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Intermittently and instantaneously perturbed oscillator equations play an impor-
tant role in theory and application. In this paper, we investigate the asymptotic
behavior of solutions of the impulsive system (¢g(x")) + f(x) =0 for ¢ #1¢,,
x'(t, +0) = b,x'(t,), where n = 1,2,..., and q,’)B(u) = Iu\ﬁsgn u for B > 0. In the
special case f(u) = ¢g(u), we obtain the so-called half-linear system, which ex-
hibits similar behavior to the linear case. First, we prove attractivity results, and
then apply our theorems to the nonautonomous equation (¢ (x")) + g(1)f(x) = 0,
where ¢(¢) is a step-function.  © 2000 Academic Press

1. INTRODUCTION

Consider the impulsively damped nonlinear system
(¢B(x’))’+f(x) =0, t#t,,
x(1, +0) =x(1,), (1)
x'(t, +0) =b,x'(1,),
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where ¢, > © as n — o, q&B(u) = Iulﬁsgnu for >0, f: R>R is
continuous, and uf(u) > 0 u # 0. For the sake of simplicity, we assume
that f is an odd function.

Equation (1) with 0 < b, < 1 is the impulsive analogue of the damped
oscillator equation

(dp(x)) +a(r)h(x') +f(x) =0, )

where a(#) > 0 and uh(u) > 0 for u # 0. The analogy was investigated in
[9, 10] for the case ¢y(u) = u. The special case h(u) = f(u) = ¢y(u) is
called the half-linear equation since, if x(¢) is a solution, then cx(#) is also
a solution. The behavior of the solutions is quite similar to that of a linear
equation (see [8]). Note that a negative b, in system (1) results in a beating
effect (see the discussion for the case d)B(u) = y in [10, 12]), which has no
continuous analogue.

In this paper, we apply the method used in [9, 16] to obtain attractivity
theorems for (1). We also consider the important special case f(u) = ¢, ().
We will show that the asymptotic behavior of the solutions is completely
different if & < B, a = B, or a > B. As an application of our results, in
Section 4 we investigate the attractivity properties of the equation

(¢(x)) +a(1)f(x) =0, (3)

where ¢(¢) is a step-function.

2. DEFINITIONS AND LEMMAS

We say that the zero solution of (1) is stable if for every & > 0 there
exists & > 0 such that |x(0)| + [x'(0)| < & implies |x(¢)| + [x'(¢)] < & for
t > 0. The zero solution is asymptotically stable (a.s.) if there exists § > 0
such that [x(0)] + [x'(0)] < & implies lim,_ (x(¢), x'(¢)) = (0,0). The
asymptotic stability is global (g.a.s.) if & = oo,

Throughout the paper, we assume that every solution can be continued
to . Obviously, the solutions are piecewise differentiable and ¢,z(x'(7)) is
piecewise continuous and continuous from the left at every ¢ > 0. We
introduce the functions

IyIB+1 and

() =y9a(y) = [ da(s)ds = 5 N

F(x) = /Oxf(s) ds,
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and investigate the solutions using the energy function

V(x,y) = ®(y) + F(x). (5)
To simplify the formulation of our results, we assume that

lim F(u) = . (6)

u— + o

It is easy to verify that V(x(¢), x'(¢)) is constant along the solutions of
the equation without impulses

(s (x)) +/(x) = 0. (7)

Next, we calculate the change in the energy along the solutions of (1).
Using the notation V(¢) = V(x(¢), x'(¢)), we obtain

V(t,e1) = V(1,) =V(, +0) = V(1)

O(x'(t, +0)) + F(x(z, +0))

= O(x'(1,)) = F(x(1,))

—®(x'(1,))(1 = 1b,17"") = —a,®(x'(1,)), (8)

where a, =1 — |b, |,

Note that V(¢) is nonincreasing if |b,| < 1, independently of the sign of
b,, and is constant between any ¢, and ¢, ,. The case b, = 0 (a, = 1) is
critical since we lose the uniqueness of the solutions at ¢, from the left.
Moreover, there exist solutions that are identically zero for ¢ > ¢,. To
guarantee uniqueness, we require the more restrictive condition 0 < b, <
1,n=12,....

