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f(@)< L‘(’;%, (3.10)
Sor p(1 —a)> 1,
f'(2) <%. | (3.11)

Progf. Without loss of generality we assume that

#(z) pz°~!

S (1+az)
f(Z)— (1__2)217(1__0‘) °

DK

where |4(z)) <1 in D and |a|=1. We know (1 +az)/(1—z)<
(1 4+ z)/(1 — z). Thus the conclusion follows from Theorém 7.
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The question of whether biholomorphic maps are linear has been treated
in various forms by several authors. In particular, Harris [1] has shown that
a biholomorphic map of the unit ball of one. space to another which takes 0
to 0 is a restriction of a linear isometry between the two spaces. He then
showed that if the unit ball of a Banach space is a homogeneous. domain,
then it is -holomorphically equivalent to the unit ball of another Banach
space if and only if the two spaces are 1sometr1cally isomorphic. He asked
whether this result would hold without the assumption about a homogeneous
domain. Kaup and Upmeier [2] gave an answer to this question by showing
that two complex Banach spaces are isometrically equivalent if and only if
their open unit balls are biholomorphically equivalent. In a recent paper,
Stacho [5] gave a short proof of the fact that -all biholomorphic
automorphisms of the unit ball in certain L”-spaces are linear. In the present
note, we show how Stacho’s method can be used to obtain the same result
for the C,-spaces and the spaces L?(2, E), where E is an arbltrary Banach
space, £2 is ¢g-finite, and 1 < p < + o0, p# 2.

In particular, for the discrete case, we get the result that [ (E) has the
linear biholomorphic property whether E has the property or not. On the
other hand, we show that c,(F) has the property if and only if E has it.

A function ¢ on the open unit ball B(E) of a Banach space is said to be
holomorphic in B(E) if the Frechet derivative Dg(x, -) of ¢ at x exists as a
bounded linear map of E into E for each x € B(E). A function ¢ from B(E)
to B(E) is biholomorphic if ¢ " exists and both ¢ and ¢ ~! are holomorphic.

The proofs of Theorems 1 and 2 below as well as the theorem in [5] are
based on the following lemma proved by Stacho in [5].

LEMMA (Stacho). If E is a Banach space with dual E*, then every
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biholomorphic automorphism of the unit ball is linear if and only if condition
(1) is satisfied:

(q(x, x), 9)=—(z,4) for all xEE, §SE* with ||x] =
8l=1=(x,¢) implies z=0 whenever zEE, g is a
bilinear form from E X F to E, and {, ) denotes the pairing @
between E and E*.

We will say that a space for which every biholomorphic automorphism of
the unit ball is linear has the linear biholomorphic property.

2

If H is a Hilbert space and T a compact operator on H, let
” T”p = [trace(T* T')P/Z]l/p,

The Von Neumann-Schatten p-class C,= {T: ||T|, < +co} is a Banach
space with norm given by (2). For information on C,-spaces, see the book of
Ringrose [4]. We will find it convenient to use the notation | T| = \/T*T, so
that the polar decomposition of T can be written T= V' |T| where V is a
partial isometry. We note that if 1<{p< oo and 1/p+ 1/p’ =1, then for
T€C, and SE€C,, (T,S)=Trace(TS) defines a continuous linear

functlonal on C, and C , is isometric to the dual of C, with respect to this

identification.

TrEOREM 1. If 1<p<oo and p#2, then C, has the linear
biholomorphic property.

Proof. We show that C, satisfies condition (1). To that end suppose g is
a bilinear map on C, X C, to C,, W& C, and
@(T,T),8)=—W.5) | (3)

for all T€C,, SE€C,, and with |[T],=|S|, =1=(T,S), where
1/p+ 1/p’ = 1. We wish to show that W =0.

For each T€ C,, let T=|T|?~'V* where T_|T[ V is the polar decom-
posmon of T. FlI'St we observe that T'€ C, . It is clear from the definition
that | 7| = V| T|?~'V* and by properties of the trace and the fact that V*V
is a projection on the range of | T| we obtain

Trace(| T?") = Trace(V | T|®~V?'V*) = Trace(V | T|?V*)
= Trace(V*V'|T|?) = Trace(| T|?).

