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1. Introduction

A Banach spaceX is said to have theDaugavet property[29] if every rank-one
operatorT : X −→ X satisfies the norm identity

‖Id + T ‖ = 1+ ‖T ‖, (DE)

known asDaugavet equation. In such a case, all weakly compact operators onX also
satisfy (DE) (see[29, Theorem 2.3]). Therefore, this definition of Daugavet property
coincides with those that appeared in[11,1].

The study of the Daugavet equation was inaugurated by Daugavet[12] in 1961
by proving that every compact operator onC[0,1] satisfies (DE). Over the years,
the validity of the Daugavet equation was proved for compact operators on various
spaces, includingC(K) and L1(�) provided thatK is perfect and� does not have
any atoms (see[41] for an elementary approach), and certain function algebras such
as the disk algebraA(D) or the algebra of bounded analytic functionsH∞ [42,44]. In
the 1990s, new ideas were infused into the field and the geometry of Banach spaces
having Daugavet property was studied. The state-of-the-art on the subject can be found
in [29,43]. For very recent results we refer the reader to[8,28,30] and references
therein.

Let us mention here several facts concerning the Daugavet property which are relevant
to our discussion. It is clear thatX has the Daugavet property whenever its topological
dual X∗ does, but the converse result is false (X = C[0,1], for instance). It is known
that a space with the Daugavet property cannot have the Radon–Nikodým property
(RNP in short)[44]; even more, every weakly open subset of its unit ball has diameter
2 [40]. A space with the Daugavet property contains a copy of�1 [29], it does not
have an unconditional basis[27] and it does not even embed into a space with an
unconditional basis[29].

In 2002, Oikhberg[38] carried the classical results on the Daugavet property for
C(K) and L1(�) to the non-commutative case, characterizing when (complex)
C∗-algebras and preduals of von Neumann algebras have the Daugavet property. A
C∗-algebra has the Daugavet property if and only if it does not have atomic projections;
if the algebra is a von Neumann algebra (i.e., it is a dual space), its (unique) isometric
predual has the Daugavet property if and only if the algebra does. In 2004, Oikhberg
and the second named author[37], translated these results to the non-associative case,
characterizing (complex)JB∗-triples and predual of (complex)JBW ∗-triples having
the Daugavet property in an analogous way, replacing atomic projections by minimal
tripotents. The necessary definitions and basic results onJB∗-triples are presented in
Section3.

In the present paper we give geometric characterizations of the Daugavet property in
the setting of real and complexJB∗-triples and their isometric preduals. In particular,
our results contain the already mentioned ones of[37,38] for complexC∗-algebras and
complexJB∗-triples, but our proofs are independent.

To state the main results of the paper we need to fix notation and recall some
definitions.
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Let X be a Banach space. The symbolsBX and SX denote, respectively, the closed
unit ball and the unit sphere ofX. Let us fix u in SX. We define the setD(X, u) of
all statesof X relative tou by

D(X, u) := {f ∈ BX∗ : f (u) = 1},

which is a non-emptyw∗-closed face ofBX∗ . The norm ofX is said to besmooth
at u if D(X, u) reduces to a singleton, and it is said to beFréchet-smoothor Fréchet
differentiableat u ∈ SX whenever there exists lim

�→0

‖u+�x‖−1
� uniformly for x ∈ BX. We

define theroughness ofX at u by the equality

�(X, u) := lim sup
‖h‖→0

‖u+ h‖ + ‖u− h‖ − 2

‖h‖ .

We remark that the absence of roughness ofX at u (i.e., �(X, u) = 0) is nothing
other than the Fréchet-smoothness of the norm ofX at u [13, Lemma I.1.3]. Given
� > 0, the Banach spaceX is said to be�-rough if, for every u in SX, we have
�(X, u)��. We say thatX is rough whenever it is�-rough for some� > 0, and
extremely roughwhenever it is 2-rough. Roughly speaking, the spaceX is rough if its
norm is “uniformly” non-differentiable at any point. Aslice of BX is a subset of the
form

S(BX, f, �) = {x ∈ BX : Ref (x) > 1− �},

wheref ∈ SX∗ and 0< � < 1. If X is a dual space andf is actually taken from the
predual, we say thatS(BX, f, �) is aw∗-slice. By Deville et al.[13, Proposition I.1.11],
the norm ofX is �-rough if and only if every nonemptyw∗-slice of BX∗ has diameter
greater or equal than�.

Finally, a point x ∈ SX is said to be anstrongly exposed pointif there exists
f ∈ D(X, x) such that lim‖xn − x‖ = 0 for every sequence(xn) of elements ofBX

such that lim Ref (xn) = 1 (equivalently, there are slices defined byf with arbitrary
small diameter). It is known thatx is strongly exposed if and only if there is a point
of Fréchet-smoothness inD(X, x) (see[13, Corollary I.1.5]).

The main results of the paper are the characterizations of the Daugavet property for
JB∗-triples and preduals ofJBW ∗-triples given in Theorems3.10and3.2, respectively.
For a real or complexJB∗-triple X, the following are equivalent:

(i) X has the Daugavet property,
(ii) the norm ofX is extremely rough,

(iii) the norm of X is not Fréchet-smooth at any point.

For the predualX∗ of a real or complexJBW ∗-triple X, the following are equivalent:

(i) X has the Daugavet property,
(ii) X∗ has the Daugavet property,
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(iii) every relative weak-open subset ofBX∗ has diameter 2,
(iv) BX∗ has no strongly exposed points,
(v) BX∗ has no extreme points.

This characterizations allow us to prove that, forJB∗-triples and for preduals ofJBW ∗-
triples, the Daugavet property passes to ultrapowers. As a consequence, a stronger ver-
sion of the Daugavet property introduced in[8], called the uniform Daugavet property,
is equivalent to the usual Daugavet property in the setting ofJB∗-triples and their
isometric preduals.

The outline of the paper is as follows. In Section 2, we give sufficient conditions
for a Banach space to have the Daugavet property, which will be the keys to state the
rest of the paper.

Section 3 is devoted to the above cited characterizations of the Daugavet property for
real or complexJB∗-triples and their isometric preduals, and we dedicate Section 4
to particularize these result to the setting of real or complexC∗-algebras and von
Neumann preduals.

