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Abstract. The main purpose of this paper is to prove the following result. Let R be a prime ring of
characteristic different from two and let 7 : R — R be an additive mapping satisfying the relation
T(x*) = T(x)x*> — xT(x)x + x*T(x) for all x € R. In this case T is of the form 4T (x) = gx + xq, where
q is some fixed element from the symmetric Martindale ring of quotients. This result makes it possible
to solve some functional equations in prime rings with involution which are related to bicircular
projections.
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1. Introduction

Throughout, R will represent an associative ring with center Z(R). Given
an integer n > 2, a ring R is said to be n-torsion free if for x € R, nx = 0 implies
x =0. As usual the commutator xy — yx will be denoted by [x,y]. An additive
mapping x— x* on a ring R is called an involution if (xy)* = y*x* and x** = x
hold for all x,y€R. A ring equipped with an involution is called a ring with
involution or *-ring. Recall that R is prime if for a,b€R, aRb = (0) implies
a=0or b=0, and is semiprime if aRa = (0) implies a = 0. An additive map-
ping D : R — R is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs
x,y €R and is called a Jordan derivation in case D(x*) = D(x)x + xD(x) is fulfilled
for all x€R. Every derivation is a Jordan derivation. The converse is in general
not true. A classical result of Herstein [13] asserts that any Jordan derivation on
a prime ring of a characteristic different from two is a derivation. Cusack [11]
generalized Herstein’s result to 2-torsion free semiprime rings (see also [8] for
an alternative proof). We denote by Q,,, Oy, and C the maximal Martindale right
ring of quotients, symmetric Martindale ring of quotients and extended centroid of
a semiprime ring R, respectively. For the explanation of Q,,,, Os, and C we refer
the reader to [5, Chapter 2].

Bresar [9] proved the following result.
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Theorem 1.1 [9, Theorem 4.3]. Let R be a 2-torsion free semiprime ring and
let D : R — R be an additive mapping satisfying the relation

D(xyx) = D(x)yx + xD(y)x + xyD(x) (1)
for all pairs x,y € R. In this case D is a derivation.

One can easily prove that any Jordan derivation on arbitrary 2-torsion free
ring satisfies the relation (1), which means that Theorem 1.1 generalizes Cusack’s
generalization of Herstein’s result we have just mentioned above. Motivated by
Theorem 1.1 the second named author, Kosi-Ulbl, and Eremita [18] have recently
proved the following result.

Theorem 1.2 [18, Theorem 1]. Let R be a 2-torsion free semiprime ring and let
T : R — R be an additive mapping satisfying the relation

T(xyx) = T(x)yx — xT(y)x + xyT (x), (2)

Sor all pairs x,y €R. In this case T is of the form 2T (x) = gx + xq where q is a
fixed element from Q.

Putting in (1) and (2) y = x one obtains
D(x*) = D(x)x* + xD(x)x + x*D(x), for all x€R (3)
and
T(x*) = T(x)x* — xT(x)x + x*T(x), for all x€R. (4)

Beidar, Bresar, Chebotar and Martindale have proved [2, Theorem 4.4] that
in case an additive mapping D : R — R, where R is a prime ring of characteristic
different from two, satisfies the relation (3), then D is a derivation (actually they
proved more general result). It is our aim in this paper to prove that in case an
additive mapping 7 : R — R, where R is a prime ring of characteristic different
from two, satisfies the relation (4), then T is of the form 47 (x) = gx + xg, where ¢
is a fixed element from Q.

Let X be a complex Banach space and let L(X) be the algebra of all bounded
linear operators on X. A projection P € L(X) is called bicircular in case all map-
pings of the form eP + ¢(I — P), where I denotes the identity operator, are
isometric for all pairs of real numbers «, 3. Staché and Zalar [15, 16] investigated
bicircular projections on the C*-algebra L(H), the algebra of all bounded linear
operators on a Hilbert space H. According to [16, Proposition 3.4] every bicircular
projection P : L(H) — L(H) satisfies the relation

P(xyx) = P(x)yx — xP(y*)"x +xyP(x), (5)

for all pairs x,y € L(H). The first named author and IliSevi¢ [12] investigated the
above functional equation in 2-torsion free semiprime *-rings. They expressed
the solution of Eq. (5) in terms of derivations and so-called double centralizers.
The second named author showed that applying Theorem 1.1 and Theorem 1.2 a
more direct approach makes it possible to prove a more general result [17,
Theorem 1]. In this paper we prove a result concerning bicircular projections
on a prime ring with involution which is related to the conjecture in [17].
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2. Preliminaries

Let R be a ring and let X be a subset of R. By C(X) we denote the set
{reR|[r,X] =0}. Let meN and let E: X"! - R, p:X"2 — R be arbitrary
mappings. In the case when m = 1 this should be understood as that E is an
element in R and p = 0. Let 1 < i<j < m and define E', p¥, p/' : X — R by

El<)_cm) :E(xla-"7~xi—laxi+17"'7~xm)a
pij(xm) :p,l()_cm) = (x17"'7xi*17xi+17"'7xj717xj+17 s 7xm)7
where X, = (x1,...,X,) €X".

