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Abstract

We study some geometric properties of holomorphic mappings on a Banach space by
using the theory of linear and nonlinear semigroups in the spirit of Hille-Yosida. In
addition, we obtain some new results on the asymptotic behavior of one-parameter
semigroups of holomorphic self-mappings. This enables us to study those mappings
on the Hilbert ball which are star-like with respect to a boundary point.
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1 Vector fields and semigroups of holomorphic mappings

Let D be a domain (that is, a nonempty open connected subset) in a complex
Banach space (X, |-|). We denote by Hol(D, X) the vector space of all holomor-
phic mappings from D into X and by ﬁal(D,X ) the subspace of Hol(D, X)
consisting of all those mappings in Hol(D, X) which are bounded on each ball
strictly inside D.
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The space ﬁ(?l(@, X) is a locally convex space under the family of seminorms
pa(g) == sup{lg(z)| : = € B},
where B is a ball strictly inside D.

Definition 1.1 To each g € Hol(D, X)) there corresponds a holomorphic vec-
tor field V,; which is the linear operator on Hol(D, X) defined by

Vo(f)(z) = f'(=)g(=), (1.1)

where f € Hol(D, X) and z € D.

Each vector field V is locally integrable in the following sense: For each 2 € D
there exist a neighborhood U of z and a number § > 0 such that the Cauchy
problem

(1.2)

u(0,2) =2

{—M;f + glu(t, ) = 0

has a unique solution {u(¢,z)} C D defined on the set {|¢t| < d} x U CRx D.

Definition 1.2 A holomorphic vector field V, is said to be right semi-complete
(respectively, complete) on D if the solution of the Cauchy problem (1.2) is well
defined on all of RT x D (respectively, R x D), where RT = [0,00) (respectively,
R = (—00,00)).

Definition 1.3 A family {S(t) : t € Rt} C Hol(D, D) of holomorphic self-
mappings of D is called a (one-parameter) semigroup if

S(s+1)=8(s) o S(t), s,t €RT, (1.3)

and

S(0) =1,

where I denotes the identity operator.
A semigroup {S(%)} is said to be (strongly) continuous if

tl_i}r(g}r S(t)z) == (1.4)

for each z € D.
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Definition 1.4 Let {S(t)}, t € B, be a strongly continuous semigroup of
holomorphic mappings of D. If the strong limit

o) = lim = ( - S(t)(z)) (1.3)

t=0t ¢

exists for each © € D, then g is called the (infinitesimal) generator of the semi-
group {S(t)}. In this case we will say that {S(t)}, t € R, is a differentiable
semigroup. The set of all generators on D will be denoted by G. (D).

In fact, it can be shown (see, for example, [10]) that if D is bounded, then a
continuous semigroup is differentiable if and only if the convergence in (1.4)
is uniform on each ball strictly inside D, i.e.,

T-lim S(t) = I. (1.6)

t—0+

Here T—tlirggr S(¢) refers to the limit in the T-topology of locally uniform con-
—

vergence [6,3].
Moreover, in this case the mapping u« defined by

u(t,z) = S(t)(z), (t,z) Rt x D, (1.7)

is the solution of the Cauchy problem (1.2) (see, for example, [10]).

If a semigroup {S(¢)}, t € R*, has a continuous extension to all of R, then
{8(t)}, t € R, is actually a (one-parameter) group of automorphisms of D. The
converse is also true: If an element S(to), to > 0, of a semigroup {S(f)}, t €
R*, is an automorphism of D, then so is each S(¢) and the semigroup can
be continuously extended to a (one-parameter) group. Thus, a holomorphic
vector field V,, defined by (1.1), is semi-complete (respectively, complete) on
D if and only if g is a generator of a one-parameter semigroup (respectively,
group) of holomorphic self-mappings on D.

If D is bounded, then a semigroup (group) {S(t)}, t € R* (respectively,
¢ € R), induces a linear semigroup (group) {£(t)} of linear mappings L(?) :
Hol(D, X) — Hol(D, X) defined by

(L(t)f) (z) = F(S@)(2)), (1.8)

where t € RY (¢t € R) and z € D.

This semigroup is called the semigroup of composition operators on
Hol(D, X). If {S(t)}, t € R (t € R), is T-continuous, (that is, differentiable),
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then {L£(t)}, t € RY (¢ € R), is also differentiable and

{ 2EOL LV, (L(8)f) =0 (1.9)

LO)f = f

for all f € ﬁa(D,X), where g = — %%Q ot
In other words, the holomorphic vector field V,, defined by (1.1) and con-
sidered a linear operator on ﬁgl(D,X ), is the infinitesimal generator of the
semigroup {£(t)}. It is sometimes called a Lie generator {2]. Thus a holomor-
phic vector-field V, is semi-complete (respectively, complete) if and only if
it is the generator of a linear semigroup (respectively, group) of composition
operators on I—m(D,X).

