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EDGEWORTH EXPANSIONS AND BOOTSTRAP
FOR DEGENERATE VON MISES STATISTICS

BY

F. G(")TZE*.(BIELEFELI‘)I) AND R. ZITIKIS** WILMUS)

Abstract. We prove Edgeworth expansions for degenerate von
Mises statistics like the Beran, Watson, and Cramér-von Mises
goodness-of-fit statistics. Furthermore, we show that the ‘bootstrap
approximation works up to an error of order O(N~*?) and that
bootstrap based confidence regions attain a prescribed confidence level
up to the order O(N™%).

1. Introduction, main results, and some examples. Let {Q, o, P} be
a probability space, and let X: {Q, &} — {4, #} be a random variable. The
distribution function of X will be denoted by F. Furthermore, we shall denote

by X;, X,, ... independent copies of X. :
In this paper we consider various approximations for the (degenerate) von

Mises statistic

N N
WaNY Y HEX;, X,

j=1k=1
where H: A x A — R is a symmetric measurable function which is assumed to
be degenerate with respect to P, that is

E(H(X #X,)1X,) =0 P-as.
Furthermore, we assﬁme '
E|HX, X)|+EH?*(X,, X,) < + .
We use the 'notation
Py(x)2 P{Vy < x}.

Our goal is to investigate the following three closely. related problems for

the statistic Vy:
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1) A bootstrap approximation;
2) The bootstrap based coverage probabilities;
3) Edgeworth expansions. ‘

The bootstrap version of ¥V, we use in this paper is defined (see [17]) as
follows: »

VEdnTt lkZIH*(X;",X,T),
. j=1k= e

AL

H*(x, y) £ H(x, )~ E*H(x, X§)—E* H(X{, y)~ E*H(XE, X3),
where E* denotes the expectation with respect to the empirical distribution
function F* given the sample X,,..., X.

We shall use the notation °
- PHx) L P*{V* < x}.
The limit distribution of , say P., was described by von Mises [43], and
it is the distribution:of _the random variable :
V. LEHX, X)+ Y 4(GE=1),
k=1

where 1, Ayyeees |Ag] = [45] = ... are eigenvalues of the self-adjoint Hilbert—
—Schmidt operator S:'L,(A, F) — L,(4;, F). defined by

SFAEH(, X)f(X) = VHC, ) f)F@y). -
Here G,, G,, ... are independent cop_ig:é of 2 Gaussian random variable G with
mean 0 and variance 1. See [31], [47], [49], and [19] for more details on this
representation.

In the same way we may describe the distribution function P% of the
random variable V* (4 the weak limit,-as n — + oo, of the statistic V.* when
the random variables X, ..., X, are fixed). .. .

If it is not stated otherwise, we shall always assume that the following
holds: '

The operator S has an inﬁnite n‘urhb‘;er;o"f Hon-zero eigenvalues ;, and the
random variables H(X, X) and H (X1, X,) have moments- of all orders. -

In the sequel we use |||, ‘to denote the sup-norm.
THEOREM 1.1. We have

(L) , |Py—Pill., = Op(N~12).

For the general theory of the bootstrap we refer to the papers [20], [13],

[21],-[2],-[38],-and-the-monograph (337 : ,
Previous results on the CLT for degenerate von Mises statistics (which will
be discussed below) show that the rate of convergence in the CLT for these
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.<tics might be of order O(N~1*%) for any ¢ > 0, and even of order O(N %)
Statlsingl Tclf'rlll; ts,moothness c(onditio)ns on the kernel H  and the distribution
furr(::tion F are imposed. These facts are the main ing_redient§ in the proof of the
following theorem on the bootstrap based co\nﬁdence__rleguj)ns; see [3213, [8:111,
and [33] on this topic. In the theorem below we use P} ™" (a) to denote the o-t
quantile of the function P%. .

TueOREM 1.2. For each 2€(0, 1) and ¢ >0
(1.2) P{Vy =Py '@} =1-a+O0(N"'"9), N- +oo.

At this point a natural question arises: Does Theorem 1.2 hold vx.rith e= 0.?
An inspectation of the proof of Theorem 1.2 shows that (1.2) hold§ with e = 0 if
the distribution functions Py and P§ have E_dggworth expansions pf order
O(N~1) and Op(N~'"?) for some d >0, respectively. In order to prove such
a result we need to require more than moment condl'flons and assumptions on
the limit distribution. As an example reflecting this fact we formulate the

following result:

There exist infinitely differentiable and rapidly decreasing functions
ay, ..., O Such that the asymptotic expansion

(1.3) Py(x) =P, (x)+a,(x)N"*+ ... +a,(x) N "*+R(x)

holds with a remainder term R satisfying, for any ¢ > 0 and some constant ¢ > 0,

d ’.‘E Z'V‘}
<Zi;> exp{itVy

R ¢ -
(1.4) sup |x|mlR(X)|‘<NT+f+C. sup

xeR OSpu<m NI-eg[t]SNk+1

dt_

for all NeN. |
'This result appeared in slightly different forms in [247, [26], and [27]; see
also [7] and the survey paper [6]. . . 7
- Thus our further task is to investigate which assumptions on H and the
distribution of the X yield bounds like - A ' : '
o " sup [(d/d"Eexp{itVy}| = ON"Y, N +oo,

. lze® o S - ,
with some functidn ¢: N — [0, + o0) such that g(N) - + oo for N - + o0, and
for every L>0. . . SR . . ,

We assume that 4 = R?, and that the random variable X has a non-zero
absolutely continuous component. This means that for. some ae (O, IJ the
distribution function F of the X. allows the representation

L5  F=aF+(1-oF,,

where F, and F, are distribution functions, and F is absoi;u'tél}_f_"mntinuous.
We use Y, Y, ..., Yy to denote iid. R%valued random variables having the

distribution function F,,.
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We use Zf(x) to denote the i i i
N : gradient of a function f at a point d
if £ is a random variable, let ¢ denote a symmetrization I<)3f £ Tek Also,

THEOREM 1.3. Let me Nu{0} and

(1.6) EHX,, X)"+EHX,, X,)" < + .
Let B and C be some cubes in the space R® such that
.7 P{YeB} >0, P{YeC} > 0.