Letl,J C{l,...,m},and foreachi€l,jeJlet E;, F; : X"~ — R be arbitrary
mappings. Consider functional identities

STE@axi+ Y GFE) =0 (TaeX™), (6)

iel jeJ
S E®a)xi+ Y 5FEn) €CX)  (Ba€X). (7)
iel jeJ

A natural possibility when (6) and (7) are fulfilled is when there exist mappings
Dij : X" 2 SR i€ljeT, i#j, and N\ : X" — C(X), kel UJ, such that
Ef(xm) = Z xjpg()_cm) + )‘f()_cm)a
JEeTj#i
F;(xm) == Z Pf’,’-(fm)xi - )\j‘()_cm)v (8)
ielj#i
=0 if k¢InJ

for all X, e X™, i€l, j€J. We shall say that every solution of the form (8) is a
standard solution of (6) and (7).

The case when one of the sets I or J is empty is not excluded. The sum over the
empty set of indexes should be simply read as zero. So, when J = 0 (resp. I = 0)
(6) and (7) reduce to

ZE;(Xm)x,» =0 (resp. Zx,Ff(Xm) = 0> (Xn €X™), 9)

icl jeJ

> EiXw)xi € C(X) (resp. > xFl(%n) € C(X)) xn,eX™). (10
icl jed
In that case the (only) standard solution is

E;=0, i€l (resp. F;=0, jel). (11)

The d-freeness of X will play an important role in this paper. For a definition of
d-freeness we refer the reader to [6]. Under some natural assumptions one can
establish that various subsets (such as ideals, Lie ideals, the sets of symmetric or
skew symmetric elements in a ring with involution) of certain types of rings are
d-free. We refer the reader to [1] and [3] for results of this kind. Let us mention that
a prime ring R is a d-free subset of its maximal right ring of quotients, unless R sat-
isfies the standard polynomial identity of degree less than 2d (see [3, Theorem 2.4]).
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Let R be a ring and let
xl,XQ,X3 E x7r 'xﬂ' x7r
TES3

be a fixed multilinear polynomial in noncommutative indeterminates x;, x, and x3.
Further, let L be a subset of R closed under p, i.e. p(x3) € L for all x;,xp,x3 €L,
where X3 = (x1,X2,x3). We shall consider a mapping 7 : L — R satisfying

T(p(%s)) = Y (T(%a(1) X %n(3) = Xa() T (22) ) Xn(3) +%n(1) % 2) T (%3))), - (12)

TES

for all x1, xp, x3 € L. In the first step of the proof of the following theorem we derive
a functional identity from (12). Let us mention that the idea of considering the
expression [p(X3), p(¥5)] in its proof is taken from [4].

For the proof of our main result (Theorem 3.2) we need the result below which
is of independent interest.

Theorem 2.1. Let L be a 6-free Lie subring of R closed under p. If T : L — R
is an additive mapping satisfying (4), then there exists q €R such that 4T (x) =
xq + gx for all xe L.

Proof. Note that for any a € R and X3 € L> we have
[p(fg),a] :p([xl,a],xz,x3) +p(x], [xz,a],x3) —l—p(xl,xz, [x3,a]).
Thus
T[p()@), ] = T(p([xl, al, xz,X3)) + T(p(xl, [xz,a],X3)) + T(p(xl,xz, [xg,,a])).
Using (12) it follows that

Tlp(s),a] = > Txa() @) Xn@%am) — >, 1), @] T (4r2)) Xn3)

TES3 TES3

+ E; Per(n)s @)X T (%)) + E; T (xx(1)) [%2(2)> @] ¥x3)
TES3 TES]

- Z Xr(1 xr + Z Xr(1 x7T ('x7T<3))
TES; TES;

+ ) T (1)) %n2) - > xq [xx(3), a]
TES; TES;

+ D Xa( %) T [%n(3), 4]
TES;

= > 7 7@%n3) — O, (1), @] T (¥r2) ) X(3)

TES; TES3

+ D [ @ T(xaz) + Y T (n(r)) [Xr %), ]
TES;s TES;

- Z xﬂ'(l)T[xﬂ' Z Xr(1 71'(3) a]
TES; TES;

+ ) X% T [Xa) 4]

TES;
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In particular
T[p(%),p(33)]
= Z T [xx(1), P(F3) | %e2)%n(3) — Z Per(1)s PO T (¥ 2))%2(3)

TES; TES;

+ Z [xﬂ'(l)xﬂ'(Z)ap(yE»)]T(xﬂ'(fi)) + Z T(xﬂ'(l)) [Xw(z)xw(a),P(%)]
TES; TESs

- Z x‘/r(l)T[ 7(2)s D )’3 Z Xr(1 ),P(Y3)]
TES;s TES3

+ Z X% T [X23), P (33)] (13)
TES;

for all X3,y; € L3. For i = 1,2,3 we also have
T[Xn(i)vl?(ys)] = _T[p(%)vxﬂ(i)]