Finally, in Section 5 we study the behaviour of the Daugavet property for ultraprod-
ucts ofJB∗-triples and of preduals ofJBW ∗-triples. As a consequence, we show that
the already mentioned uniform Daugavet property and the Daugavet property coincide
in real or complexJB∗-triples and their isometric preduals.

Throughout the paper, for a subsetA of a Banach space, we writeco(A) for the
closed convex hull ofA, we use ex(B) to denote the set of extreme points of the convex
set B and, finally, if X and Y are Banach spaces, we writeX ⊕1 Y and X ⊕∞ Y to
denote, respectively, the�1-sum and the�∞-sum ofX and Y .

2. Sufficient conditions for the Daugavet property

For a better comprehension of the geometry underlying the Daugavet property, we
present the following characterization from[29, Lemma 2.1; 43, Corollary 2.3]. We
shall have occasion to use it throughout the paper.

Lemma 2.1. The following assertions are equivalent:

(i) X has the Daugavet property.
(ii) For all x ∈ SX, x∗ ∈ SX∗ , and ε > 0, there exists somey ∈ SX such that

Rex∗(y) > 1− ε and ‖x + y‖ > 2− ε.
(iii) For all x ∈ SX, x∗ ∈ SX∗ , and ε > 0, there exists somey∗ ∈ SX such that

Rey∗(x) > 1− ε and ‖x∗ + y∗‖ > 2− ε.
(iv) For all x ∈ SX and ε > 0,

BX ⊂ co({y ∈ X : ‖y‖�1+ ε, ‖x + y‖ > 2− ε}).

Observe that condition (ii) in the above lemma implies that every weak slice of
the unit ball of a Banach spaceX with the Daugavet property has diameter 2. Also,
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condition (iii) implies that everyw∗-slice of the unit ball ofX∗ has diameter 2, thus
the norm of the space is extremely rough.

The next result is a sufficient condition for a Banach space to have the Daugavet
property which will be crucial in the rest of the paper. Recall that a closed subspace
Z of the dual of a Banach spaceX is callednormingwhenever

‖x‖ = sup{|z∗(x)| : z∗ ∈ Z, ‖z∗‖ = 1}

for every x ∈ X. This condition is clearly equivalent toBZ be w∗-dense inBX∗ .

Theorem 2.2. Let X be a Banach space such that there are two norming subspaces Y
and Z ofX∗ such thatX∗ = Y ⊕1 Z. Then, X has the Daugavet property.

Proof. We fix x0 ∈ SX, f0 ∈ SX∗ and ε > 0. We writef0 = y0+ z0 such thaty0 ∈ Y ,
z0 ∈ Z, ‖f0‖ = ‖y0‖ + ‖z0‖, and

U = {x∗ ∈ BX∗ : Rex∗(x0) > 1− ε},

a w∗-open slice ofBX∗ . Since BZ is w∗-dense inBX∗ , we may find z ∈ Z ∩ U .
Observe that, trivially,‖z‖ > 1− ε. Now, sinceBY is w∗-dense inBX∗ , we may find
a net (y�) in BY which is w∗-convergent toz. Since z ∈ U , we may suppose that
y� ∈ U for every �. On the other hand, since(y� + y0) −→ z + y0 and the norm is
w∗-lower semi-continuous, we have

lim inf ‖y� + y0‖�‖z+ y0‖ = ‖z‖ + ‖y0‖ > 1+ ‖y0‖ − ε

and we may find� such that

‖y� + y0‖�1+ ‖y0‖ − ε/2.

To finish the proof, we just observe that

‖f0 + y�‖ = ‖(y0 + y�)+ z0‖
= ‖y0 + y�‖ + ‖z0‖ > 1+ ‖y0‖ − ε + ‖z0‖ = 2− ε,

and that Rey�(x0) > 1− ε sincey� ∈ U , and we use Lemma2.1(iii). �

Just remembering Goldstine and Krein–Milman theorems, we obtain the following
useful particular case. Recall that a Banach spaceX is said to beL-embedded if
X∗∗ = X ⊕1 Z for some closed subspaceZ of X∗∗.

Corollary 2.3. Let X be a non-null L-embedded Banach space without extreme points.
Then, X∗ (and hence X) has the Daugavet property.
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Proof. We haveX∗∗ = X ⊕1 Z for some subspaceZ. On one hand, sinceBX has no
extreme points and ex(BX∗∗) = ex(BX)

⋃
ex(BZ), we have ex(BX∗∗) = ex(BZ) and

the Krein–Milman theorem gives us thatBZ is w∗-dense inBX∗∗ . On the other hand,
Goldstine theorem gives us thatBX is w∗-dense inBX∗∗ . �

It is worth mentioning that it is proved in[34] that a Banach spaceX such that
X∗∗ = X ⊕1 Z with BZ w∗-dense inBX∗∗ satisfies that every weak open subset of
BX has diameter two. Actually, the proof or Theorem2.2 has been inspired by the one
given there.

Let us finish the section by showing some immediate consequences of the above result.

Corollary 2.4. If X is an L-embedded space withex(BX) = ∅ and Y�X is also an
L-embedded space, then (X/Y )∗ (and henceX/Y ) has the Daugavet property.

Proof. On one handX/Y is a non-nullL-embedded space by[21, Corollary IV.1.3].
On the other hand,[21, Propositions IV.1.12 and IV.1.14]gives us that ex(BX/Y ) = ∅.
Therefore, Corollary2.3 applies. �

As a particular case of the above corollary we have the following result.

Corollary 2.5. If Y is an L-embedded space which is a subspace ofL1 ≡ L1[0,1],
then (L1/Y )∗ has the Daugavet property. In particular, (L1/Y )∗ has the Daugavet
property for every reflexive subspace Y ofL1 and so doH∞ and its predualL1/H

1
0 .

Proof. The spaceL1 is anL-embedded space with ex(BL1) = ∅ and the spaceH 1
0 ⊂ L1

is also anL-embedded space (see[21, Example IV.1.1]for instance). Then, the result
follows immediately from Corollary2.4. �

It is shown in [21, Proposition IV.2.11]that X/Y fails the RNP whenX is an L-
embedded space with ex(BX) = ∅ and Y�X is also anL-embedded space. On the
other hand, it is proved in[29, Proposition 3.2]that L1/X has the Daugavet property
wheneverX is a reflexive subspace ofL1. The result forH∞ appeared in[42,44].