LetZ,, Z,, ...be independent R*-valued ] } 1
P ued random variables having the distribution,
Sy(x) EN"YHH(Z,, )+ ... + H(Zy, x)}.

(1.8) ?vupNDP{sup 1Z28SyX) = N*} < +o0;
eN . xeC
" (1.9) fvulg NPP{sup |28y (x)| > 1/N"} < +o0;
€, xeC .

(1.10) ?vuIENDP{sup sup [|ZSy(x)—2Sy(»)l = 1/2dN*)} < +

€. J x,yeC; ’
v_v_hi;'el Cni=1, o [NY]? are the subcubes of the cube C such that Vol(C))
= Vo (Cd' Pforallj=1,...,[N"1% and ||| denotes the Euclidean norm in thle
space R°. Then, for every ¢ >0 and L > 0, |

(1.11) Is,up ld/d)"Eexp{itVy} = ON"L), N- 4+
) t:|t} = Ns '
Some simple corollaries to Theorem 13 i in i
. .3 are given in Section 5 (see
(ljlorollanes 5.1-5.3 bel.ow). Let us note that in some special cases the Validit§f of
tsg boun"d (’1’.11) was 1nv’est1gated by Sadikova [48], Yurinskii [55], van Zwet
][3 ], Csorgé and Stagho [18], Gotze [26], Zitikis [56], [57], Helmers [35]
entkus et al. [7], e.tc. See also the survey paper by Bentkus et al. [6]. ’
o z\ﬁ_ tSh?Ht _ntc-)w cilscuss applications of Theorems 1.1-1.3 to some good-
S-oi-it statistics. Let A =(0, 1), and let X = U : ]
-uniform random variable. , Whete U denotes & (0, 1)

B s . e 2 ’ .
eran’s statistic By. Let by, by, ..., Y b? < +c0, denote the Fourier

coefﬁgients vlvith réspec’c. to the basis {¢"*"*, Ie Z} of a probability density f on
the circle S* of unit circumference. If the function H is given by

(1.12) | Hi(x,y)£2Y bZcos2nl(x—y),
=1
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then Vy 18 Beran’s statistic B%; see [9], [10]. Further investigations of the
statistic B2, and more general ones as well, are done by Mardia [41], Giné
(231, Prentice [46], and Baringhaus [4]. ' .
STATEMENT 1.1. Assume that the number of non-zero coefficients by, by, ... is
infinite and Y. (b}I> < + 0. Then '
(i) Theorems 1.1 and 12 hold for Beran’s statistic BZ.
(il) For every fixed me NU{0}, L > 0 and & > O the bound (1.11) holds for

all teR such that [t] > N°
(iil) There exist infinitely differentiable and rapidly decreasing functions

. such that, for every fixed k and me NU{0}, the asymptotic expansion

qs A5 -+

(1.3) holds with the remainder term R satisfying

(1.13) sup [x|*|R(x)l = O(N~*71), N - +oo0.
xeR -

In the range N2+ < |t| < ¢, N for some ¢; and any &> 0, the bound

(1.11) is given in [40].
Thus, in view of Statement 1.1 (iii) it follows that for Beran’s statistic

B% the bound of Theorem 1.2 holds with ¢ =0 as well.

Watson’s statistic ‘W2. Here the function H is given by
Hz(x= y) 4 EI(X, U)I(y’ U)9 ’

where I(x, v) £ I{x < v} —v—E(I{x < U}—U). Thus V} is Watson’s statistic

Wi (see [54]).
STATEMENT 1.2. (i) Theorems 1.1 and 1.2 hold for Watson’s statistic Wi.
(ii) For every fixed me Nu{0}, L > 0 and & > 0 the bound (1.11) holds for

all teR such that |t| = N°

(ili) There exist infinitely differentiable and rapidly decreasing functions
a,, a,, ... such that, for every fixed k and me Nu {0}, the asymptotic expansion
(1.3) holds with a remainder term R satisfying (1.13).

In the case m =0 the result 1.2 (iii) was proved in [24].

Thus, in view of 1.2 (iii), the bound given in Theorem 1.2 for Watson’s

statistic Wi is valid with e =0 as well.

The goodness-of-fit statistic w%(q). Let q: (0, 1) > [0, +0) be a measura-
ble function such that | x(1—x)gq(x)dx < + co. Here the function H is given by

H(x, y) £ EJ(x, U)J(y, U)q(U),

where J(x, v) £1{x <v}—v, and Vy is the o’-statistic; see [42] for an
exhaustive review on w?-statistic. Let us recall that in the case g(x) = I for all
xe(0,1) this is Cramér-von Mises’ statistic, and in the case g(x)
= 1/x(1—x) for all xe(0, 1) it is Anderson—Darling’s statistic.
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STATEMENT.1.3. (i) Theorems 1.1 and 1.2 hofd for the Cramer—von Mises ang
Anderson—Darling statistics. : .
(i) Let me Nu{0} and assume that

. N 11 , o ,
(1.14) u(m) 4 j'{_[ sq(s)ds}md1,t+j~ {j sq(s)ds}"'du < 4.
- Furthermore, assume that there exzsts a non-empty znterval (v, 5)c(0 1) such
that ,
ris q(x) >0 for all xe('y, 0),
and, for some numbers >0 and ¢ >0,
(1.16) lgx)—qW < clx—yI°  for all x, ye(y, d).

Then, for every fixed ¢ > 0 and L > 0 the bound {1;11) holds for all teR such that
ltl = N&

(iii) Fix k, me NU{0} and assume that p(M) < + o0 for M =k+2 and
M =m. If the assumptions (1.15) and (1.16) are satisfied, then there exist
infinitely differentiable and rapzdly decreaszng functions a,, a,, ... such that the
asymptotic expansion (1.3) holds with the remainder R satzsfymg (1.13).