= Z T[xﬂ'(i)vyo(l)]ya(Z)yrr(S) - Z [xﬂ(i)7y(r(l):|T(yﬁ(Z))y(T(3)

geS; ge S

+ Y [ Yoye@ ] T o) + D T(o) et Yo2)Vo)]
ceS3 ge S

- qu(l)T[xw Zya Yo(2 (i)> Yo (3 )]
ceS3 geSs

+ > Yoo T [Xn(is Yo3)]
gES;

for all y, € L*. Therefore (13) can be written as
T[p(ia),P(is)]

=> > (r Yo2)Yo(3) = [Xx(1)Yo)] T (Vo(2) ) ¥o3)

TES3;oES;
+ [Xm) 7y0'(l)y(f(2)} T(ya(3>) + T(ya(l)) [xm) 7y0(2)yr7(3)] —Yo()T [xn(n aya'(Z)]y(r(3)
Vo) T (Vo2)) [¥x(1):Yo3) ] +Yo(1)Yo) T [¥x(1):Yo(3) ] ) Xx(2) X 3)

_Z Z Xr(1)sYo(1)Yo(2)Yo(3 )]T( ())xﬂ@)

TES3;oES;
+ Y0 o)XYoo Yo T (%x3))
TeS30€8;3
+ Z Z Xr(1 7(3)sYa(l )yU(Z)yU(S)]
TES30ES;
- Z Z Xr(1 2)yYo( )]ya(Z)y0(3) - [xﬂ(Z)ayU(l)]T(ya(2))ya(3)
TeS30€83
+ [ Yo )Y@ T (Vo3)) + T (o)) [Xr2 )vyo( o <3)] Yo T [Xr(2):Yo(2) ] ¥o3)
Yo T (Vo)) [¥x(2):¥ <3>} FYo0)Vo) T [¥n(2):Vo(3)])%x(3)

=D > T () [¥x3) Yo chr(z)ya(z)]

TES30ES;
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+ Z ZXT )Xr(2 (3):Yo)]Yo@Yo3) = [X23) Vo) | T (Vo2) ) Yor3)

TES;TES;
+ [2%23) Vo) Yo2) ] T (Vo3) +T (Vo(1)) [X23) Vo) Vo)) = Vo) T [¥a(3)Yo(2)]Yo(3)
= Yo T (Vo2)) [%2(3) Yo 3) ] FYo1)Yo2) T [%23) Yo (3) ]
for all x3,y; € L3.

On the other hand, using [p(x3),p(¥3)] = —[p(¥3),p(%3)]., we get from the
above identity

T[p(s).p(3s)]

= (T [0 Yo ) JXr@%e(3) = X)) Yo )] T (X2(2)) X 3)

TES;0ES
+ [ %) Vo)) T (%e3)) + T (e1)) @) %2 3) Yo (1)) = %) T [¥x(2) 1 Vo(1) | X(3)
2T (¥(2)) [¥a(3)sVo(1)] +Xx(1)¥2(2) [ 7(3)2Yo(1)] )Yo(2)Yo(3)

D D TN, U

TES3;TES;

+ 0 )@ %) o) Yo ] T (Vo3))

TES3;oES;

+ Z Z T (Yo(1)) [qu)xﬂ(z)xﬂo),yn(z)ya@)]

TES3;oES;

- Z Z Yo(1) Xr(1)sYo( )] Xr(2)X7(3) — [xﬂ'(l)aya(2)]T(xﬂ'(Z))xﬂ'(S)

TES3;0ES;
+ X)X Vo)) T (xe3)) + T (e1)) X)X 3) Vo)) = %) T [¥(2) 1 Vo) X(3)
=2y T (X2(2)) [¥2(3) Vo )] F20(1%02) T [%2(3) Vo (2] )Yo(3)

=2 2 1oy T (o) (o1 Xe%e(3) Vo)

TES3;0ES;

+ Z Z Yo(1)Yo(2 Xr(1))Yo(3 ):| Xr(2)Xn(3) — [xw(1)7ya(3):|T<x7r(2))x7r(3)

TES;TES;
+ P (1)%e2) Vo) T (%e3)) +T (%)) [ %2 3)Y03) ] = Xn() T [¥(2) 1 Y0(3) [ %2(3)
=2y T (X2(2)) [X2(3) s Vo3)] +22(1%02) T [%2(3) 1 Vo3)) )

for all X3,y, € L.
Comparing the identities so obtained we arrive at

0= > (T[rt)Yor)xem@Vor) = T (oxn)) Vo) %2 e Vo)
TES3;0€E€S;
+ T (Vo(1))Xa(1)Xx(2)%n(3)Yo(2) = Xn(1)s Vo)) T (¥a(2)) X(3) Vo)
+ [Xa1)x 7(2),Y } ( (3))Yo(2) — *x(1 T[xw(z),y(f(l)]xw(s)ya(z)
_xﬂ'(l)T(xﬂ' )[ yYo(1) ]yUZ +x7T1 WZ)T[XTF(?J)?))(T(I)]))(T(Z)
— [r(1)Xn(2), Vo <1>} 3T (Ve2)) )Yo3)
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+ Z Z o)) Yo2)Yo3)%x(2) — T (Vo (1)) Xn(1)Yo(2)Yo(3)X(2)
TeES3;0€S;