3. JB∗-Triples and preduals of JBW ∗-triples

We recall that acomplexJB∗-triple is a complex Banach spaceX with a continuous
triple product {· · ·} : X × X × X −→ X which is linear and symmetric in the outer
variables, and conjugate-linear in the middle variable, and satisfies:

(1) For all x in X, the mappingy �−→ {xxy} from X to X is a hermitian operator on
X and has nonnegative spectrum.

(2) Themain identity

{ab{xyz}} = {{abx}yz} − {x{bay}z} + {xy{abz}}
holds for all a, b, x, y, z in X.

(3) ‖{xxx}‖ = ‖x‖3 for every x in X.
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Concerning Condition (1) above, we also recall that a bounded linear operatorT on
a complex Banach spaceX is said to behermitian if ‖exp(irT )‖ = 1 for every r

in R. By a complexJBW ∗-triple we mean a complexJB∗-triple whose underlying
Banach space is a dual space in metric sense. It is known (see[3]) that every complex
JBW ∗-triple has a unique predual up to isometric linear isomorphisms and its triple
product is separatelyw∗-continuous in each variable.

Following [24], we definereal JB∗-triples as norm-closed real subtriples of complex
JB∗-triples. Here, by asubtriple we mean a subspace which is closed under triple
products of its elements. In particular, complexJB∗-triples are realJB∗-triples. A
triple ideal of a real or complexJB∗-triple X is a subspaceM of X such that
{XXM} + {XMX} ⊆ M; if merely {MXM} ⊆ M, thenM is called aninner ideal.
Real JBW ∗-triples where first introduced as those realJB∗-triples which are dual

Banach spaces in such a way that the triple product becomes separatelyw∗-continuous
(see[24, Definition 4.1 and Theorem 4.4]). Later, it has been shown in[36] that the
requirement of separatew∗-continuity of the triple product is superabundant. We will
apply without notice that the bidual of every real or complexJB∗-triple X is a JBW ∗-
triple under a suitable triple product which extends the one ofX ([14] for the complex
case and[24] for the real case).

Examples of realJB∗-triples are the spacesL(H,K), for arbitrary real, complex,
or quaternionic Hilbert spacesH andK, under the triple product

{xyz} := 1

2
(xy∗z+ zy∗x).

The above examples become particular cases of those arising by considering either
the so-called complex Cartan factors (regarded as realJB∗-triples) or real forms of
complex Cartan factors[33]. We recall thatreal formsof a complex Banach spaceX
are defined as the real closed subspaces ofX of the formX� := {x ∈ X : �(x) = x},
for some conjugation (i.e., conjugate-linear isometry of period two) onX. We note
that, if X is a complexJB∗-triple, then every real form ofX is a real JB∗-triple
(since conjugations onX preserve triple products[31]). Conversely, ifX is a real
JB∗-triple, there exists[24, Proposition 2.8]a unique complexJB∗-triple structure on

the algebraic complexificationX ⊕ iX (denotedX̂) and a conjugation� on X ⊕ iX

such thatX = X̂�, i.e., every realJB∗-triple is a real form of its complexification,
which is a complexJB∗-triple.

Let X be a real or complexJB∗-triple. An elementu ∈ X is said to be atripotent
if {uuu} = u, and it said to be aminimal tripotent if u �= 0 and

{x ∈ X : {uxu} = x} = Ru.

In the complex setting, this is equivalent tou �= 0 and {uXu} = Cu.
If x is a norm-one element of a real or complexJB∗-triple X, then the setD(X, x) =

D(X∗∗, x)∩X∗ is a proper closed face ofBX∗ , and therefore, by Edwards and Rüttimann
[16, Lemma 2.1 and Theorem 3.7], there is a unique tripotentu in X∗∗ such that
D(X∗∗, x) ∩ X∗ = D(X∗∗, u) ∩ X∗. Such a tripotentu is called the support ofx in
X∗∗, and will be denoted byu(X∗∗, x).
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The complex case of the following result is stated in[7, Corollary 2.11]; the real
case follows from results on[6] in an analogous way than the complex version. We
include the proof for the sake of completeness.

Lemma 3.1. Let X be a real or complexJB∗-triple and let x be inSX. Then, X is
Fréchet-smooth at x if and only ifu(X∗∗, x) lies in X and it is a minimal tripotent
of X.

Proof. Recall that the norm of a Banach space is Fréchet-smooth atx if and only
if it is smooth and strongly subdifferentiable at the point (see[18]). Now, the proof
follows from the following facts: the norm ofX is strongly subdifferentiable atx if
and only if u(X∗∗, x) belongs toX [6, Corollary 2.5]; X is smooth atx if and only if
D(X∗∗, x)∩X∗ = {x∗} for some extreme pointx∗ of SX∗ , and this is equivalent to the
fact thatu(X∗∗, x) is a minimal tripotent ofX∗∗ [39, Lemma 2.7 and Corollary 2.1];
and, finally, a tripotentu ∈ X is a minimal tripotent ofX (if and) only if it is a minimal
tripotent ofX∗∗ (by thew∗-density ofX in X∗∗ and the separatew∗-continuity of the
triple product ofX∗∗). �

It is known[4] that the predual of every real or complexJBW ∗-triple isL-embedded.
Therefore, Corollary2.3 gives us that such a space has the Daugavet property whenever
its unit ball does not have any extreme point. Actually, more can be proved:

Theorem 3.2. Let X be a real or complexJBW ∗-triple and let X∗ be its predual.
Then, the following are equivalent:

(i) X has the Daugavet property.
(ii) X∗ has the Daugavet property.

(iii) Every relative weak-open subset ofBX∗ has diameter2.
(iv) BX∗ has no strongly exposed points.
(v) BX∗ has no extreme points.

Proof. (i) ⇒ (ii) is clear. (ii) ⇒ (iii) is consequence of[40, Lemma 3]. (iii) ⇒ (iv)
is clear.

(iv) ⇒ (v). Of course, it is enough to show that every extreme point ofBX∗ is
actually an strongly exposed point. Indeed, givenf ∈ ex(BX∗), [39, Corollary 2.1]
assures the existence of a minimal tripotentu of X such thatu(f ) = 1, andu is a
point of Fréchet-smoothness of the norm ofX by Lemma3.1. Therefore, there is a
point of Fréchet-smoothness,u, in D(X∗, f ) and, as we commented in the introduction,
this implies thatf is strongly exposed byu (see[13, Corollary I.1.5], for instance).