In the case p = 2, Statement 1.3 (i) improves Theorem 2.7 by Beritkus et
al. [7] where the same bound (1.11) was proved under the condition
sup{|q’ ): xe(, 8)} < +co (instead of (1. 16)) and in the region [t| > N1/2+¢
only. Let us note that if assumption (1.15) is valid, then there is an infinite
number of non-zero eigenvalues 4;; see [7] and [6] for more details on this
subJect Statement 1.3 (iii) improves the correspondmg results for w -statlstlcs
given by Bentkus et al. [7].

In view of Statement 1.3 we claim that for the Cramer—von Mlses and
Anderson—Darling statistics the bound given in Theorem 1.2 is vahd with-e =0
as well.

2. Proof of Theorem 1.1. Let S*: 2(21, F*)— L,(4A, F*) be the operator
deﬁned by the formula :
' S*f4 E*H*(, X*)f(X*) JH*(, J’)f(y)F*(dy)

Denote the eigenvalues of S* by A7, .‘ . A% | |A%] = ... Given the random

- variables X,,..., Xy, N fixed, V* as n tends to - 1nﬁmty .converges in

distribution to the random variable
V* E* H*(X*, X*)+ Z A*(Gk—l)

LemMa 1.1. For every K e N and every‘A 0 there exists a constant c such that

2.1 P{|A%] IlKl/\/ZK} <cN™4
for all NeN.
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Proof The idea of the proof is based on the proof of Lemma 4.1 by Bickel
et al. [14]. Let us first note that without loss of generality we may assume
Ag#0 and A > 1. Furthermore, let e, ...,'e, be the eigenfunctions of the
operator S  corresponding to the eigenvalues A4,,..., g, and let
S, Ly(A4, F) > Ly(4, F) be the (self-adjoint and positive-definite) Hil-
bert—Schmldt operator correspondrng to the kernel

(x, ) EH(x, X)H(X, y).

Then 7, .. , A% are the eigenvalues of the operator S, corresponding to the
elgenfunctrons €5 .o Cx- Deﬁne

A U {Ile = 1/2}

where |||+ denotes the norm in the space L,(A, F¥). Since Ee2(X) = 1, the
quantity 1—P(s/) does not exceed Z - P{EeZ(X)— e, || & = 1/2}, and there-
fore 1—P(«/) <cN~* Thus we get ’the bound .

22) P{Mz"él<llxl/\/2K}<P({ll MKI/\/ZK}ﬂﬂ)HN 4

Let 6,, denote the Kronecker delta, and let

B4 ﬂ ﬂ{|N ze(X)e(X) 8,4 < 1/(2K)}.

p1q1

We clearly have

I—P(%#) < Z 2P{|N ze(X)e (X)— 5,,q] 1/2}

p=1¢=1

and, therefore, 1 —P (%) < cN 4. This bound together with (2.2) imf)lies

(23)  P{E <IdiV/ZK ) < PUAH < |Agl/2K }n o 08)+cN 4,
and therefore our further task is to show that the bound (2.1) holds for the
quantity P({l/lKl [Axl/A /2K}rm¢nﬂ) instead of P{MKI |/1K[/,/2K}

Let us examine the event 4 more closel 1?’ 'Assume that c,e, + . —i-cKeK = 0

in the space L, (A4, F*). ThlS means that Z _,Cpep(X)=0forallj=1,

Thus
N

0=N-lz|zc e, (X)) —zc,,+z z q{N ze(X)e(X) épq}

j=1p=1, 1 . p=1g=1 j=1

> ¥ (1/2K>{Zlcl} %Zlci-
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Therefore ¢, = ... =c, = 0. Thus the functions e, ..., e, are linearly indepen-
dent in the space L,(A, F*).

~ Hence ef L eflle,llex, p=1, ..., K, are well-defined (on the set &) and
linearly independent in the space L,(4,F*) (on the set #). Thus
9 4 span{ef, ..., ef} is a K-dimensional subspace of the space L,(4, F*)T
' Furthermore, let S§: L,(A, F*) - L,(4, F*) be the (self-adjoint and posi-
tive-definite) Hilbert-Schmidt operator corresponding to the kernel

(x, y)—> E*H*(x, X*)H*(X*, y).

If ef, ..., ef are the eigenfunctions of the operator S* corfesponding to the
eigenvalues A, ..., A%, then A}2, ..., A}* are the eigenvalues of the operator
S% corresponding to the eigenfunctions ef, ..., ef. Since ¢ is a K-dimensional
subspace of the space L,(4, F*), the following estimates hold:

(2.4) 322 = sup inf 1520 o 1 13le <3S e

# ser 1fle " seg 1fle ™ oo 1S3
where # denotes an arbitrary K-dimensional subspace of L,(A, F*). Since
Opatp = <S¢, e,>r, We have
(2.5) (S%eg, e dp = 0,0 A2+ &g,

where <:, > and <, ")« denote the inner products in the spaces L,(A, F) and
L,(A, F¥), respectively, and ’

4 ’ '
épq = <S2ep9 eq>F_<S§e;<)>9 e-§>>F*°
. K .
Furt%lermorze, since f = ZP=1 cyes for some ¢ £ (c,, ..., cg) and [ed)& = 1, we
obtain ||f# < K|c||?, where [c|? £ c3+...4+cZ and, therefore,

(S S = GpaiD gt s €+ Erdpae 1oty €

.....

2 2
> Ax|le]l =, na [l lel? > {i?c—p’qglax Klqul} If1&/K,

wher.e {*, > denotes the inner product in the space RX. Applying the just
obta;ngd estimate in the right-hand side of (2.4), we get

>0k~ max [5,lV/K,
) pq4=1,..,K

.....

which implies

(2.6) PIARl < IAgl//2K }nof nB) S P{I}/2K) > {i3~ max |5, [}/K}

Pyd=15..

.....
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Let us show that the right-hand side of (2.6) does not exceed cN ~4 _ This could
pe proved as follows: Write ¢,, as the sum 4, +4,+4;, where

Al 4 <S2ep? eq>F_<S2ep? eq>F*’ AZ é<SZe§>’ e‘§>>F*{”ep”F*”eq”l;'*—1}9
8y 25,0, €9y —(SEel, 9.