+ T (1)) Yo (1)Yo2)Yo3)%(2) T [¥a(1): Yo )| T (Vo(2)) Yoy %n(2)

= [r1) Yot1)Yot2 } ( 3)%x(2) T Vo) T [Xr(1)Yo2) | Yo(3)%n(2)

+ o) T (Vo)) [Xx(1)Yo3) [ Xn(2) = Yo1)Yo@ T [Xe(1), Yoi3 )] Xr(2)

+ [Xn(1)5 Yol >ya<2)]ya( >T(xw<2>))x )

+ ) Vo) (e XX T [Xx(3):Yo3)] = Yo@Xn(1)%e2)%x3) T (Vo(3))

TES3;TES;
+ Yo Xe(1%5(2)Yo3) T (¥(3)) + Vo) T (¥x(1)) [¥(2)¥(3)sYo(3) ]
~Yo@Xa() T [Xn(2): Yo(3) | X2 (3) = Yo)%x(1) ( <))[xw<3> o(3)]
(

+Yo) T [w<>aya(3>]xw<2 Xn(3 ( @) [X(1)X5(2)Xn(3): Yo(3)]

— (T [xe1), Yo | 2e(2) [ o(2) ( ) 3)

[xm) 72 Yo T ( )+T(x7r ) [er@%23), Yo )] = %2() T [¥r(2)5 Vo) [Xa)
—2:()T (%2(2)) [ (3), Y0 ]+xw<>w<z)T[ o)) Yo(3))
+ Z wa ) (= X2Yo) Vo) T [Xa(3), a(3>]+xvr(2>ya<1>ya(2>xw<3>T(ya(3>)
TES;0€ Sy
— X2 Yo()Yo2)Yo() T (¥2(3) = Xx)T [Xx(3): Yo1) | Yo2)Yo3)
— x0T (¥ot1 )[ ") »ya<2 o) TXx2Yo)T [¥x(3): Yo | Yo
+Xn(2)Vo() ( @) [23): Yo ] + T (52(2)) [Xr(3): Yo1)Vo2)Y03)]

+ (T [xx2),Yo(1)]Yo2)Yo(3) = [xwu» Yo T (o) )a<3>

+ [0, Yo)Ye@) | T 0o3) + T (o)) [X22):Yo@)Yo3) ] = Yoy T [¥a(2), Yo(2)]Yo3)
=Y T (Vo2 ))[ Xx(2):Yo3)] +Yo1)Yo) T [¥r(2), Yo3)]) Xn(3)) (14)

for all x1,x2,x3,y1,y2,y3 €L. Lets : Z — Z be the mapping defined by s(i) =i — 3.
For each o€ S5 the mapping s 'os : {4,5,6} — {4,5,6} will be denoted by .
Writing x3,; instead of y;, i = 1,2,3, in the above identity we can express this
relation as

6 6
D EiFo)si+ Y x5F)(F) =
i=1 =1
For example

EQ(Xe) = D > (T [xa1), Xaa) [ XnXn(3)%(5) — T (Xn(1)) X34 22)¥x(3)X(5)
TES; q(gfg
+ T (Xa(4) ) ¥ (1) Xx(2)Xx(3)¥a(5) — [¥x(1)s Xo@)] T (Xe(2) ) Xr(3)%51(5)
=+ [XW(I)XW(Z ] (xvr(3 )x 5) = Xx(1 T[XW(Z y Xo(4 ] 3)X5(5)
— xo() T (2 2))[ s X5(4) | Xa(s) + Xx(1) 2)T[xw<3)»x6(4>]xfr<s>

- [xvr<1wa<2>>xa<4>] %) T (%5(5))) (15)
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and

Fi(e) = Y D (%% T [Xe(3), 5(6)) = Xa5)%n(1) w2153 T (¥56))
TeS; ;(ij}
+ Xg(5)%n(1)Xx(2)¥a(6) T (¥r(3) ) + Xa5) ( 1) [Xr2)%2(3)5 %(6)]
— X5(5)%:(1) T [¥n(2) X5(6) | %n(3) — )T (Xx(2)) [%n(3)s %56

+ X505 T [Xa(1), %5(6) | Xr(2) ¥ (3) — T(x6<s> [xw<1>xw<z>xw<3> : xﬁ(6>]

= (T [xn(1)s X5(5) | %n(2)Xa(3) = [Hr(1), %5(5)] T (X)) %n(3)

+ [n()Xe2), %5(5) | T (8r(3)) + T (xn(1)) [Xr2)Xa3), X505 ]