(v) ⇒ (i). X∗ is an L-embedded by Becerra et al.[4, Proposition 2.2]andBX∗ has
no extreme points, so Corollary2.3 applies. �

As an straightforward consequence of the above theorem we obtain the following
result, which states the “extreme” behaviour of the diameters of the weak-open subset
of the unit ball of the predual of aJBW ∗-triple.
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Corollary 3.3. Let Y be the predual of some real or complexJBW ∗-triple. Then,
either every weak-open subset ofBY has diameter2 or BY has slices of arbitrary
small diameter.

By Corollary 2.1 of [39], a real or complexJBW ∗-triple has minimal tripotents if
and only if the unit ball of its predual has extreme points. Therefore, the following
result follows immediately from Theorem3.2.

Corollary 3.4. Let X be a real or complexJBW ∗-triple. Then, X has the Daugavet
property if and only if it does not have any minimal tripotents.

The complex case of the above corollary and the equivalence (i)⇔ (ii) of Theo-
rem 3.2 appear in[37, Theorem 4.7].

As a consequence of Theorem3.2 we obtain:

Corollary 3.5. Neither the dual of a real or complexJB∗-triple nor a real or complex
JB∗-triple which is the bidual of some space, has the Daugavet property.

Proof. On one hand, the dualX∗ of a JB∗-triple X is also the predual of theJBW ∗-
triple X∗∗ and, as every dual space,BX∗ has extreme points. On the other hand, if
Y = Z∗∗ is a JB∗-triple, then it is actually aJBW ∗-triple whose predualY∗ = Z∗
has extreme points in its unit ball.�

Remark 3.6. It is worth mentioning that, for an arbitrary Banach spaceZ, the absence
of extreme points inBZ or the fact that all weak-open subsets ofBZ have diameter
two, does not necessarily imply thatZ has the Daugavet property. For instance,c0
satisfies both assumptions (see[5, Lemma 2.2]for instance), but it does not have the
Daugavet property.

On the other hand, assertions (iii), (iv), and (v) of Theorem3.2 are not equivalent
for general Banach spaces. On one hand,there exists a Banach space Z whose unit
ball has slices of arbitrary small diameter, but it does not have any extreme point(so,
it does not have any strongly exposed point) [15, Proposition 1]. On the other hand,
every slice of the unit ball of�∞ has diameter2 (and so, it does not have any strongly
exposed point), but it is plenty of extreme points(it is a dual space).

If X is a real or complexJBW ∗-triple, it is well known thatX∗ = A⊕1 N , where
A is the closed linear span of the extreme points ofBX∗ , and the unit ball ofN has no
extreme points (see[19] for the complex case and[39] for the real case). Therefore,
X = A⊕∞ N , whereA = N⊥ ≡ A∗ is an atomic JBW ∗-triple (i.e. it is the weak*-
closed span of its minimal tripotents) andN = A⊥ ≡ N∗ is a JBW ∗-triple without
minimal tripotents. With this in mind, the following result is a consequence of Theo-
rem 3.2 and a characterization of the RNP in preduals ofJBW ∗-triples given in[2].

Corollary 3.7. Let X be a real or complexJBW ∗-triple. Then, in the natural decom-
positionX∗ = A⊕1N , A has the RNP and N has the Daugavet property. Therefore, in



J. Becerra Guerrero, M. Martín / Journal of Functional Analysis 224 (2005) 316–337 325

the decompositionX = A⊕∞ N , A is a w∗-Asplund space(i.e., the dual of a space
having the RNP) andN has the Daugavet property.

Proof. In the complex case, sinceA is the predual of the atomicJBW ∗-triple A, it has
the RNP by Barton and Godefroy[2, Theorem 1]and, therefore,A is a w∗-Asplund
space. In the real case, we considerÂ, the complexification ofA. On one hand,̂A is
a w∗-Asplund space by the above. On the other hand,A ≡ A∗ is a (real) subspace of(Â )

∗, and the RNP passes to subspaces.
SinceN∗ = N is a JBW ∗-triple without minimal tripotents, Corollary3.4 gives us

that N , and hence its predualN , have the Daugavet property.�

Our next aim is to prove a characterization of the Daugavet property for general
JB∗-triples. We first prove that the algebraic characterization given in Corollary3.4
for JBW ∗-triples is also valid in the general case, and then we will deduce more
characterizations in terms of the geometry of the norm of the triple.

We need a result about real or complexJB∗-triples which can be of independent
interest. Previously, we have to recall some known facts aboutJB∗-triples.

If X is a real or complexJB∗-triple, X∗∗ is a JBW ∗-triple. Therefore, we can
decomposeX∗ = (X∗∗)∗ into its atomic and not atomic parts, as we have commented
above, i.e.,X∗ = A⊕1 N whereA is the closed linear span of the extreme points of
BX∗ , and the unit ball ofN has no extreme points. Then,X∗∗ = A ⊕∞ N , where
A = N⊥ ≡ A∗ is an atomicJBW ∗-triple, and N = A⊥ ≡ N∗ is a JBW ∗-triple
without minimal tripotents. Let us call�A (resp.�N ) the projection fromX∗∗ to A
with kernel N (resp. toN with kernel A), and let JX : X −→ X∗∗ be the natural
inclusion. It is well known that�A◦JX : X −→ A is an isometric embedding (Gelfand–
Naimark theorem[20]). The next result gives the same for�N ◦ JX, providedX has
no minimal tripotents.

Theorem 3.8. Let X be a real or complexJB∗-triple without minimal tripotents. Then,
the mapping�N ◦JX : X −→ N is an isometric embedding. Therefore, N is a norming
subspace ofX∗.