One could easily prove that for every j=1, 2, 3, every 4> 0 and every
positive constant c,, the quantities P{|4;/ > c,} do not exceed ¢N ~4. Since
A% > 0, this completes the proof of the lemma. =

LEMMA 1.2. For every A >0 there exists a constant ¢ >0 such that
o P{\/JV |Po—P% | =a} <N A+ca™4 ‘

for all NeN and a > 0.

Proof Because of Lemma 1.1 we only need to show that
(2.7) '
P{/N |P,—P%l, > a, 12 > 4l//2k, k=1,...,K} ScN " 4+ca™
for a number K depending on A. In the following we estimafe [Py — Pl
using Fourier’s inversion formula. Let us first state some auxiliary results.

Let L,(A, F) denote the complex Hilbert space L,(4,C,F) of all
measurable functions f: A — C such that

11 £ Ef(X) f(X) = ;flffd_F < +o0.

The imier product in this space iwill be denoted by (-, ‘). Also, let I denote the.

identity operator, and Z denote the trace operator in the space L, (4, F). Then
Eexp{itV,} =exp{T},
where

t
T, 4 i#EHX, X)—2 [ Z{SI—2ivS) " S} vdv.
0

A similar representation holds for the quantity E*exp(itV%}.
Let us prove that there exists a constant ¢ > 0 which might depend on
K and Ay only, and such that, for all we[0, 1],

238) ¥ 4 jexp{wT*+(1—w) T} < c(1+]t) ">

Indeed, the representation

Fe{SU—208)71S} = (ST + 402518} + 2007 {SU+ 4575757}
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shows that

' - © a2
2.9) ReZ{SUI~2ivS)" 1S} = Y 2

WS 1+ 40232

A similar representation holds for the quantity Re - S*([ — 2.’ -1 o
well. Therefore. q Y ReTp {S*(I—2ivS*)~15%) 44

(2.10)
. 2 ‘
-2
| exp{ w(j:kzl 4 Eyr T vdv—2(1— W)'c[kz1 Wvdu}
Since A#? l,f/(zk) for all k=1,...,K, the bound (2 10) implies

¥ <c(1+[t) ™2, which completes the proof of (2.8).

Starting from (2.8) we may use Fourier’s inversion formula t
o bound t
quantity [P, —PX| . We get he

@11 P —P% j 7 I exp{i
R

F urthermere, the bound (2.8) implies

Vo}—E*exp{itV¥}|dt.

212) . @, =

O Sy

XD (W T+ (L) T e {T* — T dwd < o,

where | - |
@ 4 [ (1)1 (T~ T,

- __Let us p;dve the e_stimate '

(2.13) P{/N &, >a)

which clearly completes the proof of the lemma.

Let us mtroduce some add1t1onal notation. Denote the resolvent operator
of S by R(, §), that is R(z, S) £ (zI—8)"1 for' any complex number z. Unless
otherwise stated, we shall always assume z = 1/(2iv). With these notations we
may rewnte T as follows ‘ ‘ o U

ScN ™44 cq4

2

T—ztEH(X X)+ fE(zR(z S)H(X o H(X V>pdv:

Also, a similar representation holds for the quantity 7;* as well. Therefere,

YT~ T} = iy 417 [ hy(o)dv,
. L - 0 v'
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where ' T *
h, 4 E*H*(X*, X*)—EH(X, X),

hy(0) £ E*GR(z, S H*(X*, ), H¥(X*, e —EiR(z, H(X, ), H(X, ). _

-~

Co_nsequently, »
@, < clhy|+4[h,],

where

AThy] 2 [(L+1H)21~* by () dod.
R . .0 .

It is easy to see that P{\/N |h;| > a} < cN~44ca~4. Therefore; in order to

prove (2.13) we only need to show
(2.14) P{/N A[h,] > a} <cN “*+ca™™.

Here we use the estimate A‘[hzj <4 [h3]+A [h,]+4 [h5] ‘where h3(v) h4(v)
and hs(v) are the following three quantities, respectlvely

E*{R(z, S¥)H*(X*, '), H*(X*, ))p—E*{(R(z, S*)H(X*, -), H(X*, -))F;
E*{R(z, S*)H(X* Js H(X*, )>F*—E*<R(z S)H(X* ), H(X*, ))F*,_
E*(R(z, )H(X*, ), HX*, )>p—E(R(z, H(X, ), H(X, ).
Some straightforward calculations show that

P{/N A[h] >

for j =3, 4, 5, which proves (2.14) and the lemma. =
We will now prove Theorem 1.1. By Theorem (2.3) in [24] ‘we have

(215) ”PN—Peo”oo < cﬁglglg/\/ N ]

where 8, £ E|H(X, X)>+E|H(X,, X,)|°. Let us note that the cited result also
yields the bound

(2.16) IP§~ Pl < c(B3)° (3 °//N | |
where f% is similar to 5 with the distribution function F replaced by the em-
pirical distribution function F*. Thus, the bounds (2.15) and (2.16) and’ Lem-

<cN 4ca 4

‘mas 1.1 and 1.2 together complete the proof of the theorem. m

3. Proof of Theorem 1.2. For the proof of Theorem 1.2 we need the
following lemma (cf. Lemma 1.1 by Beran [10]) several times:

LemMMmA 3.1. For each-ae(0, 1) we have P, (P3'(2))> 07

Proof. Without loss of generality we may assume that A, > 0. It is- clear
that the lemma follows from the following result: ’ :

22 — PAMS 15
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There exists a point x,€[ =00, + 00) such that P4(x) =0 for all x < X
and P.(x) >0 for all x > x,. '

Let p and g denote, respectively, the densities of the random varia-
bles 4,(Gi—1) and Y, 4(GZ—1). The density p vanishes for all x < — Ay
and is positive for all x > — 4,. Since the function P is continuous, the densi-
ty g is not degenerated. Our claim follows from the representation
P, (x) =  p(x —2)q(z)dz such that P, (x) = 0 for x < x, and P/,(x) > 0 for all
X9 < x < z for some zeR. The assumption P, (z) =0 now leads to a con-
tradiction with P (x) >0 for xo<x <z. m

Without loss of generality we assume ¢ > 0 in the proof of Theorem 1.2 to
be small (say ¢ < 1071°) and N > N, where N, is a large fixed constant (which
might depend on ¢ >0 and ae(0, 1)).