= X)) T [Xr(2), X35 | ¥2(3) = %2 ()T (¥a2)) [Xr3), X505

+ X1 %e2) T [Xa(3), %5(5)] ) %5(6)) (16)

for all X5 € L°. Since L is 6-free, it follows that the functional identity (15) has only a
standard solution. In particular, there exist mappings pe; : L* —R,j=1,2,3,4,5
and \g : L’ — C(L) such that

5
E§(%e) = Y xipi(%e) + A (%)
j=1

for all X5 € L°. Note that this is also a functional identity which can be rewritten as

Z Z x?f(2)x7f(3)

TES;0€S;
(6)=6

— T (Xa(1)) %@y %n(2)%n(3) + T (X5(4)) Xa(1)Xr(2)%x(3) ) Xa1(5)

+ 3> x5 ()T (xe(2)) X3 %505)

TES3 o€ S0 ( ) 6
= Xe(1)%22) T (¥x(3) ) %(5) + Xn()%2(2)%2(3) T (¥a1(5)))
+) Y w (= X T (@) Xe(3)%5(5) + Xr2) %) T (a(3) ) Xa05)

TES3 o€ S3,0(6)=6
= T [Xa(2)s X5() X 3)%5(5) — T (¥a(2)) [¥n(3): X504 X55)
5 o
+%2(0) T [Xr(3) Xa0) [ ¥(5) — Xe(2) %50 %23) T (K5(5)) ) — D %y (%s) € C(L)
=1
for all X¢ € L°. Thus
E;(%s)xy + E3(%s)xs + x1 F} (Xs) + x2F3 (%s)
+ x:;F;(fs) + )Q;Fi(fs) + X5Fg(fs) S C(L),

where in particular

E3(%s) = Z (T [xx(1)s %4 ) Xr2)Xr(3) — T (1)) XaXr(2)Xr(3) + T(Xa) X (1) X2 (2) X (3)) -

TES;s
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Again using that L is 6-free, this identity has only a standard solution. Hence there
are mappings ps; : L> — R, j = 1,2,3,4, such that

E3(%s) — > xipii(¥s) € C(L).
=1

We continue with the same procedure as above. Finally there exist mappings
p,q:L— Rand \:L?> — C(L) such that

Tlx,y] = T(x)y + T(y)x = xp(y) + yq(x) + A(x,y) (17)

for all x,y € L. Similarly, using (16) and the same method as above, we can show
that there exist mappings p’,¢' : L — R and X' : L> — C(L) such that

Tlx,y] = xT(y) +yT(x) = p'(x)y + ¢'(y)x + N (x,) (18)
for all x,y€ L. Using (17) we obtain
0="Tlxy = T(x)y+Ty)x+Tly,x] — T(y)x+ T(x)y
=xp(y) +yq(x) + A(x,y) +yp(x) +xq(y) + A(y, x)
for all x,y € L. Thus
x(p(y) +4q() +y(g(x) + p(x)) € C(L)

for all x,y€ L. It follows that p(x) + g(x) =0 for all x€L, so p = —g. Analo-
gously we can prove that p' = —q'. Therefore by (17) and (18) we have

T(x)y = T(y)x + xp(y) — yp(x) + Alx, y)
=xT(y) —yT(x) +p'(x)y = p'(0)x + XN (x,y)
for all x,y € L. Note that this functional identity can be written as
(T(x) =p'()y + (= T() +p' ()
+x(=T@) +pW)) +y(T(x) - p(x) €C(L).
Hence there exist r€R and p, i/ : L — C(L) such that
T(x) = p'(x) = xr + p(x)
T~ plo) = rx-+ 4 (). "

Note that (14) can be rewritten as

0= > (e (xa00) = K@ (e1)) + MEn(1)X5(4)) ) Xn(2)Xx(3)¥515)
TES3TES;
— [y o) T (%e(2) ) X3y ¥a(5) + [Xr(1)%2(2) 5 %5(0) | T (¥(3) ) Xa(5)
— X ()T [Xr(2)s X5(4) ) X (3)%5(5) — %o () T (Xn(2)) [%(3) s Xa(4) | Xa(5)
+ X)X () T [X(3)s Xa(4) | Xa(5) = [Xa(1)%n(2)s %o | X2 3) T (¥a(5)) ) ¥at6)
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+ 3 > (= xmp () +xm@p (e(1)) = Alen(1)s¥510)) ) ¥(5) X6 (2)
TES3;0ES;

+ [e1), %)) T (%505 ) X6y %n(2) — [Xn(1) X4 %515 ] (¥5(6))Xn(2)

+ x5 T [X(1),%5(5) | X506 %n(2) + %5 T (¥5(5)) [Xn(1)s X5(6) [ %n(2)

— x5(a)X5(5)T [Xn(1), X(6) | %n(2) + [Xn(1) X4 ] 6)T (Xx(2)) ) %n(

+ ; ; X5(4) (X35 %n(1)Xn2) (P (xﬂ@))xE(s) —p (x6<6>)xﬂ<3> +X( ~(3):%5(6)))
3.5,

+x55)T ( 7(1)) [¥r(2)X2(3),%5(6)| — %5(5) () T [Xr(2)5 X5(6) | % (3)