Moreover, using the exponential formula representation for the linear semi-
group,

(1)t
!

s =3 =)

k=0

VEf = exp[—tV,]], (1.10)

(see, for example, [9,11]), we also have

oo kg
sty=3 "D

k=0

VFI = exp[—tV]1. (1.11)

In other words, a T-continuous semigroup of holomorphic self-mappings on a
bounded domain can be represented in exponential form by the holomorphic
vector field corresponding to its generator.

Other exponential and product formulas for semigroups of holomorphic map-
pings can be found, for example, in [9,10].

2 A general dynamic approach to star-like mappings in Banach
spaces

Definition 2.1 A subset M of a Banach space X is said to be star-shaped if
for each w € M and t > 0 the point e™'w also belongs to M.

Definition 2.2 If D is a domain in X, then a biholomorphic mapping f €
Hol(D, X) is said to be a star-shaped mapping on D if the closure Cl(Q) of
its image @ = f(D) is a star-shaped set.
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In addition, if 0 € Q, then we will say that f is star-like with respect to an
interior point; if 0 € R, the boundary of Q, then f is said fo be star-like with
respect to a boundary point.

Our first result is a consequence of (1.10).

Theorem 2.1 Let D be a domain in a complex Banach space X, and let ¢
belong to Hol(D, X). If the vector field V, corresponding to g is semi-complete,
then for each element f of Ker(I —V,) € Hol(D, X), the set f(D) is star-
shaped.

If f € Hol(D, X) is biholomorphic on D, then the converse assertion is also
true.

Theorem 2.2 Let f be a biholomorphic mapping on a domain D in X such
that f(D) is star-shaped. Then there is a semi-complete holomorphic vector
field V, such that f € Ker(I — V).

Corollary 2.1 A biholomorphic mapping f on a domain D C X is star-like
if and only if it satisfies the differential equation

f(=z) = f'(z)g(), (2.1)
where g is the generator of a one-parameter semigroup of holomorphic self-
mappings of D.

Corollary 2.2 Let S(t) be a one-parameter T -continuous semigroup of holo-
morphic self-mappings of a domain D. If for some F € Hol(D, X) there exists
the strong limit

f = lim exp (t1)F(S(t)), (2.2)

then f(D) is star-shaped.

Remark. It can be shown (see, for example, [4]) that if g € G, (D) is bounded
and satisfies the conditions

ga) =0, aeD, (2.3)

and

gla)=1, (2.4)

and F is a translation by a, then the limit f in (2.2} exists and f(D) is a star-
shaped domain (with respect to 0 = f(a)). In other words, under conditions
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(2.3) and (2.4), the equation

can be solved and for each z € D,

f(z) = Jim &' (S(t)(z) — a),

t—=00

where S(t) is the semigroup generated by g.

These connections between semigroups of holomorphic mappings and the ge-
ometry of domains in Banach spaces show the importance of the study of the
asymptotic behavior of such semigroups. For example, an exponential rate of
convergence of S yields a distortion theorem for. f.

3 Asymptotic behavior

In this section we announce new results regarding the asymptotic behavior
and rates of convergence of semigroups (flows) of holomorphic mappings on
the open unit Hilbert ball B. We begin with the following definition.

Definition 3.1 Let S = {F(t)}i»0 be a flow on B which is generated by f.
We will say that a point 7 € B, the closure of B, is a globally attractive point
for S if for each x € B, the strong limit

lim F(t)z =,

=00

uniformly on each ball strictly inside B.

If 7 € B, then 7 is the unique asymptotically stable stationary point of S. If
T € OB, the boundary of B, then we will call it the atiractive sink point of S.

For the case of holomorphic generators, the attractivity of a stationary point
can be completely described in terms of their derivatives.

If f € Gy(B)and 7 € Null(f), the null point set of f, then 7 is (globally)
attractive if and only if the spectrum of the linear operator f’(7), the Fréchet
derivative of f at 7, lies strictly in the right-half plane (see, for example, [9]).
But, as far as we know, for generators with no null points, the situation has
been described only for the one-dimensional case, that is, when B = A, the
open unit disk in the complex plane T [5].
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Even in this case the usual approach treats the interior and boundary cases
separately. The new approach which we will sketch below provides a unified
description in a general Hilbert space both for the case of an interior stationary
point and for that of a boundary sink point.