We have

3.1 P{Vy=P§ o)} = P{P{(Vy) > o} = P{(PF—PL)(Vy)+ PL (V) > o}

Let B, = N~'*% Using the bound (2.5) of [24] (in the case s = 4) and
Lemma 1.1 we get, for every 4 > 0,

P{I|P%—P%ll, = Bo} = ON4).

Therefore, using a Slutzky argument (see Lemma 3 onbp. 16 in [44]) in the
right-hand side of (3.1), we get the bound (1.2) provided that

(3.2) P{Vy 2 PL10)} = 1-y+OW™1™9
with y = a+f,. ‘ :
Furthermore, since P, (P5'(y)) =7, we obtain
_P{VN>P?0_1(?)} »
= 1—y+P{H—P5 ()4 P10) > P2 ()} —P{V, > P3'0)).
Thus in order to show (3.2) it is enough to prove |
(33) 42 [P{H—PL0)+P210) > }—P{Ve > H. = ON 1),

Write q(f) £ ¢,(f) £ f~*(»), and let h £ P5L—P,,.
Since P,(P5'(y)) = const(P,,, @) >0 (recall that N > c,, where ¢, is
a large fixed constant, and note that P, (P5*()) > 0), we infer that the quan-
tity ‘ : .
G PR A —h(PS )/ Pu(PS ()

is~well—defined—We—shall—show—at—the—end—of ~the proof thaton—a -set of
probability close to 1 the quantity ¢'(P,)(h) is actually the directional
derivative of the function g at the point P in the direction h.)
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An applicétion of ‘Sl‘utzky arguments shows that the quantity 4 does not
exceed 4,+A4,+4,, where

4, £ P{lq(P%)~q(P)—q (P )(h)| > Bo}s
43 £ supP{x—Bo < V,, < x+f,}.

xeR
Using the fact that the Fourier transformation of P decreases rapidly, we
easily arrive at the bound 4; < ¢f, = O(N~1*%). To prove the same bound for
the quantity 4, note first (see some details below) that, for any fixed real x,

v
(3.4) h(x) = N1 Y f(X;, x)+71y,

i=1 .
where f is a measurable function, the iid. random variables f(X j» X) are
centered and have finite moments of all orders. Furthermore, the remainder
term ry is such that for every 4 > 0 there exists a constant ¢ > 0 such that

- (35) P{N|ryl 2 a} < cN"44ca™4

for all NeN and a>0. X

The asymptotic expansion (3.4) with the remainder term ry as in (3.5)
could be proved by using the Fourier transformation and (with slight
modifications) following the lines of the proof of Lemma 1.2; we omit the
details of the proof. Using Slutzky arguments together with the bounds (3.5)
and 4, < cf, we obtain, for every 4 > 0,

(3.6) N
N

A, < |P{Vy+ N1 Y f(X}, x)/Pin(xg) =} —P{V,, =}, +O(N~1+9),
=1

where x, £ P2*(y). The first summand on the right-hand side of (3.6) is of the
order O(N~1%%); this fact follows from Corollary (3.20) by Gotze [27] (see
Example 3.7 therein as well). Thus we have proved 4, = O(N~***), and still
have to show

3.7 B 4, =O0(N"1+9),
Let B, £ N~12%¢ and put o £5N... N, where

o £ {F > W/ 2K}, i (W90, < By}, k=0,1,2

(A denotes the x-th derivative of the h; h® £ h). We have already known that
1—-P(e) = O(N™*) (Lemma 1.1) and 1 —P(24,) = O(N %) (Lemma 1.2). Some
slight modifications of the proof of Lemma 1.2 lead to the bound (valid for
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every fixed k=0, 1,2,...)
(3.8) P{/N |h®| , = a} < cN 4+ca™4,

which shows that 1 —P(sf,,,) = O(N~4) for x = 1, 2 (we omit the details since
they are straightforward).

Therefore, we may restrict our analysis to the set &/ only. On this set, for
some constants ¢, and ¢, which do not depend upon N and 7€[0, 1], the
followmg two bounds hold:

HH ) > ¢, >0 and  |H/(HD0)|<co where H, £ P_ 41,
This leads to the following Taylor expansion (with all the quantities well
defined) for q(P%):

C.I(P )—CJ(P )+4q' (P, )(h)+f(1‘f)4"(H)(h)2dT

wher.e‘ ' ‘ : :
' (HY(RY? =2 ( l(v))h’( ) HH ()
— h(H; 1) HY (B G HAH @)
After some tedious but elementary calculations, we obtain
| < P{hl o K]+ 1512 > Bo} +ON~4),

which together with the bound (3. 8) completes the proof of (3.7), and of the
theorem as well. m

- 4. Proof of Theorem 1.3. In the proof we shall use the following lemma:

LEMMA 4.1. Let 0<a<b<1 be any numbers and let g be: a function
differentiable on(a, b) such that sgn g'(x) = const for all x e(a b), and, for some
numbers ®.>0 and ¥, . L

<lg (X)I ¥ for all x¢&(a, b).

Furthermore let h be a functton integrable on (a b) such that, for some
r>0,
h(x) =Y for all xe(a, b).

Then, for all T0=0 and all © such that || > o,

“1) 4 [j exp{itg(x)} h(x)dx]| .
< [h()dx— @Zs{i—ﬁ min{c3, 1}(b—a)®.
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Proof. With some slight modifications we shall follow. the lines:of the
proof of Lemma 2.1 by G6tze and Hipp [30]. Without loss of generality we
assume that sgng'(x) = 1. Because of h(g~*(x)) = Y and ¢'(g ( “H(x)) < ¥ for all

X€ (g (a) d g (b )): we get »

9(®) -1 Y g(d)
(j") exp{itx} {—((——_—1%?))5 _—q—'} d l = (ja) exp{itx} dx|

jh(x)dx——{g(b) g(a)} +—| f exp {nx} dx|.

a(a)

42  I<

Furthermore,

sinv

4.3) |_[ exp{zrx}dx[ {g®0)~g(@)}|—
. g(a)

where v £ r{g(b)—g(a)}/z To estimate the quantity jv~'sinv] on the
right-hand side of (4.3) we use the bound |x~!sinx| < 1 —min{d3, 1}/12 which
is true for all d, > 0 and all x| > d,. Let us find a number d, such that [v] > d,.
It is clear that lg(b) g(@) = o(b— a) Therefore, d, = rotp(b a)/2, and SO we
have -

sing| _ . min{®?, 1}

2
< 43 min {73, 1}(b—a)*.