1< p< 0. 2

—n

O V.
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Fo‘r a given T 0, it is easy to show that (7| T|,)" = (1/| T|2~")T and
that
T T\ T T \
) !‘ ”(W) b <nT|| ||'Tu5“1>'

=
@O, = |TEFT @

Therefore, by (3) we have

for all T€C,.

Next we choose hermitian projections P, Q in C so that PQ =0 and we
let T=P+ AQ for a nonzero constant A. Then T*T P+|A*Q and |T| =
P+|1 Q. If V=P+ (A/|A])Q, it is easily verified that V" is an isometry on
the range of |T| and T= V| T| is the polar decomposition of 7. Next we see
that T=P + |A|[?P~%1Q and the right-hand side of (4) becomes

—|[T||2(W, T) = — [Trace(P)

+|A|? Trace(Q)]*?{Trace WP + 4 |A|?~? Trace WQ}. (5)
Substituting for T and 7 in the left-hand side of (4) and equating that to the
result in (5), we obtain

2

2
S A+ AAPTE Y gAY

= — [y ATy + A 1A )
Whefe
=P P, P),  a,=(g(Q P),P)+ g, Q)P)
0, =90, QW P),  Bo={(a(P,P), Q),
= [g(Q, P), @) + (a(P, Q), O)),

52 = <Q(Qa Q)s Q>:
4, =Trace P,

yl Trace(WP),

4, =Trace Q,
Yy = Trace(WQ) (6)

Equat1on (6) is exactly the equation obtained by Stacho [5 p- 383] and it
holds for all nonzero 1. We proceed exactly as in [5] to conclude that either
p=2or y, =0. Hence if p+# 2, we have

Trace(WP) =0 (7

for all choices of P as a hermitian projection.
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If W is a compact hermitian, then W = Z4,P;, where {P,} is a family of
hermitian projections which are pairwise orthogonal. From (7) we have
0= Trace(WPk) for each k implies A, = 0 for each &, so that W = 0. Finally,
if W is an arbitrary member of C,, W=A4,+id,, where A, and 4, are
hermitian. Then 0= Trace(WP)= Trace(A P)+i Trace(A P) for all
hermitian projections P. Since the trace of a product of hermitian operators
is necessarily real, we conclude that Trace(4,P)= Trace(4, P)=0 for all
hermitian P. By our previous argument, 4, =4, =0 so that we have
succeeded in showing that W = 0.

3

"For 1<p< o, let "LP(2,E) denote the Banach space of weakly
measurable functions F defined on a measure space (12, %, ) taking values in
a Banach space E for which

IF,= OQ | F(w)[? du(w)) v < 400.

By adding a restriction on the measure space we can extend the theorem
of Stacho [5] to the more general L?(£, E) spaces.

THEOREM 2. Let (2, Z,4) be a o-finite measure space which does not
consist of a single atom, let E be a Banach space and suppose 1 <p < oo,
p#*2. Then LP(2, E) has the linear biholomorphic property.

Proof. The proof follows the same lines as that of Theorem 1. For
FELP(Q,E), define F: Q@ - E* by

Fw)(z) = [z, F()] | F(w)["~2,

where z € E and [, | is a semi-inner product compatible with the norm of E.
(For information on semi-inner products see Lumer [3].) Then F is an
element of L,.(2,E*).which can be identified with a subspace of
(L2, E))*.

Now let ¢ be a bilinear form and U€ L?(2,E) be given as in condition
(1). Then

J, 9@ F)@), F@)] | F@)lP~* dute)

== |IFl; | T0@), F@)] | F@)|"~* du() ®)

_q

et e e e e e et e e e e e, e e ot e o e
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for all F € L?(2, E). Assume first that x(f2) is finite. Let F, be an element of
L?(Q, E) for which ||F,(w)|=1 for all w such that F,(w)+# 0. Let z, EE

with || z,|| = 1. Next choose 2, and £, as disjoint subsets of £, each having

positive measure and let F(w) = xq, F1(w) + Axq,(w)z, for we, where xq,,
Xa, are characteristic functions and 4 is a scalar.
Using the fact that for each w € 2,

| F@)] = %, | Fy(@)] + 12| X0, 1 2

and
[U(w), F(w)] = [U®), F;(@)]10,(@) + [U®), 2, 1q,(@)2,

we can conclude, after substitution into (8) and suitable calculations, that

| T0@). F(@)] du(w)=0

Q

Since this holds for all 2, with u(£2,) =0, we must have
[U), F@)]=0  ae.