Proof. We start by proving the result in the complex case. LetX be a complexJB∗-
triple and let us considerY = X∩A, which is clearly a closed ideal ofX. On one hand,
Y has no minimal tripotents (indeed, if 0�= u ∈ Y is a minimal tripotent ofY , then
{uYu} = Cu; sinceY is a triple ideal (and hence an inner ideal), we have{uXu} ⊂ Y ,
so we obtain{uXu} = Cu andu is a minimal tripotent ofX, which is impossible). On
the other hand, by Bunce and Chu[9, Proposition 3.7]Y ∗ has the RNP (i.e.Y is an
Asplund space) and, ifY �= 0, the norm ofY has points of Fréchet-smoothness. But
the existence of points of Fréchet-smoothness inY implies the existence of minimal
tripotents inY (Lemma3.1), a contradiction. We deduce thatY is null and, therefore,
�N ◦ JX is injective. Being a triple-homomorphism, it is routine (using axiom (3)) to
show that it is an isometric embedding as desired (actually, in the complex case, the
converse result is also true, see[31]). Since N = A⊥ ≡ N∗, it is clear thatN is
norming.
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The proof for the real case is very similar. IfX is a realJB∗-triple, we will show
that Y = X ∩ A has no minimal tripotents and that it is an Asplund space, and then
the rest of the above proof works. First, if 0�= u ∈ Y is a minimal tripotent, then
{y ∈ Y : {uyu} = y} = Ru; since Y is a inner ideal,{uXu} ⊆ Y , so if x ∈ X is
such that{uxu} = x, we obtain thatx ∈ Y , which impliesx ∈ Ru, i.e., u is a minimal
tripotent ofX, a contradiction. Second, we consider the complexificationŶ of Y , and
we observe that̂Y = Â ∩ X̂ , whereX̂∗∗ = Â ⊕∞ N̂ is the decomposition into the
atomic and non-atomic part[39, Theorem 3.6]. Therefore,Ŷ is an Asplund space[9,
Proposition 3.7]and so does its real subspaceY . �

As a consequence of the above result and Theorem2.2, we obtain thatJB∗-triples
without minimal tripotents have the Daugavet property. The complex case of this result
appear in[37, Theorem 4.7]with a different proof.

Proposition 3.9. Let X be a real or complexJB∗-triple. Then, X has the Daugavet
property if and only if it has no minimal tripotents.

Proof. SupposeX has no minimal tripotents and writeX∗ = A ⊕1 N . On one hand,
since ex(BX∗) ⊆ BA, the Krein–Milman theorem gives us thatA is a norming subspace
of X∗. On the other hand, ifX has no minimal tripotents, Theorem3.8 gives us that
N is also norming. Now, Theorem2.2 gives us thatX has the Daugavet property.
Conversely, ifX has a minimal tripotents, then it has a point of Fréchet-smoothness by
Lemma3.1; but the norm of a Banach space with the Daugavet property is extremely
rough (use Lemma2.1(iii)), a contradiction. �

Actually, we can state a characterization of the Daugavet property forJB∗-triples in
terms of the geometry of the norm of the triple.

Theorem 3.10.Let X be a real or complexJB∗-triple. Then, the following are equiv-
alent:

(i) X has the Daugavet property.
(ii) The norm of X is extremely rough.

(iii) The norm of X is not Fréchet-smooth at any point.

Proof. (i) ⇒ (ii). As we commented in the introduction, the norm ofX is extremely
rough if and only if everyw∗-slice of BX∗ has diameter 2, and the latest fact is
consequence of Lemma2.1(iii).

(ii) ⇒ (iii) is clear.
(iii) ⇒ (i). By Lemma3.1, the norm ofX is Fréchet-smooth at the minimal tripotents,

so we deduce thatX has no minimal tripotents and Proposition3.9 applies. �

Remark 3.11. It is worth mentioning that the above geometric characterizations are
not valid for arbitrary Banach spaces. For instance,the norm of�1 is extremely rough
(and so�1 has no points of Fréchet-smoothness) but �1 does not have the Daugavet
property.
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Also, the implication (iii) ⇒ (ii) of the above theorem is not valid in general.
Indeed,there exists a Banach space whose norm does not have any point of Fréchet
differentiability but it is not rough(see[26, Remark 4, pp. 341]).

To finish the section, let us comment some results from[4] which are related to our
development.

Remark 3.12. Let us consider the following conditions for a Banach spaceX:

(a) every relative weak-open subset ofBX has diameter 2,
(b) the norm ofX is extremely rough.

It is proved in [4, Theorem 2.3]that condition (a) is satisfied whenX is a non-
reflexive real or complexJB∗-triple, while our Theorem3.2 says that condition (a)
characterizes the Daugavet property in the class of preduals of real or complexJBW ∗-
triples.

With respect to condition (b), it is shown in[4, Corollary 2.5] that the predual
of every non-reflexive real or complexJBW ∗-triple satisfies it, while condition (b)
characterizes the Daugavet property for real or complexJB∗-triples (Theorem3.10).

Since a reflexive Banach space never satisfies neither (a) nor (b), the above paragraphs
contains the answer to every question about this conditions in the setting of real or
complexJB∗-triples and their isometric preduals.

4. C∗-algebras and von Neumann preduals

Despite real C∗-algebras can be defined by different systems of intrinsic axioms
(see[25] for a summary), we prefer to introduce them as the norm-closed self-adjoint
real subalgebras of complexC∗-algebras. Since complexC∗-algebras are complex
JB∗-triples under the triple product

{xyz} := 1

2
(xy∗z+ zy∗x),

certainly realC∗-algebras are realJB∗-triples. The concept of areal W ∗-algebra
(real von Neumann algebra) was first defined as a realC∗-algebraA having a com-
plete predualA∗ such that the product ofA is separatelyw∗-continuous, but the
latest condition was shown to be redundant in[25]. RealW ∗-algebras are realJBW ∗-
triples.

Therefore, the geometric characterizations given in Theorems3.2 and 3.10 can be
stated for real or complexC∗-algebras and preduals ofW ∗-algebras. The next results
summarize those theorems and also Corollaries3.3 and 3.5 in terms ofC∗-algebras.

Corollary 4.1. Let X be a real or complexC∗-algebra. Then, the following are equiv-
alent:

(i) X has the Daugavet property.
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(ii) The norm of X is extremely rough.
(iii) The norm of X is not Fréchet-smooth at any point.

Corollary 4.2. Let X be a real or complexW ∗-algebra and letX∗ be its predual.
Then, the following are equivalent:

(i) X has the Daugavet property.
(ii) X∗ has the Daugavet property.

(iii) Every weak-open subset ofBX∗ has diameter2.
(iv) BX∗ has no strongly exposed points.
(v) BX∗ has no extreme points.

Corollary 4.3. (a) Let X be the predual of some real or complexW ∗-algebra. Then,
either every weak-open subset ofBX has diameter2 or BX has slices of arbitrary
small diameter.

(b) Neither the dual of a real or complexC∗-algebra nor a real or complex
C∗-algebra which is the bidual of some space, has the Daugavet property.