Using equality (8) repeatedly, we obtain

V(t) =V(0) — ) a,d(x(t,)) 9)
and
V(1) = V(t, +0) = V(1,)[1 - a”w)

=1(0) I (1 — aiM)

1<t V(t)
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for ¢, <t <t,,, along the solutions of (1). A lower estimate is
B+1
V() = V(t)(1 = a,) = VO TT(1 = a) = VO(TTb)  (10)
1<t <t

since b, > 0 here. Using the equality (2), it is easy to prove the following
basic lemma.

Lemma 1. If 0<b, <1, n=1,2,..., then V(¢) is nonincreasing for
every solution. The zero solution of (1) is stable, every solution is bounded on
[¢y,°), and liminf, ,, ®(x'(¢)) = 0.

If0<b,<1,n=1,2,...,weobtain a Gronwall-Bellman type inequal-
ity for V(¢) from (2). Since In(1 —y) < —y for y < 1, we have

InV(t) =InV(0) + Y ln(l - aiW)
O (x'(1))

<InV(0) - Ya 70

1<t

We have thus proved the following lemma.

LEMMA 2. Supposethat 0 < b, < 1,n =1,2,... . Ifx(¢) is a solution of
(1), then

V(t) <V(0) exp{— D anm}. (11)

t, <t V( tn)

Since In(1 — a,) > —((B + Diln bDa, /(1 — bP*1) provided b, > b > 0,
we can formulate the following necessary condition for the attractivity of
the zero solution that is analogous to the case of distributed damping.

THEOREM 1. Suppose that 0 < b, <1, n =1,2,..., and let x(t) be a
solution of (1). If either
f[lbn >0, (12)
or
liminf b, > 0 and i a, < o, (13)

—
n n=1

then lim, _, V(¢) > 0.
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The theorem is not true if b, = 0 for some r since in that case there are
solutions that are identically zero for ¢ > ¢,,.

The following lemma is fundamental in the estimation of the energy; it
is a consequence of Corollary 2.4 in [4].

LEMMA 3. Let x(t) be a nonzero solution of (1) and T = 0. Then

85(x () = p(v(1) TT 07 = ['( TT b8 )f(x(s)) ds. (19)

s<t;<t

Remark 1. Clearly, the product in the integrand in (14) can be taken
for s <t <t

Remark 2. With the notation

W(s,t) = [1 bp,

s<t;<t

(14) can then be written in the form

B5(+'(0)) = (¥ (D)W(T.1) = [W(s.0)f(x(5)) ds. (15)

The next lemma classifies the solutions of the impulsive system (1).

LEMMA 4. Suppose 0 < b, <1, n =1,2,..., and let x(t) be a solution
of (1) that is not identically zero on any interval [T, ), and let s, and s, be
consecutive zeros of x'(t). Then there exists { € (s,,s,) such that x() = 0.
Hence, solutions of (1) are either oscillatory or monotonic on [T, ).

The proof is similar to the proof of Lemma 13 in [9] and so we omit the
details here. As indicated above, if b, = 0, then the solution can become
zero from ¢, forward. This lemma is not true if b, < 0 for some n, since
we can obtain nonoscillatory “saw-tooth” solutions.

To obtain asymptotic stability properties, we investigate the variation of
V' along solutions. It is easy to see from (8) that the critical places for
impulses are the zero positions of the derivative of the solutions. Thus, we
need to formulate conditions that assure that infinitely many ¢,’s avoid
these places. Consequently, the key to our method is to estimate these
zeros as well as possible. Hence, knowledge of the oscillatory behavior of
the solutions of the equation (7) without impulses is essential to our
analysis.

Every nonzero solution of (7) is periodic, and the trajectory is a level
curve of V in the plane. Since f and ¢, are odd, the length of the time
intervals on which x(¢£)x'(¢) > 0 or x(¢)x'(t) < 0 are equal. For a solution
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x(¢) with V(x(¢), x'(t)) = r, denote the distance between two consecutive
zeros of x'(¢), i.e., the halfperiod, by A(r). In the case ¢g(u) = u, the
behavior of the solutions was investigated, for example, in [19]. The
quantity A(r) can be expressed in the form

-1 dx dv
F~'(r) 1
A =2 _—— =2 ,
=20 e Eey T G oy )
(16)
where u =r — F(x),v =u/r,and F~! and ® ! are the inverses of F and

® on [0, ), respectively. In the special case where f is a homogeneous
function of order «, we obtain that

dv
(1 -v))e ()

1
A(r) = 2r1/(a+1)—1/(ﬁ+1)/'
0 f(F

If f(x) = ¢, (x), then
Aa B(r) — rl/(a+l)—1/(/3+1)
y 2B TPT(A/(1+a)T(B/(1+B))
A+ a)V D14+ )V +28+aB)/(1+a+B+aB))

= M, prV/(e+D=1/(B+D), (17)

and if, moreover, a = B, then A, ;(r) is the constant

_ 2aV0OT(1/(1+ )T (a/(1 + a))
a ™ I+a

2a1/(1+a) ar

T (1+a) sin(a/(1+a))’

In particular, A, = 7 for a = 1.