It now follows by a proper choice of F; that U(w)=0 ae. A standard
argument will lead to the same conclusion if 2 is o-finite.

Thus we have that condition (1) is satisfied and the theorem follows from
Stacho’s lemma.

"The above argument will go through with very little change if the single
space E is replaced by a family {E(¢):¢€ 2} of Banach spaces so tbat
F(t) € E(¢) for each ¢ This remark applies in the next section where we wish
£ to be a countable discrete space.

4

Let {E;} denote a sequence of Banach spaces and let ¢,(E;) denote the set
of elements x = (x;) of the product space IIE; for which lim | x;|| = 0. Then
¢o(E;) is a Banach space under the norm || x| = sup; .; ., [|x;[| whose dual
space is isometric to /;,(E}) under the obvious pairing.

THEOREM 3. The space X = co(E;) has the linear bzholomorphzc property
if and only if each E; has the linear biholomorphic property.

Proof. First suppose that each E; has the linear biholomorphic property.
Let g be a bilinear mapping of X X X to X such that

(glx, x), x*) = — (u, x*) )
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for all x, x* such that 1 = (x, x*) =] x| =|lx*|. For each i let 6, and 7, be
the injection of E; into IIE; and the projection of JIE, onto E,, respectively.
For a given i, let g,(u, v) be defined on E; X E; by

q:(us v) = 7,9((u), 6,(v)).

Then g; is a bilinear map of E; X E; into E;. Now suppose x; € E; with
Ix;[l=1 and suppose x} € Ef such that 1= {x;, x*)=|x,| =|x}|. Since
x=0i(x) E X, x* = 6,(xf) EX* and (x, x*) = (x,, x}) = 1= |x,]| = | x]| =
| x*{, we must have from (9) that

<q(x’ x),x*}:—(u,x*). (10)

Hence by definition of g, and from (10) we have
(qi(x;> %), x) = {q(x, x), x*) = — (u, x*) = — (uy, xF°).

Thus condition (1) of the lemma implies #;=0 since E; has the linear
biholomorphic property. We conclude that u =0, so that condition (1) is
satisfied by X itself, and X has the linear biholomorphic property.

For the converse, suppose X has the linear biholomorphic property. Let i
be given and let v be a biholomorphic automorphism of B(E,). Define ¥ on

B(X) by

n; P(x) = m;x, J#Ei
=y(m(x), J=i

It is straightforward to show that ¥ is a biholomorphic mapping of B(X)
onto itself and is therefore linear by hypothesis. It follows that y is
necessarily linear on E;.

It is interesting to note that [ (E;) (I1<p< co,p+2) has the linear
biholomorphic property even if some E; fails the property, while ¢,(E;) can
have the property only if E; has it for each i In particular, since the one-
dimensional complex space does not have the property, neither does the
sequence space (cy). In fact, using techniques similar to those in [1], we
obtain the following result which we state without proof.

THEOREM 4. F is a biholomorphic automorphism of B(c,) if and only if
there exists a unimodular function a(-), a permutation ¢(-) of the positive
integers, and an x, € B(c,) such that

o x(9(1)) — x4(8())
F@mﬂ—“@[l—awm»wﬂmﬂ

for each x € B(c,).

S o A e

BANACH SPACES AND LINEAR AUTOMORPHISMS 133

\

REFERENCES

1. L. A. HARRIS, Bounded symmetric homogeneous domains in infinite dimensional spaces, in
“Proceedings of Infinite Dimensional Holomorphy,” Lecture Notes in Matheématics
No. 364, pp. 12-140, Springer-Verlag, New York, 1973. )

2. W. Kaurp aND H. UPMEIER, Banach with biholomorphically equivalent unit balls are
isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133. ’

3. G. LuMER, Semi-inner product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.

4. J. R. RINGROSE, “Compact Non-Self-Adjoint . Operators,” Van Nostrand Reinhold,
London, 1971.

5. L. L. StacHO, A short proof of the fact that biholomorphic automorphisms of the unit ball
in certain L” spaces are linear, Acta Sci. Math. 41 (1979), 381-383.




