1
/ f(rydt = / f@yde ==
0 10 2

Then, if we consideg = f (%10, — X117 € L1l0, 1], we clearly have|g|ls = 1 and

such that

10 1
||f:|:g||1=f0 (f(f)if(f))dl-l-/ (f @) F f(0)dt
fo

(1 n 1 N 1 1\ 1
“\2¥2)"\2F2) 7~
Actually, a very similar result (with) arbitrarily closed to 1) can be stated for every
L1(w) if u does not have any atom.

For the sake of completeness, we finish the paper by summarizing the results of the
present section in terms @f*-algebras and preduals &F*-algebras.

Corollary 5.13. (a) The ultraproduct of every family of real or compléx‘-algebras
with the Daugavet property also has the Daugavet property. In partictier Daugavet
and the uniform Daugavet property are equivalent for real or comgléxalgebras

(b) The ultrapower of a real or compleg*-algebra has atomic projections if and
only if the algebra does

(c) The ultraproduct of every family of preduals of real or complgx-algebras with
the Daugavet property also has the Daugavet property. In particulae Daugavet
and the uniform Daugavet property are equivalent for preduals of real or complex
W*-algebras

(d) Let X, be the predual of a real or compleW*-algebra X. Then X, has the
uniform Daugavet property if and only if X does

(e) Let Y be the predual of a real or compléX*-algebra. Then By has an extreme
point if and only if the unit ball of every ultrapower of Y does
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