If a> B, thenlim,_ A, ;(r) =, and if @ < B, then lim, ,, A, z(r)
= 0. The case a = B is called halflinear [8], so we may refer to the other
cases as super- and sub-half-linear, respectively. In general, we do not
make a homogeneity assumption on f. Hence, we introduce the notation

A" = liminf A(r) and A* = liminf A(r). (18)
r—0 r— o

It is easy to see that the oscillatory properties of the small solutions
essentially depend on the nonlinearity of f and ¢,. The following lemma is
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fundamental in our paper since it shows that the above properties of Eq.
(7) are inherited by system (1).

LEMMA 5. Let x(t) be a solution of (1) such that lim,_  V(¢) =r > 0.
Then for any ¢ > 0 and 6 > 0 with & <r there exists T > 0 such that if
T<7 <ty Fx(r))=F(x(1,) =r—38§, and F(x(t)) <r — 8 for t €
(74, 7,), then

— >j‘F’1(r75) dx
P T e @ (1 + &) r = F(x))

In particular, if x(¢) is oscillatory and {s,),_, is a sequence of zeros of x(t),
then

liminf (s, , —s,) = A(r).

n—

Proof.  Let x(¢t) be a solution of (1) for which lim, _,, V(¢) = r > 0. Let
& > 0 be given and choose T such that

r<®(x'(t)) + F(x(r)) <r(1+e)
for t > T. Then
O (r = F(x(1))) <|¥(0)| < @7'(r(1 + &) — F(x(1))),

% (0] N0
O~ (r(1+ ) = F(x(1))) O~I(r = F(x(1)))

Let0 < d<randlet T < 7, < 7, with F(x(7,)) = F(x(7,)) =r — § and
F(x(#)) <r— & for t € (7, 7,). It follows from Lemma 4 that x'(¢) does
not change sign on (7, 7,). Hence, integrating the above inequality, we
obtain

Ty — T >/F71(r75) dx
P T e @7 (r(1 4+ ) — F(x))

If 5, and s, are zeros of x'(¢) such that s, < 7, < 7, <'s,, then

[ >/F’1(r) dx
2T @ (1 + &) — F(x))’

since s,, s, are independent of 6.
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Now, let x(¢) be oscillatory and let {s,} be a sequence of the zeros of
x'(¢). Then letting n — o, we have

. dx
o F=1(r)
lim inf —5,) = '
IVI;ILICE (sn+1 Sn) /—Ffl(r) @71(7(1 + 8) - F(X))

Since ¢ is arbitrary, we have

liminf (s, , —s,) > A(r).

n— o

In addition, we can obtain the upper estimate

F'(r—8) dx
- < — <A .
Ty Ty ffF’l(r—B) CD—l(r_F(x)) (r)

Note that the property liminf, . (s,.; —s,) = A(r) in Lemma 5 is
called A(r)-discreteness (see [14]).

3. ASYMPTOTIC STABILITY

Before stating our main theorem, we formulate a simple result that
shows we cannot expect to prove results on the asymptotic behavior of
solutions without taking into account the properties of f and ¢;. Similarly,
although lim,, , _,, ®(u) = lim, , .., F(u) = o, the globality of the asymp-
totic stability cannot be expected either.

THEOREM 2. Let t, =np, 0 <b, <1, and let D, = {r: A(r) =p/k,

k = 1,2...}. The solutions of (1) with the initial conditions F(x(¢,)) =r €
D, x'(¢,) = 0 are periodic.

The proof of Theorem 2 is obvious. The following corollary is a simple,
but important, consequence of Theorem 2.

CoOROLLARY 3. Let 0 <b, <1 andt, = np with p > 0.

(@ If lim,_,A(r) =0, then the zero solution cannot be asymptoti-
cally stable.