4.4 ”

Now taking the bounds (4.2)(4.4) together, and using the bound |g(b)—g(a)|
> &(b—a) once again, we get the lemma proved. m ’

Let us note at the beginning of the proof of Theorem 1.3 that we do not
specify the constants ¢ in the text below; we only want to emphasize that all of
them are non-random, do not depend on both N and ¢, and are non-negative.
We subdivide the proof into several steps. :

Step 1 (reduction of the general case to the case m = 0). Because of the
moment condition (1.6), we interchange the signs of differentiation and
integration in the quantity (d/dt)"Eexp {thN} Then we write V3" as a multiple
sum and use the fact that X,, ..., Xy are identically distributed. We get’

](d/dt)’"E exp{itVy}| < cN*"E[E® exp{thN}l

where Ee denotes the condltlonal expectatlon with respect to X 1 e Xy com
when all the other random vectors are fixed. Thus the theorem follows if

4.5) E[E®exp{itVy}l <cN L.

Step 2 (using the absolutely continuous‘burt).' I'-Ierc".-vrc_émploy arguments
used by Bikelis [16]. Without loss of generality we assume that N > c,, where
¢, is a large constant (which might depend only on m and .@). Write
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N, £ N—2m and fix Xy_ ....Xy. B iti
! alve N-2m+1s ---» Xy. Because of decomposition (1.5), we

(4.6)  E®exp{itVy} = [exp{itVy}(dF)":

Ny

N . .
=3 <j1>oc’(1—cx)”l'f”exp{itVN}(dFo)f(dFl)Nx—j_

j=0

Now split the summation in (4.6) into two parts: Z' 4 the sum taken over all
j=0,..., Ny such that |j—aN,| < /N, logN,and " £ the sum taken ove;

all j=0,..., N, such that |[j—aN,| > ./N, logN,. A theorem by B :
[11] yields the bound ' L ¥ Sernstein

) N . . .

4.7 Y ( .1> oI(1—aN1 ™) < 2exp{—x2}

(—aN1) J
2 2x+vNia(l—a)

for every x < /N, a(1—a)/4. If we take x = x,, where X, is the solution of the
equation 2x./o(l—a) =1logN,, the bound (4.7) implies that the quantity

17 N . -
z <j1>a1(1_a)N1—J
does not exceed cN L. This bound and representation (4.6) together yield
4.8)
S exp it} < eN-E4 5 (V1) i — gpes , o
exp{itVy}l ScN7E+Y i /(1 —a)¥+ 77 [ |fexp itV } (AF o Y| (dF )V .

To estimate the second summand on the right-hand side of (4.8) we use the fact

that [j .—cxN 1l <+/N; logN, (which implies that j > [N,a/2]). This fact and
the estimate (4.8) show that the theorem will follow if we show

49) E|fexp {itVi} (dF)N:2] < cN7E.

Step 3 (rea?uctf'on to the set B x C). The main idea of this step is based on
arguments by Bikelis [16], G6tze [24], and Bickel et al. [14]. Let § £ P{Y e B}
and y £ P{YeC}, and let

F,() 4 ﬁ'lP{Ye-ﬁB}, F;() 4y 'P{Ye-nC}.

Furthermore, let us put N, £ [N,0/4] and write
(4.10) .

| Jexp{itVy} (dF o) /21 = [exp{itVy} (dF o )N2(dF o) 2 (dF j)Nsa/21= 2Nz
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In the first group of dF, on the right-hand side of (4.10) we decompose each F
a5 follows: Fo = fF, +(1— B) (“some distribution function”), and in the second
group of dF, on the right-hand side of (4.10) we decompose each F as follows:
F, = yF3+(1—y) (“some distribution function”). Now going along the lines of
Step 2, we infer from (4.10) that in order to show (4.9) it is edough to prove the

pound
I £ E|fexp {itVy} (dF NP2 dF )N272) < cN7E,

LetZ,Z, Z,, ..., and W, W,, W,, ... be independent random vectors having
the distribution functions F, and F;, respectively. Using the symmetrization
technique of the proof of Part 1 of Lemma (3.37) by Gdtze [24] we get

o, V221 N2w2) '

E@exp{i-ﬁt Z Y {H(Z¥, W)—H(Z}F*, I'Vk)}}

ISJAE

>

where Z* and Z** are independent and have the same distribution function F,.
The E® denotes the conditional expectation with respect to the random vectors
W,, k=1,..., [N,7/2]. Therefore, -

[N28/2] ‘
weoolid ¥ (zr, w-HEp, Wi}

j=1

[N27/2]

b4

J=E

where E® this time denotes the conditional expectation with respect to the

" random vector W, Thus in order to complete the proof of the theorem we need

to show
4.11) : J<cNL

Step 4 (proof of the bound (4.11)). Let us rewrite the quantity J in a
more convenient way for further calculations. Let us put M 4 [N, B/2],

142t /M/N, and let
1 :
4,4 ;lf exp{z*cSM(x)}po(x)de
c

where p, denotes the denmsity of F,. Then J = EAPN"2,

Fix an elementary event w. Because of (1.8)~1.10), we may assume without
Joss of generality that there exists a direction ke{1, ..., d} and a point x such
that _ ‘ :

T ;-iué

(4.12) | - SupKDSy(x), el < M,
xeC
(4.13) KDSylxo)> )| > 1M,
(4.14) Sup KBS y(x)— DSy (¥), e)| < 1/(24M",

x,yeCr
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where C,e{Cy, ..., Cpm} is such that xeC,. Rewrite C, as the Cartesia
product Iy x ... x I, of intervals. Then, with dx} denoting integration witﬁ
respect to the variables different from x,, we have

4.15) Ay <; ) po(x)dx+%| ) exp{itSM(x)}po(x)dx[
C-

c\C
1 1 .
<= | po(x)dx+-{ |{ exp {1184 (%)} po (x)dx, | dx;.
. Y C\C- 7 ne

To estimate the quantity |f;, ...dx,| we are going to use Lemma 4.1. For this, fix

Xiseoes X1 Xgt15 o005 Xg, and let g(xk) 4 SM(x)ﬁ h(xk) 4 p()(x)' A].SO, let a and

b, be numbers such that I, = (a, b). For every number xeC, we have

g'(x) = {28 ,(x), ¢, which implies v

(416) Iy Gl > KDSu(xo)s ) —KDSpy(x) ~ DS pu(xo), ).