The algebraic characterization of the Daugavet property forJB∗-triples (Proposi-
tion 3.9) is of course valid forC∗-algebras, but it could be more convenient to write
it in terms of atomic projections. Let us give the definitions and results.

If X is a real or complexC∗-algebra, thenu ∈ X is a tripotent if and only if it is a
partial isometry, i.e., u satisfies thatuu∗u = u. Recall that aprojection in a C∗-algebra
is an elementp ∈ X such thatp∗ = p and p2 = p. It is clear that projections are
partial isometries (and so tripotents), but there are partial isometries which are not
projections. A projectionp in X is said to beatomic if p �= 0 and

{x ∈ X : px∗p = x} = Rp,

i.e., p is minimal seen as a tripotent. Therefore, in the complex case this is equivalent
to p �= 0 andpXp = Cp. The C∗-algebraX is said to benon-atomicif it does not
have any atomic projection.

If X has atomic projections, then it clearly has minimal tripotents. Conversely, if
X has a minimal tripotent, sayu, then the projectiond = u∗u (called the domain
projection associated tou) is atomic. Indeed, we takex ∈ X such thatdx∗d = x.
Then,

u(ux)∗u = (uu∗u)x∗u∗u = u(u∗ux∗u∗u) = u(dx∗d) = ux

so, sinceu is minimal, ux = �u for some� ∈ R. Then,

�d = u∗(�u)= u∗(ux) = u∗(u(dx∗d))

= u∗((uu∗u)x∗u∗u) = u∗ux∗u∗u = dx∗d = x.
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We have shown thata real or complexC∗-algebra has no minimal tripotents if and
only if it is non-atomic. So, for C∗-algebras, Proposition3.9 can be written in terms
of atomic projections.

Corollary 4.4. (a) A real or complexC∗-algebra has the Daugavet property if and
only if it is non-atomic.

(b) The predual of a real or complexW ∗-algebra has the Daugavet property if and
only if the algebra is non-atomic.

The complex case of the above result appears in[38, Theorem 2.1].
As a JBW ∗-triple, every real or complexW ∗-algebraX admits a natural decompo-

sition into the atomic and non-atomic parts which is originated by the natural decom-
position of the predualX∗, i.e., X∗ = A⊕1 N , where the unit ball ofN does not have
any extreme point, andBA is the closed convex hull of the extreme points ofBX∗ .
Thus, X = A ⊕∞ N , where the subtripleA = N⊥ ≡ A∗ is norm-generated by the
minimal tripotents ofX, and the subtripleN = A⊥ ≡ N∗ has no minimal tripotents.
Moreover,A and N arew∗-closed subalgebras ofX, the first one is generated by its
atomic projections and the second one has no atomic projections.

The next results put Corollary3.7 and Theorem3.8 in terms ofC∗-algebras.

Corollary 4.5. Let X be a real or complexW ∗-algebra. Then, in the natural decom-
positionX∗ = A⊕1N , A has the RNP and N has the Daugavet property. Therefore, in
the decompositionX = A⊕∞ N , A is a w∗-Asplund space(i.e., the dual of a space
having the RNP) andN has the Daugavet property.

Corollary 4.6. Let X be a real or complexC∗-algebra without atomic projections, and
let X∗∗ = A⊕∞N the natural decomposition of its bidual into atomic and non-atomic
parts. Then, the decomposition of everyx ∈ X as x = a∗∗ + n∗∗, with a∗∗ ∈ A,
n∗∗ ∈ N satisfies‖x‖ = ‖a∗∗‖ = ‖n∗∗‖.

5. The uniform Daugavet property

Following [8], a Banach spaceX is said to have theuniform Daugavet propertyif

DX(ε) := inf {n ∈ N : convn(l
+(x, ε)) ⊃ SX ∀x ∈ SX}

is finite for everyε > 0, where

l+(x, ε) := {y ∈ X : ‖y‖�1+ ε, ‖x + y‖ > 2− ε}

and convn(A) is the set of all convex combination of alln-point collections of elements
of A. By Bilik et al. [8, Remark 6.3], X has the uniform Daugavet property if and
only if

lim
n→∞ Daugn(X, ε) = 0
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for every ε > 0, where

Daugn(X, ε) := sup
x,y∈SX

dist(y, convn(l
+(x, ε))).

Since (Lemma2.1) X has the Daugavet property if and only if

BX ⊂ co({y ∈ X : ‖y‖�1+ ε, ‖x + y‖ > 2− ε})

for everyx ∈ SX and everyε > 0, the uniform Daugavet property implies the Daugavet
property, and it can be view as a quantitative approach to it.

Examples of spaces satisfying the uniform Daugavet property areL1[0,1] andC(K)

for every perfect compact spaceK [8, Section 6]. On the other hand, in[30] it is shown
an example of a Banach space with the Daugavet property which does not satisfy the
uniform Daugavet property.

The uniform Daugavet property was introduced in[8] to study when the Daugavet
property passes from a Banach space to its so-called ultrapowers.

Let us recall here the notion of (Banach) ultraproducts[22]. Let U be a free ultrafilter
on a non-empty setI , and let{Xi}i∈I be a family of Banach spaces. We can consider
the �∞-sum of the family,[⊕i∈IXi]�∞ , together with its closed subspace

NU :=
{
{xi}i∈I ∈ [⊕i∈IXi]�∞ : lim

U
‖xi‖ = 0

}
.

The quotient space[⊕i∈IXi]�∞/NU is called theultraproduct of the family {Xi}i∈I
relative to the ultrafilterU , and is denoted by(Xi)U . Let (xi) stand for the element of
(Xi)U containing a given family{xi} ∈ [⊕i∈IXi]�∞ . It is easy to check that‖(xi)‖ =
limU ‖xi‖. Moreover, the ultraproduct(X∗i )U can be seen as a subspace of[(Xi)U ]∗
by identifying each element(fi) ∈ (X∗i )U with the (well-defined) functional on(Xi)U
given by

(xi) �−→ lim
U

(fi(xi)) ((xi) ∈ (Xi)U ).

If {Yi}i∈I is another family of Banach spaces and for eachi ∈ I we take an operator
Ti ∈ L(Xi, Yi) with supi∈I ‖Ti‖ < ∞, we can define theutraproduct of the family of
operators{Ti}i∈I with respect to the ultrafilterU , denoted(Ti), as

(xi) �−→ (Tixi) ((xi) ∈ (Xi)U ).