Let B be the open unit ball in a complex Hilbert space H. For a fixed 7 € B,
the closure of B, and an arbitrary z € B, we define a non-Euclidean “distance”
between z to 7 by the formula

I
here (1= 221 = 7%
o(x,7) = TR , TEB, 7EB.

Geometrically, the sets

E(r,s) = {x €EB:d.(z) < s}, s> 0,

are ellipsoids. If 7 € B, then these sets are exactly the p-balls

E(r,s)= {x €B:p(z,7) < r}

centered at 7 € B and of radius r = tanh™* , /m_sTTu—z. If T € OB, the boundary
of B, then the sets

ll - <‘T77>12 <

E(r,s)= {x €B:d (z)= Tl

s}, s> 0,

are ellipsoids which are internally tangent to the unit sphere IB at 7.
For fixed 7 € B and z € JF(7,s),z # 7, consider now the non-zero vector

. N S
= 1—o(z,7) (1~{|xl|2 1—{r,z) ) (3:2)

As in [1], it can be shown that z~ is a support functional of the smooth convex
set E(7,s) at z, normalized by the condition

chl_r}r}(x—/—,x )y =1.
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Then for a mapping f : B — H, the so-called “flow-invariance condition”,

Re(f (z),z™) >0, (3.3)
is necessary for f to be a generafor of a continuous flow for which the sets
E (7, s) are invariant.

Counversely, if condition (3.3) holds for some 7 € B and all 2 € B, then 7 must
be a stationary point of S = {F(f)}:>0, hence a null point of f.

If f has no null point, then it can be shown exactly as in Theorem 3.1 in [1]
that there is a unique boundary point 7 € 9B such that (3.3) holds. This point
7 is the sink point for the flow generated by f.

In order to classify the asymptotic behavior of flows we will introduce a condi-
tion which is finer than (3.3). More precisely, for a point 7 € B and f € G4(B)

we consider the nonnegative function on (0, co) defined by

wp(8) := d,i(g)f<52 Re(f(z),z*), s>0, (3.4)

where z* is defined by (3.2).

It is clear that the function w, is decreasing on (0, c0).

Theorem 3.1 (Theorem on universal rates of convergence) If
fegi®) and § = {F(t)}tgo is the flow generated by f, then the following

are equivalent.

(a) For some point T € B, the number w,(0) (= lir(% wy(s)) is positive;
5=

(b) for some point T € B, there is a decreasing function w : (0,00) — (0,00)
such that

d(F(t)z) < ey (2), zeB, t>0; (3.5)

(¢c) for some point T € B, there exists a number p > 0 such that

d.(F(t)z) <e*d.(z), z€B, t>0. (3.6)

Moreover,
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(ii) if € B, then pu can be chosen as p = @, but p cannot be larger than
w(0) (= lim w(s));

(iii) if T € OB, then the mazimal p for which (3.6) holds is ezactly wy(0), that
15, 0 < M < wb(O).

Thus we see that if the flow S = {F(t)}:50 converges to 7 € B with a rate
of convergence of exponential type, then the rate of convergence is, in fact,
uniform in terms of the “distance” d;. A key tool in the proof of Theorem 3.1
is the following surprising fact:

If wy(0) is positive, then w, is bounded away from zero. Moreover, if 7 € JB,
then w, is simply a positive constant: wy(s) = w,(0) = 3 for all s € (0, c0).

It can be shown that this constant 3 is equal to the so-called angular derivative
of f (if it exists) at the point T € IB. In view of Theorem 3.1(iii), this number
8 gives the best rate of exponential convergence of S = {F(t)},5,.

These facts can be considered a continuous analog of the classical Julia-Wolff-
Carathéodory Theorem.

Remark. As we mentioned at the end of Section 2, the universal estimate
(3.6) can be used to obtain distortion theorems for star-like mappings.

Returning to the theme of Section 2, the following natural invariance problem
arises (cf. [7], pp. 112 and 156):

If f: B~ H is star-like, on which subsets of B does it continue to be star-like?

This problem, in turn, is closely related to the following approximation prob-
lem:

If f:B+~> H is star-like on B, how does one find a sequence of nice domains
{D,} such that U D, =B and f(D,) is star-like for each n?
n=1

If f(r) = 0 with 7 € B, then an answer can be obtained by combining the
Schwarz Lemma with an appropriate Mobius transformation (cf. the one-
dimensional argument in [3], p. 41). This approach is no longer applicable
when 7 belongs to the boundary JB of B. However, in this case the approxi-
mation problem can be solved by applying Theorems 2.1 and 3.1.

Corollary 3.1 Let f : B — H be star-like with f(7) (: lil’fl f(r’r)) =0.
r—=1=
Then for each s € (0,00), the sets f(E(T,3)) are star-shaped.
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