Using (4.13) and (4.14) on the right-hand side of (4.16), we get g’ ()|

= 1/(2dM*). Therefore, we may choose ¢
@ = 1/2dM").

The same proof shows that for ali xeC, the sign of g'(x;) is the same (and

equals sgn{ZS,(x,), €.>). For a number ¥, as is easy to see from (4.12), we
may use o

' ¥ = M.

Since P{YeC} > 0, there exists a cube C, =C such that for some ¢, > 0 we

have p,(x) > ¢, for all xeC,. Thus (if necessary, replace the set C by C,) for
a number Y we may use

. Y_= Cq-
Thus, using Lemma 4.1, we get

| Ij exp {78, ()} Po ()| < | Po(¥)dx,—cM~*3*min {12, 1}(b—a).
k I .

Hence, because of the bound (4.15), we have
@17) 4, <1—cVol(C)M™*¥*min{c3, 1} (b—a)’.

If we now use the bound 1—x < exp{—x} on the right-hand side of (4.17), then
we obtain ' -

J < exp{ch‘lo‘min{-c%,v 1}}.

B S e S

Takenow 75 = M~ '~ *°%(logM)? and note that the number & > 0 may be taken
as small as we want, say ¢ < 107°. Then the bound (4.11) follows immediately.
This completes the proof. = ’ ‘
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5. Proof of the statements. Let us first prove Statement 1.3. To do that we
give 2 special case of Theorem 1.3.

COROLLARY 5.1. Let me N v {0} and
(5.1) EHU,, U)"+E[HU,, U™ < + 0. -

Assume that there exists a non-empty rectangle (a, B) % (y, 6)<=(0, 1) x (0, 1) such
that for all xe(x, ) the function y+— H (x, y) is differentiable on the interval
(y, 6). Put Sy 2 (T +... + TN)/\/JV , where Ty, ..., Ty are independent copies of
the random function T4 H(a+(B—) U, ). Furthermore, assume that for every
¢ > 0 one may find numbers A€ R, k > 0, and v > O such that A, k, v < ¢ and such
that for every D >0 the following three conditions hold:

(5.2) sup NPP{ sup |S§v(x)|> N* <+ 00;
NeN xe(y,0)
(53) sup NPP{[Skl 0.0 < 1/N"} < + 03
NeN .
(5.4) sup NPP{sup sup |[Sy(x)—Sy(»)| = 1/2N")} < + 00,
NeN “j o oxyelj

where I,<(y, 8),j=1,..., [N"], are subintervals of the interval (y, 0) such that
Vol(I) = (6—y)/[N"]. Then, for every ¢ >0 and L >0,
sup |(d/dy"Eexp{itVy}l=O0N"5, N- +oo.
t:|t| > N
Proof. The corollary is an easy consequence of Theorem 1.3. Let us note
only that the condition (1.9) follows from (5.3) by using the inequality

(5.5) 8% 28y < IS LA/ O—7 - ®
Also, to prove Statement 1.3 we need the following lemma which is
a simple consequence of Corollary 1.2 by Bentkus [5].

LEMMA 5.1. Let % be a centered Gaussian L,(y, 6)-valued random variable
the covariance of which is the Hilbert—Schmidt operator L,(y, 8) = L,(y, J)
corresponding to the kernel

d
(x, y)HE{%H(aHﬁ—v)U, X)E;H(H(ﬂ—?)U, y)}

_E{%H(cx+(ﬂ—-'y)U, x)}E{%H(aHﬁ—Y)U, y)}-

If, for some 1>2,

3
(5.6) E{f

d 2 2
EH(a-i_(ﬁ_a)U’ x) dx} < 400,
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and the random variable ¥ is not concentrated in an ite-di i

y finite-dimensional sub

of L,(y, 0), then the condition (5.3) is satisfied. . “ipace
Proof of Statement 1.3. (i) This is an immediate

Theorem 1.1. Consequence of
(ii) Let us verify the conditions of Corollary 5.1 with the function H; whep

d =1, o= 0, and f =1. The equivalence of the moment conditions (5.1) ang

(1.14) is easy to prove. Thus let us verify (5.2)5.4). Note first that

, 1 X a. y
(5.7 Sn(x) = -—NJEIEH 3(Ups X) = —éy(x)q(x),

where @@N denotes the uniform empirical process. Let us look at the condition
(5.2). It is clear that without loss of generality we may assume

(5.8) . sup{g(x): xe(y, 8)} < + 0.

Thus, because of (5.8) and Lemma 2.3 by Stﬁte [53], we obtain

59 P{sup [£,()q() > N} < Ple sup |60l > N} < N2,
xe(y, xe&(7,6)
which completes the verification of (5.2).

The condition (5.3) is satisfied because of Lemma 2.1 and (5.1); compare
the discussion concerning the infinite-dimensionality of the weighted Brownian
bridge given just after Theorem 1.4 in [6].

‘ Lgt us now show that (1.16) implies (5.4). Write

4 4 P{sup sup |6()g(x)—Ee(1)a(y) > 1/2N}.
Jj x,yel; -

The assumptions (1.16) and (5.8) imply that, for some constant c, > 0,

(3100 4 <P{sup sup |&y(x)—&y(y)+sup sup |Ey(x) N~ > c, N~*}.