) -
—x5(5)%(1) T (¥x2)) [X2(3),%5(6)] +%5(5) [ 1)>%5(6) | Xr(2)%n(3)
—T(xa(s>)[ (X2 %n(3) Xa(6)] = (T [¥n(1), X(5) [ %n(2)Xa3)
= [e1), Xa(9)| T (g ) + [Xe(1)Xn(2), %5 } (x (>)

+T (1) [xw<2)xw(3>’xa<s>] ()T [Xr(2), xa(S)]xw)

= %5 T (Xr2)) [¥n(3) 35(5) ] + %0020 2) T [X2(3), %5(5) ] ) 3506

+ 3w (K% %) (— P (43))Xa6) + P (X506 Xe(3)

TES30ESs
= N (xx3):%5(6)) ) = %n(2) T [%2(3)sX5(4) | X5(5)%5(6) — () T (¥a(4)) [X2(3)s ¥5(5)%s(6)]
+ X)X ()T [Xa(3)s X5(5)) Xa6) + Xe2) %) T (X5 )) [Xe(3): %56 )]
5(6)

(
+ T (xe2)) [¥r(3) 550 %5556 | + (T [Xa(2), X0 | 5505)
— [xn) x5 ) T (x305) ) ¥5(6) + [¥n(2) s X5(0)x ()J (¥76)
+ T (x504)) [Xr2), %5(5)%516) | = Xo@) T [Xn(2): X5(5) [ %(6)

— x5 T (x5(5)) [Xn(2) X5(6) | + X50)%5(5) T [Xr(2),X5(6)] )X (3)) -

0)

It is easy to see that this functional identity is of the form 01‘6:1ij; (X6) = 0, where
in particular

Fi(%) =Y > (r (3)%(5) + A(¥n(2)s ¥5(4) ) X2(3)%5(5)

TES;0ES;
*(1)=1

— X5 T (%2(2) ) X2 (3)%5(5) + Xn(2)¥5() T (¥(3) ) Xs(5)
— T [xr(2)s Xa(0) | %2 3)%(5) — T (¥x(2)) [Xx(3)s ¥a(0) | ¥5(5)
+ 20 T [Xr(3), xa<4>]xo<s> — Xn(2) X4 %x3) T (¥a(5)) ) Xa(6)
+ > > (= Plxaw)xas) %6 %n(2) + o) T (x5(5)) Xa(6) %)
TES3TES;
w(1)=1
— X5a%5(5) T (Xa(6) ) Xr(2) + X5(4)%5(5)%5(6) T (¥r(2)) ) X (3)

+ 30D (nxsaras) (— P (%am) Xa6) + 7' (X5(60) Xx)

TeES30ESS
w(1)=1

— N (%r(3),%5(6)) ) — %) T [¥n(3)» X(4) | Xa(5)%(6)
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= X T (¥52)) [¥2(3), %(5)X5(6) | + Xe(2 T[xﬂ@) xﬁ(S)]Xﬁ(@
+ xr %) T (¥a(s )[xw 5(6)) + ( 2)) [Xx(3)s Xa(4)%5(5) %o ()]
+ (T[xw<2)axz7(4>]x§(s>xc—r<6> - [xn @) T (xs(s )

+ e Xa(a)%5(5) | T (¥a(6)) + T(xc—r<4>) [xx2); x3(5>x3<6)}
— X5 T [Xx(2)s X5(5) | X5(6) — Xa(@) T (¥a(5)) [¥x(2)s Xa(6) ]
+ X5y %5(5)T [Xn(2), X5(6)] ) %x(3)) -

Thus F|(Xs) = O for all Xs€L®. Further, this identity can be written as S,
E!(x2,x3,X4,Xs5,%¢)x; = 0, which in turn implies E; = 0 for all i = 2,3,4,5,6. In
particular

3
0= E3(x27x37x47-x57-x6>

D (=1 (@) x5 %56 %2 + o) T (Xa(5)) X(6)%2 — Xsa)X55) T (Xa(6) ) %2

ceSs

+ x5 %5556 T(02)) + Y (xaxsa) X550 (¥06)

S S3
+ 20T (X54) ) X5(5)X5(6) — 2%5()T (¥5(5) ) ¥s(6)
— T(x2)x50)%5(5)%5(6) + T [%2, X504 | X5(5)%506) — [¥2,%50)| T (%55 ) 56)
+ [, X504%(5) | T (¥306)) + T (65)) [%2, X505)%5(6) | — %5)T [%2,%5(5) | Xs6)
— x5 T (%5(5)) [%2, X516)| + ¥54)%(5)T [%2,%5(6)] ) -

This is also a functional identity,

E%(XQ,X4,X5,X6)X2 + Ei(xz,)C4,X5,X5)X4 + Eg (.X,'Z,X4,xs, XG))CS
+ E$(x2, x4, X5, X6)Xe + X2F2 (%2, X4, X5,X6) + X4 F 4y (X2, X4, X5, X5 )
+ x5F3 (x2, %4, X5, X6) + X6 Fg (X2, X4, X5, %) = 0.