(b) If lim, ,, A(r) = 0, then the asymptotic stability cannot be global.
The following property was first formulated for the special case of

system (1) with ¢g(u) =u. It is useful in determining the value of
lim, _,,, V(¢) as Theorem 4 below shows.
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Condition Attr(L). Suppose that there exists a number L > 0 and a
sequence of intervals {[s,,s, + i,]} such that s, - o« as n - «, i, > 0,
S,41 =8, +1i, and

limsup i, < L. (19)

n— o
Let the impulses satisfy the following properties:

liminf [T b >0; (20)

— 0 -
n 8§, <tj<s,+i,

For every sequence {u,} with 5, <u, <s, + i,

o0

)y Y ap(f,u,)| ==, (21)

n=1 ‘s, <t;<s,+1i,

where u(t,u) = min{l, |t — u|' A/ By

The difference in the inequalities in the range of the product in (20) and
the sum in (21) is essential as we will see later in formulating some special
cases. The condition Attr(L) can be formulated without (20), but in that
case, the definition of w, is somewhat more complicated. Our main result
is the following.

THEOREM 4. Suppose that 0 < b, <1, n = 1,2,..., and Attr(L) holds
for some L > 0. Let x(t) be a solution of Eq. (1) for which lim,_, , V(¢) =r.
Then either r = 0 or A(r) < L.

Now we consider some special cases and applications of the above
results. We will prove Theorem 4 at the end of this section. Success in
applying Theorem 4 depends on how the sequences {s,} and {i,} are
chosen. Then, if condition Attr(L) is satisfied, the attractivity of the zero
solution depends on the local and global properties of A(r). Here, we
formulate corollaries for some important cases. The following conditions
imply Attr(L). Let s, =, and s, + 1, =1, ;.

Condition Attr1(L). Let a subsequence {tkn} of {¢,} and the sequence of
positive integers {I,} satisfy the following properties:

limsup(t, ., — 4, )<L, 0<L <x; (22)

n— o

liminf [T b > 0; (23)
n—e tk,,<tj<tk,,+/,,

b ([k,l+l,l - tk”)lﬂ/ﬁmin{aknaak,,+z,,)} = . (24)
n=1
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Note that condition (24) in Attr1(L) means that the impulses at 7, and
!y +;, are significant, and the impulses between them can be neglected in
estlmatmg V. In the special case /, = 1, we have the following condition.

Condition Attr2(L). Let a subsequence {tkn} of {t,} satisfy the condi-
tions

limsup(t, .1 =, )<L, 0<L <o, (25)
= 1+1/8 .

)y (te,+1 — t,) min{a, ,a, .} = . (26)
-1

This last condition formulates a very useful strategy that can be used in
applications, that is, the strategy of “twin-effects.” The effect working at a
time 7 has to be repeated at = + 6. This strategy guarantees that we avoid
problems occurring from a wrong choice of 7.

To prove that Attr1(L) implies Attr(L), we have only to show that (21) is
satisfied. For any u, € [¢, ,t, , ], we obtain

min{(tk” — un)Hl/ﬁ,l}akn + min{(z‘kﬁ,/x — un)Hl/B, 1}akn+,n

(min{(;k” _ un)”l/ﬁ, 1} + min{(tkﬁl” _ un)lJrl/B’l})

X min{ay ,a, .}

1
21+1/8 (tk,,+ln

v

"

1+1/8 .
— 1) min{a; ,a; ., }

since one of the distances (#, ., —u,) or (u, —t, ) is greater than or
equal to (t, ., — 1, )/2 and the sequence {f; ., — .} is bounded.

To obtain attractivity criteria, we need to recall that the energy is
decreasing along the solutions, so if V(0) = r,, then lim,_, V(¢) <r,.
Hence, r, can be compared to a number L for which one of the conditions
Attr(L), Attrl(L), or Attr2(L) holds. In this way, we can estimate the
attractivity region. Now, the following theorem easily follows from Theo-
rem 4.

THEOREM 5. Assume that Attr(L) holds for Eq. (1) with L = 0. If
0 < L < A, then the zero solution is asymptotically stable. If, in addition,
0 < L < A%, then the asymptotic stability is global.

Note that if A’ = 0 and L > 0, then the above theorem cannot guaran-
tee asymptotic stability. If A* = 0 and L > 0, then the globality cannot be
assured. Choosing f(u) = ¢, (u) provides us the appropriate counterexam-



NON-HALFLINEAR OSCILLATOR EQUATIONS 87

ples. Combining Theorem 5 with condition Attr2(L) and Theorem 2, we
obtain the following corollary.