This is a well-defined operator from(Xi)U to (Yi)U with

‖(Ti)‖ = lim
U
‖Ti‖.
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If all the Xi are equal to some Banach spaceX, the ultraproduct of the family is called
the U-ultrapower of X and it is usually denoted byXU . For T ∈ L(X), by (T ) we
denote the ultraproduct of the family{Ti}i∈I whereTi = T for every i ∈ I .

In [8, Corollary 6.5], it is proved that a Banach spaceX has the uniform Daugavet
property if and only if every ultrapowerXU , U a free ultrafilter onN, has the Daugavet
property, in which caseXU even has the uniform Daugavet property. Let us comment
that it is routine to prove that a BanachX has the (usual) Daugavet property whenever
XU does,U a free ultrafilter on an arbitrary setI (we can use Lemma2.1(ii) or,
alternatively, we can prove directly that every rank-one operatorT ∈ L(X) satisfies
(DE) since its ultrapower(T ) ∈ L(XU ), which is also a rank-one operator onXU ,
does). On the other hand, as we have said before, there is a Banach space with the
Daugavet property which does not have the uniform Daugavet property[30], thus the
Daugavet property does not always pass to ultrapowers.

Our aim in this section is to prove that the Daugavet property and its uniform version
are equivalent for real or complexJB∗-triples and their isometric preduals. As we said
before, this is true forC(K) spaces and forL1[0,1]. These facts were proved in[8,
Section 6], where explicit estimations forDC(K)(ε) and DL1[0,1](ε) were done. Our
approach is different: we will use Theorems3.2 and3.10 to show that, forJB∗-triples
and their isometric preduals, the Daugavet property passes to arbitrary ultrapowers.

Since an ultrapower of aJB∗-triple is again aJB∗-triple (see[14]), the result for
this class follows immediately from Theorem3.10 and the following lemma, which
can be of independent interest.

Lemma 5.1. Let {Xi}i∈I be a family of Banach spaces, U a free ultrafilter of a set I,
and � > 0. If the norm of eachXi is �-rough, then so does the norm of(Xi)U .

Proof. Given a norm-one elementx = (xi) ∈ (Xi)U and a positive number� < 1,
we have to show that the sliceS(B[(Xi)U ]∗ , (xi), �) of the unit ball of [(Xi)U ]∗ has
diameter greater than�. Indeed, we can suppose that‖xi‖ = 1 for every i ∈ I and,
since the norm of eachXi is �-rough, given a family{εi} of positive number with
limU εi = 0, we can findfi, gi ∈ SX∗i such that

‖fi − gi‖ > �− εi and Refi(xi) > 1− �, Regi(xi) > 1− �.

Now, we consider the elementsf = (fi) and g = (gi) of the unit ball of (X∗i )U ⊆[(Xi)U ]∗, and we observe that, on one hand,

‖(fi)− (gi)‖ = lim
U
‖fi − gi‖��

and, on the other hand,

Ref (x) = lim
U

fi(xi) > 1− �, Reg(x) = lim
U

gi(xi) > 1− �. �
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By using the above lemma and Theorem3.10, we have thatXU has the Daugavet
property whenever theJB∗-triple X does. But, as we already mentioned, the converse
result is true in general.

Theorem 5.2. Let X be a real or complexJB∗-triple and let U be a free ultrafilter
on a set I. Then, X has the Daugavet property if and only ifXU does. Therefore, the
Daugavet property and the uniform Daugavet property are equivalent forJB∗-triples.

As a consequence of the above theorem and Proposition3.9, we obtain the following
result aboutJB∗-triples.

Corollary 5.3. Let X be a real or complexJB∗-triple and U a free ultrafilter on a
set I. Then, XU has a minimal tripotent if and only if X does.

Remark 5.4. It is also true that every ultraproduct ofJB∗-triples is aJB∗-triple (see
[14]). Then, by using Theorem3.10and Lemma5.1, we also obtain thatthe ultraproduct
of a family ofJB∗-triples with the Daugavet property also has the Daugavet property.
In other words (Proposition3.9), the ultraproduct of a family ofJB∗-triples without
minimal tripotents also has no minimal tripotent.

The second part of the present section is devoted to preduals ofJBW ∗-triples.
Even though the ultrapower of the dual of a Banach space is not, in general, the

dual of the ultrapower of the space (see[22, Section 7]), it can be proved that the
ultrapower of a predual of aJBW ∗-triple is again the predual of someJBW ∗-triple.
In the complex case, the proof is easy to state: the dual of the ultrapowerXU of a
Banach spaceX is 1-complemented in another ultrapower(X∗)M of X∗ [22], and the
contractive projection theorem applies.

Since we have not find any reference to the above result in the literature, we give a
detailed proof. Actually, a more general result can be state.

Proposition 5.5. Let {Xi}i∈I be a family of Banach spaces such that eachX∗i is a
(real or complex) JBW ∗-triple, and letU be a free ultrafilter on I. Then, (Xi)U is the
predual of some(real or complex) JBW ∗-triple.

Proof. We start with the complex case. By Heinrich[22, Corollary 7.6], there is another
free ultrafilterB on an index setI ′, such that

[
(Xi)U

]∗ is isometric to a 1-complemented
subspace of((X∗i )U )B, which is aJB∗-triple. But 1-complemented subspaces of com-
plex JB∗-triples areJB∗-triples (see[32]).

If each X∗i is a realJBW ∗-triple, then there is a conjugation�i on eachXi such
that (X̂i)

∗ is a complexJBW ∗-triple andXi = X̂i
�i [24]. On one hand,[(X̂i)U ]∗ is

a JBW ∗-triple by the complex case. On the other hand, we consider� = (�i ), the
ultraproduct of the family of the conjugations�i , and we observe that� is a con-
jugation (routine) and that[(X̂i)U ]� ≡ (Xi)U . Indeed, (x̂i) ∈ [(X̂i)U ]� if and only
if lim U ‖�i (x̂i ) − x̂i‖ = 0. Thus, the image of the natural inclusion of(Xi)U into
(X̂i)U falls into [(X̂i)U ]�, and it is onto since, for every(x̂i) ∈ [(X̂i)U ]�, we have
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(x̂i) = (�i (x̂i )) ∈ (X̂i
�i
)U ≡ (Xi)U . Now, the dual of(Xi)U ≡ [(X̂i)U ]� is a real

form (using �∗, which is also a conjugation) of[(X̂i)U ]∗, and hence it is a real
JBW ∗-triple. �

With this in mind, the equivalence of the Daugavet property and its uniform version
for preduals ofJBW ∗-triples is a consequence of Theorem3.2.