In particular

E5(x2,%4,X5,X6) = Z (=P (Xo))Xa(5)%0(6) — Xo@)Xo(s)T (Xo(s))

gES;

= T (Xo(@)) Xo(5)1%(6) + Yo T (Xo(s) )Xo (6) )
which in turn implies
E5 (x4, %x5,%6) = Xaha(xs,%6) -+ Xshs (x4, X6) -+ Xehe (x4, Xs) + i (x4, X5, X6)

for all x4, xs,x6 € L, where hy, hs,he : L> — R and )\, : L> — C(L). Consequently
(after two more steps), there exist ¥ € R and a mapping p” : L — C(L) such that

T(x) +p(x) = xr' + " (x)
for all x€ L. On the other hand (by (19)) we have
T(x) —p(x) = rx + 1/ (x)
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for all xe L. Thus
2T (x) = xr’ + rx + ' (x) + p" (x).
By (12) we arrive at

Z (xﬁ(l)r/xw(2)x7r(3) + (W +p") (xm ))xw(z)xm) — Xn(1)Xr(2)Xn(3)

e S3
— Xr(1Xr(2) T Xr(3) = Xn(1) (1 + 1) (Xr(2)) X (3) + Xr(1)Xn(2)Xn(3)
+ Xr(1)Xa(2) (B + 1) (xw(S)))
= D (onty " eae() + (1 1) (1)) Xr(2)%(3) = K1) PXn(2) X3
TES3
— Xp(1)Xr(2) X (3) + Xn(1)Xn(2) P (3)) € C(L).
Therefore

Z (xwu)r'Xw(z) + (W + ") (x7r<1))x7r(2)
™€ S3,m(3)=3

= Xr(1)Fx(2) = Xn(1) %)+ Xn(1)¥r2)T) = O

Note that this implies

(7 = e x(r =) = ~( + 4
for all x € L. It follows that y/ 4+ ¢ =0 and ¥’ — r€ C(L). Thus [r,x] = [¢, x] for
all x € L, which implies

2T (x) = xr + r'x, 2T(x) = rx + xr'.
Consequently 4T(x) = (r + ¥ )x + x(r + #') for all x€ L. Thereby the proof is
completed. O]

3. Results

The main purpose of this paper is to prove Theorem 3.2. Note that Theorem 2.1
and Theorem 3.2 are almost trivially true for any ring with a unit 1. Indeed, setting
x =1 in a partial linearization of (4)

T(x’y + xyx +yx°) = T(x)xy + T(x)yx + T(y)x*
— xT(x)y — xT(y)x — yT(x)x + X*T(y) + xyT(x) + yxT(x),
X,y €ER, one sees that 2T (y) = T(1)y + yT (1) for all y€R.

Theorem 3.1. Let R be a 2-torsion free ring and let T : R — R be an additive
mapping satisfying the relation (4). If the center of R is nonzero and contains no
nonzero divisors of R, then T is of the form 4T(x) = gx + xq for some fixed
element q € Q.

Proof. Let ¢ be a nonzero central element. Pick any x € R and set x; = x, = cx
and x3 = x in (12). We arrive at

T(6¢%x”) = 2¢ (2T (cx)x® + T (x)x*c — 2xT (cx)x — xT (x)xc +x°T (x)c + 2x°T cx))
=2¢(2T(cx)x* + T(x)c — 2xT (cx)x + 2x°T (cx)).
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On the other hand, setting x; = x, = ¢ and x3 = x> in (12) we obtain
T(6¢*x) = 2¢(T(c)x* + T(x)c + X' T(c)).

Comparing so obtained relations we get

(2T (ex) — T(c)x))c2 +x° (2T (ex) — xT(c)) — 2xT(cx)x = 0. (20)
In particular, when x = ¢, we have

2¢2 (T(cz) —cT(c)) =0.
By the primeness of R this implies
T(c*) = cT(c). (21)

Replace x; by cx in (12). On the other hand replace x, by cy in (12), where y € R.
In both cases let x3 = ¢. Comparing so obtained results we arrive at

(T(cx) — cT(x))y + y(T(cx) — cT(x))

(22)
= (T(cy) = cT(y))x +x(T(ey) = cT(y))
for all x,y € R. Setting y = ¢ in (22) and using (21) one concludes that
T(cx) = cT(x) (23)

for all xeR.

Now let F be the field of fractions of R. Enlarge R to the ring RF, noting that
any element of RF can be written in the form rc¢~!. Then T can be extended to RF
by defining

T(xc ') =c'T(x)

for all x € R. This is well-defined. Namely, if xc~' = yd~! then cy = dx, whence
by (23)

cT(y) =T(cy) = T(dx) =dT (x),

which implies ¢! T(x) = d~'T(y). It is easily seen that this extended T satisfies
(4). Since RF has the identity element 1 = cc~', the conclusion of the theorem
holds, as noted above. Thereby the proof is completed. O

Theorem 3.2. Let R be a 2-torsion free prime ring and let T : R — R be an
additive mapping satisfying the relation (4). In this case T is of the form 4T (x) =
gx + xq for some fixed element q < Q.