J xyel; Jj xyelj

Using the bound (5.9) with g(x) =1 on the right-hand side of (5.10), for
a constant ¢ > 0 we get

(5.11) 4 < P{sup sup [Ey(x)— &y +N*"" = cN~"} +cN=P
J o xyelj
< P{sup sup [§(x)— &) = cN ™"} +cN P
Jj o x,yel;

ifr<vi—A Using Lemma 2.4 by Stute [53] or Inequality 3.2 by Shorack and
Wellner [51] it follows that for small numbers v > 0 and x > 0 the right-hand

side”of (5-T1) does not exceed N~ 2. Let us note also that the numbers A > 0,

v>0 ani)rc > 0 could be chosen arbitrarily small (but satisfying the condition
K< VI—A)
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(iif) The result is a direct consequence of part (ii) of this statement; see
gection 3 (or Section 2) in [7] for more details. m :

Let us now prove Statement 1.2. For this we formulate another special
case of Theorem 1.3. o

COROLLARY 5.2. Assume that

d .
d—yH(x, y)’ < +o00.

(5.12) sup

%,y€(0,1)

Let us put Sy Z(T;+ ... + Ty)/</N, where Ty, ..., Ty are independent copies of
the random function T £ H(U, *). Furthermore, assume that for every & > 0 one
may find numbers k >0 and v > O such that x, v < ¢ and such that for every
D > 0 the following condition holds:

sup NPP {sup sup |Sy(x)—Sy()l = 1/2N")} < + o0,

NeN J o ox.yelj

(5.13)

where I;,c(0, 1),j=1,..., [N"], are subintervals of the interval (0, 1) such that
Vol(I;) = 1/[N”]. Furthermore, let ¥ be a centered Gaussian L,(0, 1)-valued
random variable the covariance of which is the Hilbert—Schmidt operator L,(0, 1)
— L,(0, 1) corresponding to the kernel

d d d ... d |
(5.14) (x, y)HE{Z;H U, X)EH(U’ y)}—E{EH(U, x)}E{EH(U, y)}. I

Assume that the random element 9 is not concentrated in any finite-dimensional };1

subspace of L,(0, 1). Then, for every me NU{0}, e>0 and L >0,
sup |(d/dty"Eexp{itVy}| = O(NH),

t:{t| = Ne

Proof We shall show that Corollary 5.1 implies the result. Take

x=9=0 and B=356=1Then, for every j=1,...,[N"], choose
a non-random point y;el;. Using Slutzky’s arguments, we get
(5.15) -
A4P{ sup |Sy(x)| = N*} = P{sup sup |Sy(x)| = N*}
xe(0,1) ‘ j o xelj )
< P{sup sup |Sy(x)—Sy(y)| > 1/2N} +P {sup|Sy(y)l +1/2N") > N*}.
j xyel; ’ J .

Because of (5.13), the first summand on the right-hand side of inequality (5.15) |
does not exceed ¢N~P. Therefore, 4 < ¢cN~? follows if - - ——"———————"—
(5.16) P{sup [Sy(y;)| = N*/2} <cN~°.

J

N - +o0. £
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But the bound (5.16) (and (5.2) as well) are consequences of Markov’s ine
and the bound E|Sy(y,)|” < ¢ which holds, because of the assumption (5.12)
all k=1, ..., [N"] and all D > 0, where the constant ¢ > 0 does not ae
on N. Furthermore, because of Lemma 5.1 the assumption (5.3) is satisfi
well. This remark completes the proof of the theorem. m 1

quality

, for
pend
ed as

Proof of Statement 1.2. (i) This is an easy consequence of Theorem 1.1

(i) The proof is almost the same as that of Statement 1.3:
. 4 3; u
ry 5.2 instead of Corollary 5.1. se Corolla-

(iii) This is a consequence of part (ii); use results from Section 3 of [7]. w

Finally, as a simple consequence of Theorem 1.3 we have
COROLLARY 5.3. Assume that

d 2H
E) (X, y)

F urth.ermore, .let % be a centered Gaussian L,(0, 1)-valued random variable with
covariance being the Hilbert—Schmidt operator L,0,1)> L,(0,1) corresponding
to the kerr;el defined by (5.14). Assume that the random element 9 is not
concentrated in any finite-dimensional subspace of L,(0, 1). Th

meNuU{0}, ¢ >0 and L >0, 20D . Jor esery

5.17 sup

x,ye(0,1)

< +00.

sup |(d/dty"Eexp{itV}| =O(N"%), N - +co.

t:[t] = N

Proof. This corollary follows from Corollary 5
. y 5.2. Note that the assump-
tion (5.12) holds because of (5.17). Furthermore, using the bound . ’

sup N? sup [Sy(x)— Sy < IS5l zay// INT

NeN x,yel ; .

we see that the left-hand side of (5.13) does not exceed

(5-18) P{IS¥O)llz,ay = /[N /2N9}.

If v> 2x, then for every D >0 the quantity (5.18) does not exceed cN~?

because of the Markov inequality and (5.17). This completes the proof of the
theorem. = ' '

I.’.roof of Statement 1.1. (i) This is an easy consequence of Theorem 1.1.
(i) Because of Y ° bfI* < +co0 we have |

2 ©

(5.19) L g VS
. dxdy l(xa J’) = —2(271:) Z bzf COSZﬂ:l(x—y)

for gll X,y e('O,v 1), .whic%l shows that the condition (5.14) holds. The assumption
on infinite-dimensionality of the corresponding Gaussian random variable is
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satisfied because there is an infinite number of non-zero coefficients by, by, ...
Thus, Corollary 5.3 implies the desired result.
(iii) Because of (5.19) we have

1 N N 11 dz :
B3 4 H(U, U) = { { &(x)&y(y)——H(x; y)dxdy,
N Njgl k;]- ( Jj k) {{ N( ) N(y)dxdy ( y) y

which shows that B} = m,(8y, &), where 7, is a polynomial of degree 2 in the
Hilbert space L, (0, 1). Therefore, results by Bentkus et al. [7] might be used to
get the theorem proved. (In the case m = 0 one may use general results for von
Mises statistics by Gotze [24], [26].) = Co
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