Theorem 5.6. Let X be a real or complexJBW ∗-triple and letU be a free ultrafilter
on a set I. Then, X∗ has the Daugavet property if and only if(X∗)U does. Therefore,
the Daugavet property and the uniform Daugavet property are equivalent for preduals
of JBW ∗-triples.

In the proof we will use the following easy fact: ifY is a Banach space andZ ⊆ Y ∗
is a norming subspace, then for every strongly exposed pointy ∈ SY , the exposing
functional belong toZ. Observe that this is the case of the ultraproduct of the duals of a
family of Banach space seen as a norm-closed subspace of the dual of the ultraproduct
of the spaces.

Proof of Theorem 5.6. We only have to show that(X∗)U has the Daugavet property
wheneverX∗ does. Since(X∗)U is the predual of someJBW ∗-triple, it suffices to
show that its unit ball has no strongly exposed points (Theorem3.2). Therefore, we
suppose, for the sake of contradiction, that the unit ball of(X∗)U has a strongly
exposed point, say(xi). By the preceding remark, there exists(�i ) in the unit sphere
of (X)U (which we can suppose to satisfy‖�i‖ = 1 for every i) which strongly
expose(xi). Let us fix 0< ε0 < 1. Now, for every� > 0, sinceX∗ has the Daugavet
property, we can apply Lemma2.1(ii) to get, for every i ∈ I , a point yi ∈ SX∗
such that

‖xi − yi‖�2− ε0 and Re�i (yi) > 1− �/2.

Now, (yi) belong to the unit ball of(X∗)U ,

‖(xi)− (yi)‖ = lim
U
‖xi − yi‖�2− ε0

and

Re(�i )[(yi)] = lim
U

�i (yi) > 1− �.

Since� is arbitrary, we conclude that every slice of the unit ball of(X∗)U defined by
(�i ) has diameter greater or equal than 2− ε0 (recall that Re(�i )[(xi)] = 1). Hence,
(�i ) does not strongly expose(xi), a contradiction. �

As a consequence of the above theorem and Theorem3.2, we obtain the following.
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Corollary 5.7. Let X be a real or complexJBW ∗-triple and letU be a free ultrafilter
on a set I. Then, the unit ball of (X∗)U have extreme points if and only ifBX∗ does.

As a consequence of Theorems3.2, 5.2 and 5.6, we obtain

Corollary 5.8. Let X∗ be the predual of a real or complexJBW ∗-triple X. Then, X∗
has the uniform Daugavet property if and only if X does.

It is worth mentioning that it is not known whether the uniform Daugavet property
passes from the dual of a Banach space to the space.

Remark 5.9. The proof of Theorem5.6 can be straightforwardly adapted to show that
the ultraproduct of a family of preduals ofJBW ∗-triples with the Daugavet property
also has the Daugavet property. Therefore, Corollary5.7 can be also adapted to show
that the unit ball of the ultraproduct of a family of preduals ofJBW ∗-triples has no
extreme points, provided that the unit ball of each factor does not have any extreme
point.

It is worth mentioning that Corollary5.7 cannot be stated for general Banach spaces,
as the following example shows.

Example 5.10. There exists a Banach spaceX whose unit ball does not have any
extreme point and a free ultrafilterU on N such that the unit ball ofXU has an
extreme point[23, Example 2.14].

Let us comment a particular case in which the conclusion of Corollary5.7 can be
easily stated.

Remark 5.11. Let X be a Banach space. Suppose that there exists� > 0 such that for
every x ∈ SX, there is y ∈ X with ‖y‖�� such that‖x ± y‖�1 (in particular, BX

has no extreme points). Then, for every free ultrafilterU on a set I, the unit ball of
XU does not have any extreme point.Indeed, let(xi) be a norm-one element ofXU ,
which we can suppose to satisfy‖xi‖ = 1 for every i. Then, for everyi ∈ I , take
yi ∈ X with ‖yi‖�� and ‖xi ± yi‖�1. If we consider(yi) ∈ XU , then

‖(yi)‖�� and ‖(xi)± (yi)‖�1.

Therefore,(xi) is not an extreme point of the unit ball ofXU .

It is easy to show that the above situation is fulfilled byL1[0,1] with � = 1.

Example 5.12.For every f ∈ L1[0,1] with ‖f ‖1 = 1, there is g ∈ L1[0,1] with
‖g‖1 = 1 and such that‖f ± g‖1 = 1. Indeed, up to an isometric isomorphism, we
can supposef (t)�0 for every t ∈ [0,1] and, by continuity, we can findt0 ∈]0,1[
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such that ∫ t0

0
f (t) dt =

∫ 1

t0

f (t) dt = 1

2
.

Then, if we considerg = f (	[0,t0] − 	[t0,1]) ∈ L1[0,1], we clearly have‖g‖1 = 1 and

‖f ± g‖1=
∫ t0

0
(f (t)± f (t)) dt +

∫ 1

t0

(f (t)∓ f (t)) dt

=
(

1

2
± 1

2

)
+

(
1

2
∓ 1

2

)
= 1.

Actually, a very similar result (with� arbitrarily closed to 1) can be stated for every
L1(�) if � does not have any atom.

For the sake of completeness, we finish the paper by summarizing the results of the
present section in terms ofC∗-algebras and preduals ofW ∗-algebras.

Corollary 5.13. (a) The ultraproduct of every family of real or complexC∗-algebras
with the Daugavet property also has the Daugavet property. In particular, the Daugavet
and the uniform Daugavet property are equivalent for real or complexC∗-algebras.

(b) The ultrapower of a real or complexC∗-algebra has atomic projections if and
only if the algebra does.

(c) The ultraproduct of every family of preduals of real or complexW ∗-algebras with
the Daugavet property also has the Daugavet property. In particular, the Daugavet
and the uniform Daugavet property are equivalent for preduals of real or complex
W ∗-algebras.

(d) Let X∗ be the predual of a real or complexW ∗-algebra X. Then, X∗ has the
uniform Daugavet property if and only if X does.

(e) Let Y be the predual of a real or complexW ∗-algebra. Then, BY has an extreme
point if and only if the unit ball of every ultrapower of Y does.
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