Proof. Note that the complete linearization of (4) gives us (12).

First suppose that R is not a PI ring (satisfying the standard polynomial identity
of degree less than 12). According to Theorem 2.1 there exist g € Q,,, such that
4T (x) = xq + gx for all x€R. Since gx + xq €R for all xR it follows from the
end of the proof of [18, Theorem 2.1] that g € Q.

Assume now that R is a PI ring. It is well-known that in this case R has a non-
zero center [14]. Since the center of a prime ring R contains no nonzero divisors of
R the proof is completed by Theorem 3.1. ]
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Our last result is related to bicircular projections on prime ring with involution
which is related to the conjecture in [17].

Theorem 3.3. Let R be a prime *-ring of characteristic different from two.
Suppose that D,G : R — R are additive mappings satisfying the relations

D(xX*) = D(x)x* + xG(x*)*x + ©*D(x),
G(x®) = G(x)x* 4+ xD(x*)*x + X*G(x)
for all xeR. In this case D and G are of the form
16D(x) = 4(d(x) + g(x)) + (p + 9)x +x(p + q),
16G(x) = 4(d(x) — g(x)) + (p — @)x + x(p — q)

for all xR where d and g are a derivations and p and q are some fixed ele-

ments from Qy. Besides, d(x) = —d(x*)*, g(x) = g(x*)* for all xe R and p* = p,
*

q =dq.

Proof. The proof goes through in several steps. Let us first assume that D = G.
In this case we have the relation

F(x3) = F(x)x* + xF(x*)*x + x*F (x) (24)
for all x€R. It is our aim to prove that F is of the form
8F (x) = 4d(x) 4 gx + xq, (25)

for all x € R, where d is a derivation of R and ¢ is a fixed element from Q;. Besides,
d(x) = d(x*)*, for all xeR and ¢* = —q. Let us introduce mappings d : R — R
and f : R — R by

f0) = Flx) = F(x*")" 2
for all x€R. Now we have
d(x*)" = (FO™) + F(0)™)" = F(x) + F(x*)* =d(x), xeR.
From the relation (24) one obtains easily that
d(x*) = d(x)x* + xd(x)x + x*d(x) (27)
and
FOF) =f00x* = xf (0)x + 2f (), (28)

is fulfilled for all x € R. Now it follows from the relation (27) and [2, Theorem 4.4]
that d is a derivation. On the other hand one can conclude from the relation (28)
applying Theorem 3.2 that f is of the form 4f(x) = gx + xq, for all x € R and some
fixed element g € Q,. We have therefore

4F (x) — 4F(x*)* = gx + xq (29)
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for all x € R. Putting in the above relation x* for x we obtain 4F(x*) — 4F(x)* =
gx* +x*g, x €R, which gives

4F()c>")>|< —4F(x) = q*x —|—xq*

for all x€R. Combining the above relation with the relation (29) we obtain
(g +q*)x +x(q+ q*) = 0, for all x € R, whence it follows after some calculation
because of the primeness of R that ¢* = —g. Combining the relation (26) with
the relation (29) we obtain 8F (x) = 4d(x) + gx + xg, x € R, which completes the
proof of the first step.

Let us now assume that D = —G. Thus we have the relation

H(x¥) = H(x)x* - xH(xX*) x + X*H(x),
for all x€R. In this case H is of the form
8H (x) = 4g(x) + px + xp, (30)

for all x € R where g is a derivation of R and p € Q, is some fixed element. Besides,
g(x) = —g(x™)*, for all xeR and p* = p. The proof of the second step will be
omitted since it goes through using the same arguments as in the proof of the
first step.

We are ready for the proof of general case. We have therefore relations

D(x*) = D(x)x* + xG(x*)"x + ’D(x), x€R (31)
and

G(x*) = G(x)x* + xD(x*)"x + X*G(x), x€R. (32)
Combining (31) with (32) we obtain

F(x*) = F(x)x® + xF(x*)* x + X’F(x), x€R

where F(x) stands for D(x) 4+ G(x). On the other hand subtracting the relation (32)
from the relation (31) we arrive at

H(x*) = Hx)x*> — xH(x*)*x + X*H(x), x€R
where H(x) denotes D(x) — G(x). Now according to (25) and (30) we have
8D(x) +8G(x) =4d(x) + gx +xq, x€R (33)
and
8D(x) — 8G(x) = 4g(x) + px+xp, x€R. (34)
From (33) and (34) one obtains
16D(x) = 4(d(x) + g(x)) + (p + ¢)x +x(p +gq), XxER
and
16G(x) = 4(d(x) — g(x)) + (¢ —p)x +x(¢ —p), x€R

which completes the proof of the theorem. O
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