CoOROLLARY 6. Let f(u) = ¢ (u), and t,,, —t, = L > 0, and assume
that (26) holds with k, = n.

Case (a). a = B.If L < A, then the zero solution is globally asymptot-
ically stable. If L = A, then the zero solution is not asymptotically stable.

Case (b). a > B. The zero solution is asymptotically, but not globally,
stable. A region of attractivity is {(x,, x{): F(x,) + ®(x}) < A~'(L)}.

Case (¢). 0 < a < B. The zero solution is not asymptotically stable.
Every solution satisfies the property lim, _,, V(1) < A~'(L).

Remark 3. 1In the half-linear case (o = B), if 1,,, —t, =L > A_, we
can remove any interval of length A from the intervals (¢,,¢,, ). Conse-
quently,

(tn+l - tn) mod Aoc
can be used in conditions Attr1(L) and Attr2(L) instead of (¢, , — £,).

Finally, let us prove Theorem 4. In order to make use of (9), an estimate
of the derivative of a solution is needed. The following lemma is useful in
this regard.

LEMMA 6. Let x(¢) be a solution of (1) for which lim,_ , V(¢) = r, and
let 0 < 6 <rand 0 <s, <s, be given. The following statements hold.
(@ IfF(x(0) <r— 38 fort €lsy,s,], then |xX'(1)] = ®~'(5).
) If F(x()>r—68 and x()x'(t) >0 for t € [sy,s,], then
|¢/3(x,(t))| = 51|t - S2|-
(©) IfF(x(t) >r— 8 andx(1)x'(t) < 0 for t € [s,, 5,1, then

(62| = 8 [ sy ds = o, [ [ T1 7 as,

S<l‘]-<t

where 8, = inf{| f(w)|: F(u) > r — &, lul < sup, . o|lx()]} > 0.

Remark 4. Observe that if W(s,¢) > Le X9 for t >s and t,s €
(51, 5,), then |y (x'(1))] = £8, min{1,¢ — 5} for some 0 < & < 1. The con-
stants L, K, ¢, and §, in the above estimates depend only on § and r.

Proof.  Let x(¢) be a solution of (1) for which lim, _, . V(¢) = r > 0, and
let r > & > 0 and the interval [s,, 5,] be given.

(@ If F(x(1)) <r — § for t € [s,s,], we see that [x'(t)| > ®~'(5)
since F(x(z)) + ®(x'(¢)) > r.
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(b) Let F(x(¢#)) >r — 8 and x'(t)x(¢t) = 0 for ¢t € [s,,s,]. Assume
that x'(+) > 0. By Lemma 3, we have

0= dy(¥(52)) = (¥ (N V(1.2) = [V (s.52)f(x(s)) ds
and so

(s,5,)
+52)

where 8, = inf{| f(w)|: F(u) >r — 8, u < sup,. olx(@} > 0.

(o) Let F(x(t)) >r— 8 and x(+)x'(z) <0 for ¢ € [s,,s,]. We can
assume that x'(¢) > 0 and x(¢) < 0. Again by Lemma 3, we have

d(x (1) = [ q,(t Ty fG(s) ds = 8y(s, = 1),

Bp(x' (1)) = &5 (X (5))W(s51,0) = [W(5,)f(x(5)) ds

> 81ft\lf(s,t) ds = 81ft( I b}ﬁ)ds.

s<t;<t

As observed earlier, replacing l_ls<, <, by 1_[s<, <, does not modify the
integral. |

Proof of Theorem 4. Suppose that Attr(L) is satisfied with L > 0. Let
x(¢) be a solution of (1) such that lim, ,, V(x(¢), x'(¢)) = r > 0. Without
loss of generality, we can assume that for any n > 0 the intervals [s,, s, +
i, and [s,,,5,., *+ i,s] are disjoint. If this is not the case, but there
exists k, such that for every n the intervals [s,, s, + i, and [s, 4, 8,4,
+1i,,4,] are disjoint, then (9) can be written as

ko a,®(x
V() = V0) - Ta(r(r) - ¥ ¥ 220D

t,<t t,<tj=1 0

and we can estimate the expressions a,®(x'(¢,))/k, on any [s +1i,]
independently of the other intervals.

We will now show that x(z) is oscillatory on [0,). Suppose x(¢) is
nonoscillatory. Since x(¢) and x'(¢) are bounded, lim, _, ., x'(¢) = 0. We can
apply Lemma 6 on each interval [s,,s, + i,] to estimate x'(¢) for suffi-
ciently large n > N. It follows from the boundedness of x'(¢) and part (b)
of Lemma 6 that x(#)x'(z) < 0 for ¢ large enough, so we can assume that
N is chosen large enough for this to be the case. Now, since {i,} is
bounded and condition (20) holds, it follows from Remark 4 that
IQSB(x’(t))I > g, min{l,¢ — s5,}, for some &, > 0. Then, from (9), we obtain

n’ f’l
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that

V() <V(s,) — ) Y ae min<1,®(¢g'(tk - sn))}
n>4N’ tke[snssn+i/z]
Syti,<t

for some positive constant &,. By the definitions of ¢, and ®, (21) implies
that the right hand side tends to —o as ¢t — %, and so we have a
contradiction.

Now, let x(¢#) be oscillatory on some half-ray [z,,%). Assume that
0 <L <A(r). Let

F~'(r—8) dx

A(r,8,¢) = f,F*I(rfﬁ) O (14 &)r—F(x))’

It follows from the Lebesque dominated convergence theorem that

gll_r}}](él_r}})A(r, 5,£)) = A(r).

Hence, there exist 8, ¢, and N such that i, < A(r, 8, &) if n > N, and
V(t) <r(1+ ¢)if t > sy. We can apply Lemma 6 with this § > 0. From
Lemma 5, we know that the lengths of the intervals where F(x(¢)) <r — &
are not smaller than A(r, §, ). Hence, there can be at most one zero of
x'(¢)in [s,, s, + i,], and there are three possible cases to consider.

Case 1. The interval (s,, s, + i,) does not contain a zero of x'(¢) and

x'(Ox(t) > 0 for t € (s,,s, +i,). Then, parts (a) and (b) of Lemma 6
imply that

b (¥ (1)) = min{hs (®1(8)), 8,lt — s, —i,l} > &5 min{1L, It —s, — i)
for some &5 > 0.

Case 2. The interval (s,, s, + i,) does not contain a zero of x'(¢) and

x()x'(¢) <0 for t € (s,,s, + i,). Now, parts (a) and (c) of Lemma 6 and
(20) imply that

|bs(x'(1))| = min{q')B((I)’l(S)), et — sn)} > &5 min{1,¢ — s,}
for some ¢,, &5, which are independent of n.

Case 3. There is a zero u, of x'(¢) in (s,, s, + i,). Then the intervals
(s,,u,) and (u,, s, + i,) belong to Cases 1 and 2, respectively.

We note that since x'(¢) is continuous from the left, x'(¢) = 0 at an
extremum of x(¢), while x’(+ + 0) = 0 can occur without there being an
extremum since b, = 0 is not ruled out for any #.
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Summarizing the above cases, we see that there is a sequence {u,} with
s, <u, <s, +1i,, such that one of the properties u, =s,, u, =s, +1i,,
or x'(u,) = 0 holds. For x'(¢), we obtain

|5 (x'(1))] = & minf1, It — u,]}

n’ n

with &¢ > 0 independent of n. We then have the estimate

V(t) <V(sy) — &, X Y oa min{1,¢(¢51(|tk - uHI))} :
n>AN’ tkE[S”, Sn+in]
s, +1,<t
where &; > 0 is a constant. Then, by the definition of ¢; and ®, (21)
implies that the right hand side tends to —« as ¢ — . ||

4. ATTRACTIVITY OF THE EQUATION (¢;(x')) + g(t)f(x) = 0

In this section, we apply the results of the previous section to the
equation

(dp(x)) +aq(2)f(x) = 0. (27)

The function f satisfies the same general conditions as before, g(¢) is a
nondecreasing step-function such that ¢(¢) =g, if ¢ €[¢,,¢,,,), where
0<g¢q,<q,,, and 0 <t, <t¢, , for every n=1,2,..., and ¢, > » as
n — . Note that this equation includes the equation

(P(1)p(x)) +a()f(x) =0

if p(¢) is also a step-function. Here, we give results which guarantee the
property
limx(t) =0 (28)
f— o
for the solutions of Eq. (27).

Since the publication of the famous Armellini—Sansone—Tonelli theo-
rem [7, 20], there have been a large number of papers devoted to this
problem in the case ¢g(u) = u (see [1, 2, 5, 13, 14, 18] and the references
contained therein). There have also been some extensions to other more
general systems such as the half-linear case of Eq. (27) (see, for example
[6D.

It is known that the condition lim,_,, g(¢#) = © is necessary but not
sufficient for the zero solution to be attractive [17]. The Armellini—San-
sone—Tonelli theorem says that if In g(#) grows “regularly” to infinity, then
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the zero solution of the linear equation (f(u) = ¢g(u) = u) is globally
attractive. In order to describe the concept of “regular growth” we first
define the density of the interval system (a,, b,), i = 1,2,... to be

IR L

. L (b — a;)
e = limsup ——.

n— o bi

Then we say that g(¢) — o irregularly as t — o, if for every & > 0 there
exists a system of intervals {(a;, b;)} of density &, such that the increase in
q(t) on (0,0)\ U, (a;, b,) is finite; we say that q(¢) — o regularly as t — o,
if it does not grow irregularly.

The notion of regular growth roughly means that ¢(#) cannot tend to
infinity on a set of very small measure. Although this condition is not easy
to verify, and is not very sharp, it has remained a “milestone,” a starting
point, for subsequent results. Several conditions require higher differentia-
bility of g(¢) to avoid the difficulties due to the concept of the irregular
growth (for details and references see [13]). A more natural approach is to
follow and improve the original irregular growth concept. Such results are
called “sequence-of-intervals criteria,” and give finer restrictions on the
measure and the distribution of the irregularly growing parts of ¢(z). Since
the oscillatory behavior of the solutions is often the main concern, and this
behavior can be investigated easily in the case of linear equations, most
such results are for this case [1, 14, 16, 18, 20]. Equation (27) with
¢g(u) = u and with a very irregularly growing step-function g(¢) was
treated in [11]. Hatvani [15] investigated the step-function case of linear
equations from a statistical point of view.

Unlike most earlier results, our method is essentially based on, and
hence the attractivity properties mainly depend on, the nonlinear structure
of the functions d’B and f. Here, we generalize the results proved in [11] to
the equation (27). Using the generalized Liouville transformation, we will
transform Eq. (27) to an impulsive system (1).

Let us apply the transformation

r= [ () du, (29)
0

to Eq. (27), and use the notation “-”:=d/dr. Let T > 0 be given, and
apply (29) to the equivalent integral equation

Bp(x'(1)) = (¥ (1)) = [a(5)f(x(5)) ds.
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Since x' = xgq'/*1(¢), we obtain the equation
qP/ POt dg(2(7(1))) = P/ P0(1) dp(%(7(T)))
= [ g (x(s(w))) du

Let ¢, be a jump point of ¢(¢t), 6> 0,¢t=1¢,+ 8, and T =¢, — 5. Since
the integral on the right hand side is continuous, if 6 — 0, we obtain the
equality

g/ (1, + 0) gy (7, + 0)) = ¢P/F*0(1, = 0)y (i(7, — 0)),

where 7, = 7(¢,). Thus, we obtain the jump condition for x(7) at 7,
namely,

by ((7, +0)) = (q”ql

(;bﬁ(x(Tn - 0))

)B/(B+1)

n

qn_ 1/(B+1)'
) ol

due to the form of ¢z. On any interval (¢,_,t,), the transformation (29)
yields the equation (7) without impulses.

Consequently, (29) transforms Eq. (27) into the system with impulse
damping

(ds(£)) +f(x) =0, 7#7,
x(7, + 0) = x(7, — 0), (30)

g, 1/(B+1)
x(Tn+0)=( — )
q

i(r,—0), n=12,..,

n

where
_ (" 1 1 _ 1 1
Tw = /(; q AL )(Ll) dbl and Tuv1 = T = qn/(BJr )(tn+1 - tn)'

Using the notation from the previous section, we have

1/(B+1)
bn=(qn1) and an=1—qn71,
qn qn
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and it is clear that 0 < b, < 1. The energy V' defined in (5) for the
impulsive system (1) has the form

P(x'(1))

V(r(1)) = P(H()) + F(x(m) = =55

+F(x(1))
for the system (27).

Now, we are ready to apply our results in the previous sections. It
follows from Theorem 1 that no solution of (27) can tend to zero if

N
im [T& >0, e, limg, <o (31)
N—-» =1 qn N->

If f(u) = ¢s(u) and

oo q _
I1 (32)
n=1
then Atkinson and Elbert [3] show that there exists a solution tending to
ZEero.

Using condition Attr1(L), we can formulate an analog of Theorem 4.

THEOREM 7. Suppose that there exist a subsequence {t, } of {t,} and a
sequence {I,} of positive integers such that t;, >1t, ., . Assume that the
following conditions hold.:

Ky, +1,—1
limsup Y ¢/ V(1 — 1) =L <o (33)
n—® i=k
q
lim inf —*— > 0; (34)
I= Gy, +1,-1
= 111/8 ) 9k, -1 i, +1,-1
Z (t v = 1) q;/ P min{1 — 1= =0, (35)
— i Ak, +1,

n

Then for every solution x(t) of (27) either lim, ,  V(¢) =r =0 or A(r) < L.

The sharpness of our results can be shown by choosing p =
q)/B*D(¢ ., —t,) = const. in Theorem 2. Moreover, from Theorem 5 we
have that if the conditions of Theorem 7 hold and 0 < L < A, then the
zero solution is asymptotically stable. If, in addition, 0 < L < A_, then the
asymptotic stability is global.

Because of the specific importance of the case where f(x) = ¢ (x) for
a > 0, we formulate a consequence of Corollary 6.
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COROLLARY 8.  Let f(u) = ¢,(w), and g/ F*(t, ., —t,) =L > 0. As-
sume that

Y min{l S R } = o, (36)
n=1 qn dn+1

Then the conclusions of Corollary 6 hold.

Corollary 8 generalizes and improves a theorem by F. V. Atkinson [1,
Theorem 3] for Eq. (27). Condition (36) can be written in the equivalent
form

Y rnin{lnanrl ,In I } =
n=1

qn n—1

that is used in Atkinson’s theorem. This form expresses the importance of
the growth of In g(¢).

5. GENERALIZATIONS

Our results here can also be derived under more general conditions.
Instead of ¢z(u), we can consider functions ¢(u) that are positive homo-
geneous. For such functions, @ is defined as in (4), and the key estimate
(8) for V(z, + 0) and Lemma 3 for ¢ can be easily proved. But now ¢ is
not necessarily odd, and consequently, f(u) is not assumed to be odd,
either. The function A has to be defined for both positive and negative
halfcycles, A (r) and A_(r), respectively. Then, in this more general
setting, A(r) can be defined by A(r) = min{A, (r), A_(r)}. The proofs of
our results can be carried through under the same conditions, where the
previous functions are replaced by these new ones.

Finally, note that since A(r) can only be calculated in special cases (for
example, for power functions), computer methods and comparison results
are often useful in estimating the value of A(r). The following lemma
generalizes Theorem 3.1.3 in [19].

LEMMA 7. Let ry > 0 be given. If |/ > 1fw)| and |¢pw)| < |(w)|
foru € {u: F(w) <ry, ®(u) < r,}, then -

ds ds

Aﬁg’(F(x)) Z/(; 971(13()6) _ ﬁ(s)) S/O O I(F(x) — F(s))
= A, ,(F(x)) (37)

forx € {u: F(u) < ry, ®(u) < ryl.
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If f(u) = ¢ (u) and @(u) = ¢,(u), then from (37) we obtain that
Af,d)(F((a + 1)r)1/(a+1)) > Ma,Br(‘B—a)/(nz+1)(B+1)’

where M, ; is the constant in (17).

As an example of our remarks in this section, we formulate a corollary
of Theorem 5 in this more general setting.

THEOREM 9. Assume that Attr(L) holds for Eq. (1) with L > 0, and
there exist a, B, and ry such that |¢,(w) | > | f(w)| and |¢s(w)| < [Pl for
u € {u: Fuw) <ry, ®(u) < r,}. The zero solution of system (1) is asymptoti-
cally stable if any one of the following holds:

(@ a=BandL <A
(b) a > B and L is bounded,
(¢) a<BandL =0.

A region of attractivity is F(x(0)) + ®(x'(0)) < R, where R = r, for cases (a)
and (c), and R = min(r,, F((a + DV (** 1)(ﬁ)(3+ D/CB=a) for case (b).

Assume, in addition, that there exist o' < B' such that |, ()| < |f(w)]
and |d>B/(u)| > )| for u € {u: F(u) = ry, ®(u) > ry). Then the asymp-
totic stability is global if either o' < B' and L is bounded, or «' = B’ and
L<A,.
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